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Abstract
1H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-

iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and 

bidentate association in the solid state. A nearly isostructural host molecule demonstrates 

significant C–H hydrogen bonding to perrhenate in the same phases.

With similar structural and electronic characteristics,1 perrhenate (ReO4
−) is a tractable 

surrogate2 for the medically ubiquitous and environmentally pernicious3 oxoanion, 

pertechnetate (TcO4
−).4 The metastable form of technetium5 and its long half-life6 decay 

product 99Tc are standards for radiolabeling7 and in situ radiotherapy. Considering the high 

mobility of 99TcO4
−, its stability,8 and increasing production,9 the need for synthetic 

receptors to function as strong and selective chelating agents, liquid-liquid extractants,2 and 

ion-exchange stationary phases10 is pressing.

ReO4
− and TcO4

− are challenging targets due to their low hydration energies and diffuse 

charge densities.11 To combat these difficulties, a number of hydrogen bonding (HB) 

scaffolds and hosts have been developed.1, 11–12 Elegant HB examples include aza-cryptands 

with pH-tunable cavities,12a–c and charge neutral pyrrole-based macrocycles.12d–e In 

contrast, bidentate halogen bonding (XB) and unconventional C–H13 HB receptors for 

ReO4
− or TcO4

− have not been reported. XB14 in particular offers an exciting competitive15/

cooperative16 alternative with the benefit of soft-soft HSAB complementarity.17 Herein, we 
report the first two receptors that exhibit strong XB and C–H HB with ReO4

− in solution, 
and the first bidentate and tridentate structures of each in the solid state.

We have developed two bidentate receptor molecules based on a diethynyl benzene core (1 
and 2, Scheme 1). 1 is designed to direct two XB donors towards one anionic guest in a 

planar conjugated conformation.19 Molecule 2—which lacks XB donors—was prepared to 

quantify C–H HB to ReO4
−, and serve as a comparison. Both receptor scaffolds were 

synthesized by Sonogashira20 cross-coupling of 1,3-diethynyl benzene with either 3-

bromo-4-iodopyridine or 4-bromopyridine hydrochloride. The XB donor iodines of 1 were 
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installed by lithium halogen exchange followed by quenching with I2. Alkylation of the 

pyridines with octyl triflate activated the XB and HB donors of 1 and 2, respectively, and 

enhanced solubility in organic solvents. To minimize competitive intramolecular 

interactions, triflate counteranions were exchanged by metathesis for non-coordinating 

[BArF
4]− anions.21 Methyl derivatives 1b and 2b were synthesized in a similar manner for 

X-ray diffraction studies.

The crystal structure of 1b2+•2ReO4
− represents the first bidentate XB22 to ReO4

− in the 

solid state. Yellow single crystals of 1b2+•2ReO4
− suitable for X-ray diffraction were grown 

by diffusing DCM into a DMF/MeOH solution of receptor 1b and tetra-n-butylammonium 

perrhenate (TBA+ReO4
−).23 1b2+•2ReO4

− crystallized in space group P21/c, forming 

bidentate XB to separate oxygens of a ReO4
− anion (Figure 1, top). The C–I···O− distances 

2.97 and 3.06 Å correspond to 84 and 86% of the Σ VdW radii, and corroborate strong XB 

interactions. To accommodate the size of ReO4
−, both pyridinium rings rotate 11° from 

coplanarity. As a result, the observed C–I···O− bond angles of 175 and 168° also confirm 

strong XB interactions. Examination of the crystal packing reveals C–H HB and electrostatic 

contacts between ReO4
− and five additional molecules of 1b (see ESI). The second ReO4

− 

participates in seven C–H HB interactions, and two weak σ contacts with electron-deficient 

pyridinium rings.24 A head-to-tail π-stacking dimer (3.4 Å) is also observed.25 This 

arrangement produces columns of 1b with each ReO4
− on alternating sides of the receptor.

In contrast, the crystal structure of 2b2+•2ReO4
− illustrates unique C–H HB to ReO4

−. 

Colorless single crystals of 2b2+•2ReO4
− were obtained by diffusing ether into a MeOH 

solution of receptor 2b and TBA+ReO4
−.26 2b2+•2ReO4

− crystallized in space group P21/n. 

Notably, tridentate C–H HB to ReO4
− is formed using two Hc hydrogens and Hd (Figure 1, 

bottom), with C–H···O− distances of 2.64, 2.71 and 2.31 Å. In addition, four intermolecular 

C–H27 and two weak σ28 contacts with ReO4
− are present. The second ReO4

− is involved in 

nine C–H HB and two weak σ interactions. To enable tridentate binding to ReO4
−, both 

pyridinium rings adjust 9° from coplanarity, and one ethynyl spacer deviates 8° from 

linearity. An off-centered head-to-tail π-stacking dimer (3.3 Å) is also noted (see ESI).25 

Together, the crystal structures of 1b2+•2ReO4
− and 2b2+•2ReO4

− illustrate the importance 

of bidentate/tridentate XB and HB coordination to ReO4
− in the solid state.

1H NMR spectroscopic titrations involving 1a and 2a were conducted to probe their 

corresponding XB and C–H HB capabilities in solution. Both 1a, 2a and TBA+ReO4
− were 

independently soluble in CDCl3; however, precipitation of host-guest complexes 

necessitated a CDCl3/(CD3)2CO (3:2 v/v) mixed solvent. Titrating TBA+ReO4
− produced 

noteworthy shifts for the pyridinium (Ha, Hb, and Hc) and phenyl (Hd) hydrogens for both 

1a and 2a (Figure 2).29

The significant upfield shifting of Ha and Hb (Δδ = −0.099 and −0.082 ppm, respectively) 

on 1a is indicative of strong XB in solution.30 The dominant XB conformation as suggested 

by the crystal structure of 1b2+•2ReO4
− is distinctly bidentate (Figure 1, top). Further 

evidence of XB in solution can be seen in the downfield 13C NMR shifting of 1a’s C–X 

carbons (Δδ = 0.150 ppm) upon titrating ReO4
− (see ESI). Additionally, facile rotation of 

alkynyl-aromatic C–C bonds enables a second XB mode. Constructive bidentate XB-HB 
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involving a single halogen and Hc/Hd is consistent with the downfield shifting of these 

hydrogens (Δδ = 0.038 and 0.154 ppm).31 Taken together, the greater upfield (Ha and Hb) 

and greater downfield (Hc and Hd) shifting of 1a is explained by strong bidentate XB in 

solution as well as XB-HB synergy.

For 2a, C–H HB and electrostatic contacts are the prevailing interactions in solution. 

Specifically, a tridentate binding site involving two Hc hydrogens and Hd proves the most 

active as evidenced by the crystal structure of 2b2+•2ReO4
− and the downfield progression 

of these hydrogens (Δδ = 0.019 and 0.139 ppm, respectively). Upfield shifting of 2a’s Ha/b 

(Δδ = −0.071 ppm) is indicative of anion-HB augmentation of ring electron density.32

HypNMR 200833 was used to fit changes in shift to a stepwise association model:

(1)

(2)

Iterative and simultaneous refinement of multiple isotherms provided stability constants (Ka) 

for both 1a and 2a with ReO4
−.34 For receptor 1a, the K1 of 8990 M−1 represents the first 

quantification of XB to ReO4
− in solution, highlighting XB’s effectiveness at targeting this 

challenging oxoanion.35 Alternatively, 2a exhibits C–H HB and electrostatic interactions 

with ReO4
−, which result in a K1 of 7390 M−1. Both 1a and 2a display modest K2 values of 

172 and 145 M−1, respectively, that likely result from a combination of weak mono- and 

bidentate HB, and weak σ bonding.

The earliest quantification of XB and C–H HB to ReO4
− in solution, and their corresponding 

bidentate/tridentate complexation in the solid state have been reported. The enhanced 

association of 1a to ReO4
− when compared directly to a nearly isostructural and potent C–H 

HB molecule validates XB’s place alongside HB in an ongoing effort to design rational and 

selective receptors for ReO4
− and TcO4

−. Future work with 1a and 2a will include liquid-

liquid extraction of ReO4
− from aqueous phase, and exploration of XB and C–H HB with 

other anionic guests.
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Figure 1. 
X-ray crystal structures of 1b2+•2ReO4

− (top) highlighting bidentate XB to ReO4
− in the 

solid state (red). Crystal structure of 2b2+•2ReO4
− (bottom) illustrating tridentate C–H HB 

to ReO4
− (black).
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Figure 2. 
Partial 1H NMR spectra of 1a (top, 0–4.78 equiv) and 2a (bottom, 0–4.62 equiv) upon 

titrating TBA+ReO4
− (equivalents from bottom to top).
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Scheme 1. 
a) 3-Bromo-4-iodopyridine, CuI, Pd(PPh3)2Cl2, DMF, DIPEA, rt, 24 h, 88%; b) n-BuLi, 

THF, −78°C, I2, 24 h, 41%; c) prepared according to literature procedure,18 22% d) octyl 

triflate or methyl triflate, DCM, rt, 24 h, 98%; e) vapor diffusion of ether into DCM solution 

of TBA+Cl−, 55–75%; Na+[BArF
4]−, DCM, rt, 30 min, 59–75%.
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