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TIE2-mediated tyrosine phosphorylation
of H4 regulates DNA damage response by
recruiting ABL1
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DNA repair pathways enable cancer cells to survive DNA damage induced after genotoxic therapies. Tyrosine kinase
receptors (TKRs) have been reported as regulators of the DNA repair machinery. TIE2 is a TKR overexpressed in
human gliomas at levels that correlate with the degree of increasing malignancy. Following ionizing radiation,
TIE2 translocates to the nucleus, conferring cells with an enhanced nonhomologous end-joining mechanism of
DNA repair that results in a radioresistant phenotype. Nuclear TIE2 binds to key components of DNA repair and
phosphorylates H4 at tyrosine 51, which, in turn, is recognized by the proto-oncogene ABL1, indicating a role for
nuclear TIE2 as a sensor for genotoxic stress by action as a histone modifier. H4Y51 constitutes the first tyrosine
phosphorylation of core histones recognized by ABL1, defining this histone modification as a direct signal to couple
genotoxic stress with the DNA repair machinery.
INTRODUCTION
DNA repair pathways enable malignant gliomas to survive DNA
damage that is induced after genotoxic therapies (1, 2). For that rea-
son, the development of new therapeutic strategies requires the iden-
tification of key molecular pathways that regulate the cancer-resistant
phenotype. The abnormal function of tyrosine kinase receptors (TKRs)
is a hallmark of malignant gliomas (3), and TKRs have been reported
as regulators of the DNA repair machinery (4). The TKR TIE2 is over-
expressed in human surgical glioma specimens, at levels that correlate
with the degree of increasing malignancy (5), and in brain tumor stem
cells (BTSCs) (6). Here, we described a new mechanistic link between
TIE2 and DNA repair machinery involving epigenetic histone modi-
fication and the proto-oncogene ABL1.
RESULTS AND DISCUSSION

To determine the biological role of TIE2 in the resistance of malignant
gliomas to radiotherapy, we subjected a subset of BTSCs, derived from
human malignant glioma surgical specimens, and a TIE2 isogenic sys-
tem to ionizing radiation (IR). We found that TIE2-expressing
cultures were more resistant to IR-induced cell death and retained
their ability to divide after IR treatment at a higher rate than were cells
that did not express the TKR (Fig. 1, A to C, and fig. S1, A and B). In
agreement with these data, down-regulation of TIE2 expression using
small interfering RNA (siRNA) resulted in the acquisition of a radio-
sensitive phenotype (Fig. 1D and fig. S1, C to E). In an attempt to
delineate the mechanism underlying the role of TIE2 in radio-
resistance, we first analyzed the expression of TIE2 by confocal mi-
croscopy and observed that, upon IR treatment, TIE2 protein localized
to the nucleus rather than its normal cytoplasmic localization (Fig.
1E). Consistently, we observed nuclear TIE2 expression in experi-
ments involving subcellular fractionation (Fig. 1F). These results were
confirmed both in IR-exposed endothelial cultures, which express high
levels of endogenous TIE2 (fig. S1, F and G), and in brains of mice
bearing glioma stem cell (GSC)–derived intracranial xenografts after
IR treatment (Fig. 1G and fig. S1, H and I). These observations led us
to identify a region that endows TIE2 protein with the ability to trans-
locate to the nucleus to further explore specific functions of TIE2 in
this subcellular compartment, as pursued with several TKRs (7). We
refer to this putative region as a nuclear localization signal (NLS)
sequence (580-RRSVQKS-586; fig. S2A) and performed a series of
mutational analyses (fig. S2B). We observed that cells expressing mu-
tant Tie2 forms d585-86 and SS582/86AA were more sensitive to IR
and exhibited a deficient nuclear TIE2 translocation (Fig. 1, H to J).
These results suggest that nuclear translocation of TIE2 is involved in
the radioresistance of TIE2-expressing glioma cells.

To ascertain whether TIE2 trafficking is ligand-dependent, we quan-
tified the expression levels of its ligands ANG1 and ANG2 (8) using
enzyme-linked immunosorbent assay (ELISA), and observed increased
levels of ANG1 (Fig. 2A), but not ANG2, after IR exposure. We also ob-
served that, after IR, Ang1mRNA levels incremented (fig. S3A). Corrob-
orating the in vitro data, the ANG1 protein expression in sections from
GSC-derived intracranial xenografts increased after IR treatment (Fig.
2B). To determine the role of ANG1 in TIE2 trafficking, we performed
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Fig. 1. Nuclear TIE2 localization is associated with the resistance of glioma to IR. (A and B) Cell viability assay to determine the response to IR of (A)
TIE2-expressing GSCs (GSC-13 and GSC-20), TIE2-nonexpressing GSC (GSC-17), and (B) TIE2 isogenic U251 cultures in a time-point experiment. (C) Colony-
forming assay of isogenic U251 cells upon IR treatment. (D) TIE2 silencing results in the radiosensitization of GSCs and U251.Tie2 cells. ntsiRNA, nontarget-
ing siRNA. (E and F) TIE2 localizes in the nucleus of U251 cells upon IR, as assessed by (E) immunofluorescence and confocal microscopic analysis and (F)
Western blot analysis. (G) TIE2 localizes in the nucleus of GSCs upon in vivo IR of intracranial xenografts. (H) Schematic representation of Tie2 constructs
with mutations within the NLS sequence. WT, wild type. (I and J) NLS mutations jeopardize TIE2 (I) nuclear translocation upon IR, and (J) U251 glioma
radioresistance. Data represent means ± SD; **P ≤ 0.01, ***P ≤ 0.001. EV, empty vector.
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Fig. 2. ANG1 induces TIE2 nuclear localization. (A) Increase of total ANG1 protein levels in U251.Tie2 cells in response to IR. (B) ANG1 protein levels of
expression upon in vivo IR treatment of GSC-20–derived intracranial xenografts. HPF, high-power field. (C) Decrease of cell membrane–bound TIE2 upon
ANG1 exposure in U251.Tie2 cultures. IgG, immunoglobulin G. (D) ANG1 exposure results on TIE2 nuclear translocation. (E) TIE2 localizes in the nucleus
of human umbilical vein endothelial cells (HUVECs) upon ANG1 exposure, as assessed by immunofluorescence and confocal microscopic analysis. DAPI,
4′,6-diamidino-2-phenylindole. (F) TIE2 protein levels in cytoplasmic and nuclear U251.Tie2 cellular compartments after exposure to several ligands.
bFGF, basic fibroblast growth factor; VEGF, vascular endothelial growth factor. (G and H) Soluble TIE2 (sTIE2) (G) jeopardizes IR-induced TIE2 nuclear
translocation and (H) sensitizes GSCs to IR. (I) NLS mutations jeopardize TIE2 nuclear translocation upon ANG1 exposure. Data represent means ± SD; **P ≤
0.01, ***P ≤ 0.001.
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a fluorescence-activated cell sorting (FACS) analysis and detected a de-
crease in the expression levels of membrane-bound TIE2 after ANG1
exposure (Fig. 2C); however, ANG2 or epidermal growth factor (EGF)
treatment did not modify these levels (fig. S3B). Although it has
been previously reported in endothelial cells (9) that ANG1, but
not ANG2, was responsible for TIE2 internalization and degradation,
we observed that, upon ANG1 exposure, TIE2 was present in the nu-
cleus (Fig. 2, D and E, and fig. S3, C and D). This phenomenon was
ligand/receptor-specific, as tested in experiments involving exposure to
different ligands, including ANG2, and in an analysis of the sub-
cellular localization of the other Tie member TIE1 upon incubation with
ANG1 and ANG2 ligands (Fig. 2F and fig. S3E). Notably, although
Tie1 and Tie2 are highly homologous, sharing 49% amino acid iden-
tity, Tie1 did not contain a similar putative NLS motif (fig. S2, C and
D). Consistent with a role of ANG1 in TIE2 nuclear localization, the
addition of sTIE2 as a decoy receptor jeopardized both the presence of
TIE2 in the nucleus upon IR (Fig. 2G) and the radioresistance of TIE2-
expressing BTSC cultures (Fig. 2H). Additional data using antibodies
recognizing several domains suggested that full-size, phosphorylated
TIE2 protein was localized in the nucleus upon ANG1 exposure (fig.
S3, F and G). Similar to our previous observations using IR (Fig. 1I),
TIE2 nuclear translocation was blocked when cells expressed mutant TIE2
forms d585-86 and SS582/86AA (Fig. 2I and fig. S4, A to D), suggest-
ing a role for S582, S586, and K585 in this TIE2 cellular trafficking.

To further understand the biological significance of nuclear TIE2
translocation and its association with radioresistance, we analyzed
gH2AX expression, a key component of the DNA damage response
(DDR) (10), in cultures differing in their TIE2 status. Upon IR treat-
ment, the persistence of gH2AX (11) was prolonged in TIE2-negative
cells (U251.EV) or in cells harboring a mutant TIE2 (U251.Tie2SS/AA),
and it was unable to translocate to the nucleus, when compared with
isogenic wild-type (U251.Tie2) Tie2 cells (Fig. 3A). Furthermore, after
DNA/protein cross-linking and DNA precipitation (fig. S5A), we
found the presence of TIE2 in the gH2AX-containing DNA/protein
complexes generated after genotoxic stress (Fig. 3, B and C, and fig. S5,
B and C), together with components of the DNA repair machinery,
BRG1 (12, 13), DNA-PK, Ku70, and Ku80 (Fig. 3D) (14). On the basis
of our observation that TIE2 binds to DNA repair complexes (Fig. 3, B
to D), we investigated the role of TIE2 in DNA repair by focusing on
one of the main pathways involved in DNA double-strand break (IR-
induced), namely, nonhomologous end joining (NHEJ) (15). Using a
fluorescent reporter (16) (fig. S6, A and B), we observed that TIE2-
expressing cells displayed a more efficient DNA repair mechanism than
did their TIE2-negative counterparts (Fig. 3, E and F, and figs. S6C and
S7, A and B). Notably, we did not detect significant differences in the
proliferation rate or cell cycle distribution between these two cultures
that may justify their dissimilar NHEJ efficiencies (fig. S8, A and B).
NHEJ competence was inhibited by using siRNA against TIE2 or by
genetically impairing the nuclear translocation (Fig. 3, G to I, and fig.
S6, D and E) or the catalytic kinase domain of the protein (fig. S9, A
and B). However, a similar experiment designed to test the role of
TIE2 in homologous recombination (HR) did not yield positive results
(fig. S10, A to C). Collectively, these data suggest that nuclear TIE2
plays a role in DNA repair, specifically NHEJ, upon genotoxic stress.

Because posttranslational modification of histones is important for
signaling the position of DNA damage, recruiting the DNA repair
proteins to the site of damage, and creating an open structure such
that the repair proteins can access the site of damage (17, 18), we
Hossain et al. Sci. Adv. 2016; 2 : e1501290 1 April 2016
investigated whether TIE2 directly phosphorylates histones. To this end,
purified TIE2 and core histones were used for in vitro kinase assays;
following analysis by autoradiography or Western blot, we detected
tyrosine phosphorylation of histones, specifically H4, in the presence
of active TIE2 (Fig. 4, A to C). Furthermore, TIE2 phosphorylation
of H4 was confirmed by the detection of a mobility shift in the presence
of Mn2+ ion, which was abolished by alkaline phosphatase treatment
(Fig. 4D). We observed TIE2/H4 complexes in the chromatin fraction,
after ANG1 or IR stimulus (Fig. 4E). IR- or ANG1-treated nucleosomes
were analyzed by mass spectrometry (MS), and the tandem mass
spectrum of H4 matched the indicated amino acid sequence, suggest-
ing that TIE2 directly phosphorylated the highly conserved Y51 resi-
due (Fig. 4F and fig. S11, A to C). To validate these data, we generated
a specific H4pTyr51 antibody. A dot blot assay and an in vitro kinase
assay performed using purified histone proteins confirmed the speci-
ficity of the antibody (Fig. 4G and fig. S11, D and E) and that TIE2
phosphorylation of H4 at Tyr51 preferentially occurs in the presence
of core histones.

An in vitro kinase assay with recombinant H4 mutant proteins
demonstrated that TIE2 specifically phosphorylates H4Y51 (Fig. 4,
G and H, and fig. S11F). Confocal analyses revealed that TIE2 colo-
calized with H4pY51 in the nucleus of IR- or ANG1-stimulated cells
(Fig. 4I). Interestingly, H4Y51 was not detected in irradiated TIE2-
negative cells (fig. S12) or in cells harboring a deleted or point-mutated
catalytic kinase domain (fig. S9, C and D) (19, 20). We screened a
high-density microarray searching for SH2 (Src homology 2) domain
proteins (21, 22) that may act as readers of the H4Y51 phosphoryl-
ation (fig. S13, A and B). The array revealed that, among the 76 proteins
tested, 6 of them interacted preferentially with H4pY51 compared to the
nonphosphorylated H4 (Fig. 4J and fig. S13C). Among these proteins,
we focused on ABL1 because of previous reports describing its role in DDR
(23–25). The interaction was further verified by immunoprecipitation
analysis, which revealed that H4pY51 binds ABL1, but not ABL2 [which
does not contain an NLS (24)], in ANG1- or IR-treated cells (Fig. 4K).
Corroborating these results, immunofluorescence analyses revealed
TIE2/ABL1 complexes after these treatments (fig. S14). Notably, whereas
ANG1 was sufficient to induce TIE2 nuclear translocation and H4Y51
modification with subsequent ABL1 recruitment, DDR-related proteins
such as pATM, gH2AX, and DNA-PK (15, 26) were found in the
H4Y51 immunoprecipitates only after irradiation treatment (Fig. 4K).
Immunoprecipates of H3pS28, a DNA damage–unrelated mark (27),
did not contain TIE2/DNA repair complexes in irradiated cells, showing
specificity for the H4Y51 mark (fig. S15). Supporting an important role
of the TIE2-ABL1 pathway, inhibition of ABL1 expression by siRNA,
or using the ABL chemical inhibitor ponatinib or imatinib (24) (fig. S16,
A, C, and D), resulted in decreased NHEJ efficiency upon IR only in
TIE2-expressing cells (Fig. 4L and fig. S16, B and E). Decreasing ABL2
expression levels by using siRNA did not result in modification of the
NHEJ cellular activity upon IR (Fig. 4L and fig. S16E), suggesting a specific
role for ABL1 as reader of the H4pY51 mark.

This study identifies a new H4 modification, the phosphorylation
of Tyr51 by the TKR TIE2. The H4pY51 mark is read by the SH2-
containing protein ABL1. Furthermore, our data highlight the func-
tional significance of the tyrosine kinase activity of TIE2, encouraging
the search for other substrates for this TKR in the nucleus. The
H4pY51 mark is being added to the tyrosine code of histones, which
have been reported to be related to the cellular response to DNA
damage (H2A.X Y142 and H4Y72), histone turnover (H3Y99) and
4 of 11
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Fig. 3. Nuclear TIE2 regulates DNA repair through a NHEJ mechanism. (A) gH2AX persistence in U251.EV, U251.Tie2, and U251.Tie2SS/AA cells in re-
sponse to IR. (B) Formation of TIE2/DNA complexes in U251.Tie2 in response to IR, analyzed after DNA/protein cross-linking and protein elution from pre-
cipitatedDNA. (C) gH2AX/TIE2 colocalization in HUVECs after IR treatment, as assessed by immunofluorescence and confocalmicroscopy. (D) TIE2 complexes
in HUVECs in response to ANG1, ANG2, and IR stimuli. IP, immunoprecipitation; WCL, whole-cell lysate. (E) Increased NHEJ efficiency in TIE2-expressing cells.
GFP, green fluorescent protein. (F) Increased recovery of NHEJ reporter plasmids in TIE2-expressing cells. (G) TIE2 silencing results in decreased NHEJ effi-
ciency. (H) Silencing endogenous TIE2 in U87MG cells results in decreasedNHEJ efficiency. (I) NHEJ efficiency is jeopardized in cytoplasmic-sequestered TIE2.
Data represent means ± SD; **P ≤ 0.01, ***P ≤ 0.001.
Hossain et al. Sci. Adv. 2016; 2 : e1501290 1 April 2016 5 of 11
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Fig. 4. ABL1 is a readerof theTIE2-modifiedH4Y51histonemark. (A) rTIE2potentiallyphosphorylates corehistones. (B) rTIE2potentiallyphosphorylates core
histones at tyrosine residues.WB,Western blotting. (C) rTIE2 potentially phosphorylates rH4 but not rH3. (D) rTIE2 phosphorylates H4 as assayed using a phospho-tag
gel. APase, alkalinephosphatase. (E) Cross-linkedchromatin contains TIE2/H4complexesuponANG1or IR stimulus. (F)DetectionofphosphorylationofH4Tyr51 in the
nucleosomes isolated fromHEK293.Tie2cells afterANG1and IRexposure.Mass spectrometricanalysisof a tryptic fragmentatm/zmass/charge ratioof630.7990 (mass
error: 2.71ppm)matched to thedoubly chargedphosphopeptide ISGLIpyEETR, suggesting thatY6wasphosphorylated.Mascot ion scorewas52,with anexpectation
value of 6.5 × 10−5. Phosphotyrosine-containing peptide fragments are shown in dotted circles. MS/MS, tandemmass spectrometry. (G and H) Tyrosine phospho-
rylation of H4 analyzed using H4pY51 (G) and pTyr (H) antibodies with purified H4mutant proteins. (I) Colocalization of TIE2 and H4pY51 in HEK293.Tie2 cells upon
ANG1 and IR stimuli, as assessed by confocal microscopy. Colocalization was quantified with Olympus FluoView version 3.1a software. (J) rH4pY51 peptide binds to
specific SH2domain–containingproteins. (K) H4pY51 complexeswith a panel ofDNA repair proteins, includingABL1, inU251.Tie2-myc cells after IR exposure.
(L) TIE2-induced NHEJ DNA repair is jeopardized by inhibiting ABL1 but not ABL2. Data represent means ± SD; **P ≤ 0.01, ***P ≤ 0.001.
Hossain et al. Sci. Adv. 2016; 2 : e1501290 1 April 2016 6 of 11
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transcription (H2BY37 and H2AY57), and chromatin architecture (H3Y41)
(28–33). Different from the H2A.X Y142 and H4Y72 modifications,
H4Y51 is a positive mark, directly read by the ABL1 DNA damage sig-
naling protein, functioning as a functional component of the DNA re-
pair machinery. The identification of specific sites that favor chromatin/
ABL1 complexes may guide the development of adjuvant agents to
overcome radiation resistance for patients with malignant gliomas
and other cancers.
MATERIALS AND METHODS

Cell culture, cytokine stimulation, and IR
U251 human glioma cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM)/F-12 supplemented with 10% (v/v) fetal
bovine serum (FBS) and 1% penicillin/streptomycin. HUVECs were
maintained in EGM-2 BulletKit medium (Lonza). GSC-7-2, GSC-13,
GSC-17, and GSC-20, characterized as previously described (34),
were maintained in DMEM/F-12 supplemented with B27 (Life Tech-
nologies), EGF, and bFGF (20 ng/ml each) (Sigma-Aldrich). Human em-
bryonic kidney 293 (HEK293) and HeLa cells were cultured in DMEM
supplemented with 10% FBS (v/v) and 1% penicillin/streptomycin.
U251.EV, U251.Tie2, U251.Tie2-myc, U251.Tie2-mycSS/AA,
HEK293.EV, HEK293.Tie2-myc, and HEK293.Tie2-mycSS/AA cell
lines were maintained in the presence of G418 (300 mg/ml) (Corning).
Flag-H2AX– and Flag-H2AX S139A–expressing 293T cells (13) were
maintained in DMEM supplemented with 5% FBS (v/v), 1% penicillin/
streptomycin, and puromycin (0.5 mg/ml). U2OS.DR-GFP cells (35)
were maintained in McCoy’s 5A medium supplemented with 10% FBS
(v/v), 1% penicillin/streptomycin, and hygromycin (200 mg/ml). For
cytokine-mediated stimulation, cells were starved for 6 to 24 hours
in serum-free medium and then incubated in fresh serum-free medium
containing ANG1 (400 ng/ml), ANG2 (400 ng/ml), VEGF (400 ng/ml)
(R&D Systems), EGF (20 ng/ml), and bFGF (20 ng/ml) (Sigma-Aldrich).
For IR treatment, cells were treated with the indicated doses of 137Cs
radiation. To analyze the role of ABL1 activity, the ABL inhibitors
imatinib mesylate (LKT Laboratories Inc.) and ponatinib (APExBIO)
were used at the indicated concentrations for 24 hours.

RNA interference
siRNAs were transfected into cells using INTERFERin transfection re-
agent (Polyplus-transfection) at concentrations of 10 nM or otherwise
indicated; after 48 hours of transfection, the knockdown efficiency was
evaluated by determining the protein levels in whole-cell lysates. The
siRNA sequences used are listed in table S1.

Cell viability and colony-forming assays
Cells were plated at subconfluent density, and 24 hours later, they
were irradiated (15 Gy) and kept in an incubator for an additional
24 to 72 hours at 37°C. For transfection with siRNAs or DNA plasmids,
cells were plated 1 day before transfection, and 24 hours later, they
were irradiated. CellTiter-Blue Cell Viability Assay (Promega) was
used according to the manufacturer’s instructions. When indicated,
cells were stained with crystal violet solution (0.1% crystal violet and
20% methanol) for 15 min at room temperature (RT), and the results
were imaged. To perform a colony-forming assay, 25 and 50 cells were
plated per well in six-well plates and irradiated with indicated doses of
radiation. Cells were incubated for 14 days, and the visible colonies
Hossain et al. Sci. Adv. 2016; 2 : e1501290 1 April 2016
were counted after they were stained with crystal violet, as described
above.

Plasmid construction, transfection, and primers
The pcDNA3-Tie2, containing full-length human Tie2 cDNA (com-
plementary DNA), and pcDNA3.1-Tie2-myc plasmids have been pre-
viously described (36, 37). Mutagenesis was performed using QuikChange
II Site-Directed Mutagenesis Kit (Agilent Technologies), following the
manufacturer’s recommended protocol. Cells were transfected using
X-tremeGENE HP DNA Transfection Reagent (Roche Applied Sci-
ence), following the manufacturer’s protocol. The primers used are
listed in table S2.

Reverse transcription PCR and quantitative real-time
PCR analysis
Total RNA was extracted with TRIzol (Invitrogen), and 2 mg of RNA
was reverse-transcribed to cDNA with High Capacity RNA-to-cDNA
Kit (Applied Biosystems). Quantitative gene expression was measured
using PowerUp SYBR Green Master Mix (Applied Biosystems) on
ABI PRISM 7500 Fast (Applied Biosystems). Expression levels of tar-
get genes were normalized to b-actin mRNA levels. For reverse tran-
scription polymerase chain reaction (PCR) expression, cDNA was
subjected to a PCR cycle analyzer with a Kapa PCR master mixture
(Kapa Biosystems) using the following PCR conditions: 95°C for 2 min,
95°C for 15 s, 64°C for 15 s, 72°C for 15 s with 32 cycles, and final
extension at 72°C for 10 min and hold at 4°C. Primer sequences are
provided in table S2.

Cell cycle analysis
Cells were fixed in ice-cold 95% ethanol for 30 min at 4°C, washed once
with phosphate-buffered saline (PBS), and stained with propidium iodide
(50 mg/ml) in PBS containing ribonuclease A (50 mg/ml). Further, the
cells were incubated at 37°C for 20 min and analyzed on a Gallios 561
flow cytometer (Beckman Coulter) using Kaluza software (Beckman
Coulter).

Flow cytometric analysis
Cells were harvested, washed three times with PBS containing 0.5%
bovine serum albumin (BSA), and incubated with phycoerythrin
(PE)–conjugated mouse anti-human TIE2 for 30 min on ice at 4°C
in the dark. BSA (0.1%) was used as a negative control for treatment,
and PE-conjugated mouse IgG was used as a negative control for the
staining procedure. All flow cytometric experiments were performed
using a BD FACSAria (BD Biosystems). The antibodies and work
conditions used are listed in table S3.

Subcellular fractionation
Cells were washed with ice-cold PBS, harvested by scraping or
trypsinization, and collected in a hypotonic lysis buffer [20 mM Hepes
(pH 7.0), 10 mM KCl, 2 mM MgCl2, 0.5% NP-40, 1 mM Na3VO4,
10 mM NaF, 1 mM phenylmethylsulfonyl fluoride, and aprotinin
(2 mg/ml)] for 10 min on ice. Cells were then homogenized by 20 strokes
in a tight-fitting Dounce homogenizer (Kontes disposable pestle with
microtubes, Fisher Scientific). After centrifugation at 4500 rpm for 5 min
to sediment the nuclei, the supernatant was transferred to a new tube
and centrifuged at 14,000 rpm for 20 min. The resulting supernatant
was collected as a cytoplasmic fraction and transferred to a prechilled
tube. The nuclear pellet was washed three times with hypotonic lysis
7 of 11
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buffer, resuspended, and periodically vortexed in nuclear extraction
buffer [20 mM Hepes (pH 7.9), 400 mM NaCl, 1 mM EDTA (pH 8.0),
1 mM EGTA (pH 7.0), phosphatase inhibitor cocktails 2 and 3
(Sigma-Aldrich), and a protease inhibitor cocktail (Sigma-Aldrich)] on
ice for 30 min. After centrifugation at 14,000 rpm for 10 min at 4°C,
the nuclear lysates were collected in prechilled tubes.

Isolation of chromatin fraction
Chromatin isolation by small-scale biochemical fractionation has been
described previously (38). Cells were harvested and lysed with a cyto-
plasmic buffer, buffer A [10 mMHepes (pH7.9), 10 mM KCl, 1.5 mM
MgCl2, 0.34 M sucrose, 10% glycerol, and 1 mM dithiothreitol (DTT)]
containing a phosphatase and protease inhibitor cocktail, and Triton X-
100 to a final concentration of 0.1% for 8 min on ice. The supernatant
was separated by centrifugation at 14,000 rpm for 20 min at 4°C. The
nuclear pellet was lysed with buffer B (3 mM EDTA, 0.2 mM EGTA,
and 1 mM DTT) with phosphatase and protease inhibitor cocktail for
30 min on ice. The chromatin pellet obtained following centrifugation
at 14,000 rpm for 10 min at 4°C was resuspended in an SDS sample
buffer and boiled for 10 min at 90°C; the chromatin-associated pro-
teins were analyzed by SDS–polyacrylamide gel electrophoresis (SDS-
PAGE), followed by Western blotting.

Isolation of the nucleosomes
Nucleosomes were isolated as previously described (39). Cells were
lysed with a hypotonic lysis buffer [10 mM tris-Cl (pH 8.0), 1 mM
KCl, 1.5 mM MgCl2, 1 mM DTT, 1.5% Triton-X, 5 mM sodium
butyrate, 1 mM Na3VO4, and a phosphatase inhibitor cocktail] with
rotation at 4°C for 10 min. After centrifugation at 400g for 10 min at
4°C, the cell pellet was collected, washed three times with the hypo-
tonic lysis buffer and once with a wash buffer [10 mM tris-Cl (pH
8.0), 1 mM KCl, 1.5 mMMgCl2, 1 mM DTT, 5 mM sodium butyrate,
1 mM Na3VO4, and a phosphatase inhibitor cocktail], resuspended in
the wash buffer and 0.8 M H2SO4 (v/v: 1:1), and kept in a rotator at 4°C
overnight. Acid-extracted nucleosomes were precipitated by centrifu-
gation at 13,000 rpm for 10 min at 4°C, dried, and dissolved in water.

Immunofluorescence microscopy
Cells were seeded in chamber slides (Lab-Tek), and after the indicated
treatments, they were washed with PBS, fixed with 4% paraformal-
dehyde, permeabilized for 30 min with 0.2% Triton X-100 in PBS,
and blocked for 30 min in a blocking buffer (3% BSA and 2% horse
serum) at RT. After incubation with the indicated primary antibodies
in blocking buffer overnight at 4°C, the cells were incubated with
secondary fluorescent antibodies for 60 min at RT. After final wash-
ing, we added Vectashield Mounting Medium with DAPI (Vector
Laboratories). Images were captured using a confocal microscope
(Olympus FluoView FV1000). To detect TIE2 and ANG1 in vivo,
GSC-7-2 and GSC-20 cells were implanted in the brains of nude mice
(day 0); the mice were treated with radiation (10 Gy) on day 30 (for
GSC-20) and day 56 (for GSC-7-2). Mice were sacrificed 24 hours
after IR, and their brains were extracted, formalin-fixed, and paraffin-
embedded. Sections (5 mm) were deparaffinized and rehydrated.
Antigen retrieval was performed using a prewarmed 10 mM citric acid
(pH 6.0) buffer. The slides were incubated for 10 min in a pressure
cooker, allowed to cool down, and blocked with 5% BSA. Primary
antibodies were added overnight at 4°C, followed by biotinylated anti-
rabbit for 1 hour. DyLight594-conjugated streptavidin was added for
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30min at RT. The signal was amplified using biotinylated anti-streptavidin
for 30 min at RT, followed by the additional step of DyLight594-
conjugated streptavidin for 15 min. Nuclear staining was performed
with DAPI (Invitrogen), and images were captured with a confocal
microscope (Olympus FluoView FV1000). All animal experimentation
was approved by the Institutional Animal Care and Use Committee
and performed at the veterinary facilities of The University of Texas
MD Anderson Cancer Center in accordance with institutional guidelines.

Enzyme-linked immunosorbent assay
After irradiation, the concentrations of ANG1 and ANG2 in the con-
ditioned medium were measured using the Human Angiopoietin-
1 and Human Angiopoietin-2 Quantikine ELISA Kits (R&D Systems),
respectively, according to the manufacturer’s instructions. To measure
TIE2 protein concentration in the cytoplasm and nucleus, cells were
treated for 30 min with different ligands [ANG1 (400 ng/ml), ANG2
(400 ng/ml), VEGF (100 ng/ml), EGF (20 ng/ml), and bFGF (20 ng/ml);
Sigma-Aldrich]. Following subcellular fractionation, ELISA was per-
formed with the Human Tie-2 Quantikine ELISA Kit (R&D Systems)
according to the manufacturer’s instructions.

Lysate preparation, immunoprecipitation, and Western
blot analysis
Cells were treated with ANG1 or radiation. After the indicated time
periods at 37°C, the cells were incubated for 15 to 30 min at RT with
1 mM protein cross-linker dithiobis(succinimidyl propionate) (Lomant’s
Reagent; Thermo Scientific) in PBS made freshly from a 0.1 M stock
dissolved in dimethyl sulfoxide (40). Cells were then washed with PBS,
collected with a cell scraper, and lysed with IPH buffer [50 mM tris-
HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 5% glycerol, 0.2% NP-40,
1 mM Na3VO4 containing phosphatase, and protease inhibitor cock-
tails]. After incubation on ice for 15 min, the lysates were subjected to
sonication with 30× amplitude for 10 s for three cycles (total, 30 s) in a
Qsonica sonicator (VWR). The supernatant was cleaned by centrifu-
gation at 14,000 rpm for 10 min at 4°C to obtain total cell lysates.
When nuclear extracts were needed, cells were lysed with cytoplasmic
extraction buffer after protein cross-linking, as described before, and
the nuclear pellet was lysed with IPH buffer following sonication. The
lysate was subjected to immunoprecipitation with the specific antibody
overnight at 4°C. The resulting mixture was incubated with protein A–
agarose (for rabbit host) (Millipore) or protein G–agarose (for mouse
host) (Millipore) for 30 min, washed, and separated by 4 to 20% SDS-
PAGE. The proteins were transferred to a polyvinylidene difluoride
(PVDF) membrane, and Western blot analysis was conducted with
the indicated antibodies. Restore PLUS Western Blot Stripping Buffer
(Thermo Scientific) was used to reblot the membranes as recom-
mended by the manufacturer.

Isolation of DNA-bound proteins
Cells were irradiated and cross-linked with 1% formaldehyde for 10 min
at RT. Cells were then washed with ice-cold PBS and scraped and
collected by centrifugation. The nuclear extraction was prepared as
described above. DNA was precipitated from the nuclear extract by
adding 3 M sodium acetate (pH 5.2) and ice-cold ethanol at −80°C
for 1 hour. The DNA was washed three times with ethanol and dried.
The bound proteins were resolved by adding SDS sample buffer,
separated by SDS-PAGE, and further processed for Western blotting
as described above.
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In vivo end-joining assays
Cells were exposed to a low dose of IR (1.5 Gy), and 2 hours later, they
were transfected with the reporter plasmids for end-joining efficiency.
For the NHEJ assay, the pEGFP-Pem1-Ad2 plasmid was used as re-
porter plasmid (16). The NHEJ plasmid was digested with Hind III or
I-Sce I restriction enzyme for 12 to 24 hours, and the linearized plas-
mid was extracted from the gel using the QIAquick Gel Extraction Kit
(Qiagen), following the manufacturer’s protocol. Circular pEGFP-
Pem1-Ad2 (1.0 mg) or linearized pEGFP-Pem1-Ad2 (1.0 mg) was co-
transfected with 0.5 mg of pDsRed2-C1 plasmid (Clontech) to determine
transfection efficiency. pEGFP-C1 transfection (Clontech) was used as
a control for FACS analysis. To overexpress Tie2 constructs, 0.5 mg of
pcDNA3-EV, pcDNA3-Tie2 (wild type), pcDNA3-Tie2d585-586 (d585-586),
and pcDNA3-Tie2SS582/86AA (SS582/86AA) with linearized pEGFP-
Pem1-Ad2 (1.0 mg) were transfected into U251, HEK293, and HeLa
cells. After 48 to 72 hours of transfection, the enhanced GFP (EGFP)
signal was monitored by microscopy and images were obtained. Cells
were harvested by trypsinization, resuspended in PBS, and analyzed by
FACS analysis on a FACSCalibur instrument. The values of rejoined
DNA were calculated as the ratio of green cells to red fluorescent cells.
The efficiency of NHEJ was calculated relative to U251.P cells or EV-
transfected cells. For siRNA-mediated knockdown in NHEJ assay, siRNAs
(10 nM) were transfected 1 day after cell plating. Twenty-four hours
later, linearized NHEJ plasmid was transfected and FACS analysis was
performed after 48 hours. For the HR assay, the stable transfected HR
reporter gene in U2OS cells, U2OS.DR-GFP, was transfected with I-Sce
I restriction enzyme–expressing plasmid (pCBASceI, provided by G. Peng)
(35), and FACS analyses were performed to analyze EGFP+ cells after
successful digestion of the HR reporter in vivo with I-Sce I enzyme.

Plasmid rescue
After transfecting the linear NHEJ reporter plasmid into cells, the re-
paired NHEJ reporter plasmids were rescued. Total genomic DNA
was isolated from U251.P, U251.EV, and U251.Tie2 cells using
QIAamp DNA Blood Mini Kit (Qiagen). The DNA concentration
was measured, and an equal amount of DNA was transformed into
DH5a-competent Escherichia coli cells (Invitrogen). The transformed
competent cells were plated onto LB medium containing kanamycin
(50 mg/ml) to select the colonies that contained circularized NHEJ
plasmid. Plasmid DNA was extracted using QIAprep Spin Miniprep
Kit (Qiagen), the frequency of NHEJ repair was determined by restric-
tion digestion with Hind III, and the digestion pattern was evaluated
by agarose gel electrophoresis.

Prediction of Tie2 NLS
The Tie2 NLS signal was identified using the PredictProtein Web site
(www.predictprotein.org) (41).

In vitro kinase assay
In vitro kinase assays were conducted with 200 ng of purified gluta-
thione S-transferase (GST)–tagged TIE2 active protein (SignalChem,
no. T04-11G) or the His-tagged TIE2 with deleted kinase domain
(Creative BioMart, no. TEK-153H) in kinase buffer [25 mM MOPS
(pH 7.2), 12.5 mM b-glycerol phosphate, 20 mM MgCl2, 12.5 mM
MnCl2, 2 mM EDTA (pH 8.0), 5 mM EGTA (pH 7.0), and 0.25 mM
DTT] with the addition of 20 mM adenosine triphosphate (ATP) for cold
reactions, and 10 mM ATP mixed with 10 mCi of [g-32P]ATP for radio-
active reactions. The substrates were added to the reaction mixture
Hossain et al. Sci. Adv. 2016; 2 : e1501290 1 April 2016
and incubated at 37°C for 30 min. The following substrates were used
in this study: core histone for calf thymus (Roche, no. 10223565001), his-
tone H3.3 (New England Biolabs, no. M2507S), and histone H4 (New
England Biolabs, no. M2504S). The kinase reaction was stopped by
the addition of 4× protein sample buffer (Invitrogen) and boiled for
5 min, followed by SDS-PAGE (16%) analyses. Phosphorylated his-
tone proteins were detected by autoradiography or Western blotting.
The poly (4:1 Glu, Tyr) peptide (SignalChem, no. P61-58) was used as
universal substrate for protein tyrosine kinases.

Generation of H4pY51 antibody
Two histone H4 peptides were used to generate a phospho–histone H4
antibody: acetyl-GLI[pY]EETRGVL-Ahx-C-amide (phosphopeptide)
and acetyl-GLIYEETRGVL-Ahx-C-amide (nonphosphopeptide). These
sequences showed no homology with other proteins but histone H4
(42). H4pY51 antibodies were generated by 21st Century Biochemicals
according to their standard protocols.

Phospho-tag gel analysis
SuperSep Phos-tag (50 mM) 12.5%, 13-well gels (Wako Pure Chemicals
Industries Ltd.) were used to detect phosphorylated proteins by SDS-
PAGE using an analogous Phos-tag complex with two manganese (II)
ions, Mn2+–Phos-tag. To analyze the phosphoproteins, an in vitro
kinase assay was performed, and the samples were then loaded onto
a Phos-tag gel; the proteins were transferred to PVDF membranes
according to the manufacturer’s protocol. Western blot analyses
were conducted using specific antibodies. Alkaline phosphatase
(Roche) was used to dephosphorylate the proteins after the in vitro
kinase assay for 1 hour at 37°C.

MS analysis
Nucleosome proteins were prepared as described above. Nano–LC-
MS/MS (liquid chromatography–MS/MS) was performed on a Thermo
Finnigan LTQ Orbitrap Velos (Thermo Scientific), coupled with an
Eksigent NanoLC Ultra nano-HPLC (AB SCIEX). The sample was
injected onto a nano-trap column (100 mm inner diameter × 1 cm,
C18 PepMap100) with an autosampler and then passed down a
C18 reversed-phase home-packed column (SB-C18, Zorbax, 5 mm) (Agi-
lent). The flow rate was 400 nl/min with 60-min LC gradient, where
mobile phases are A [5% acetonitrile (ACN) and 0.1% formic acid (FA)]
and B (100% ACN and 0.1% FA). Eluted peptides were sprayed through
a charged emitter tip (PicoTip emitter, New Objective, 10 ± 1 mm) into
the mass spectrometer. Parameters included the following: spray voltage
at +2.0 kV, Fourier transform MS mode for MS acquisition of precursor
ions (60,000 resolution); ion trap MSmode for subsequent MS/MS of top
six precursors selected; and fragmentation accomplished via collision-
induced dissociation. Proteome Discoverer version 1.2 (Thermo Scien-
tific) was used for protein identification and modification analysis.
Parameters included the following: selection of the enzyme as trypsin;
maximum missed cleavages = 2; variable modifications include oxida-
tion (M) and tyrosine phosphorylation; precursor ion tolerance was at
0.02 dalton; and MS/MS fragment tolerance was at 0.6 dalton. The sig-
nificance of a peptide match was based on expectation values (<0.05).

Purification of H4 recombinant proteins
Full-length human histone H4 cDNA was cloned into the pET-32a(+)
vector (Novagen, no. 69015-3) between Xho I and BamH I sites. Histone
H4 wild-type and two other mutant (H4Y51F and H4Y88F) plasmids
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were transformed into BL21 (DE3)–competent cells (New England
Biolabs), and proteins were expressed with 0.3 mM IPTG (isopropyl-
b-D-thiogalactopyranoside) induction at 18°C overnight and purified
according to the manufacturer’s protocol (Novagen). Briefly, the cell
pellet was lysed with lysis buffer [50 mM tris-Cl (pH 7.5), 200 mM
NaCl, 1.0% NP-40, and 0.1% Na-deoxycholate with a protease inhibitor
cocktail] on ice for 30 min, and the supernatant was collected by cen-
trifugation at 13,000 rpm for 10 min at 4°C. His-tagged histone H4
proteins were precipitated using Ni-nitrilotriacetic acid resins (Sigma-
Aldrich) with rotation at 4°C for 1 hour. The resins were washed three
times with lysis buffer and eluted with lysis buffer containing 150 mM
imidazole. Histone H4 protein expression was confirmed by colloidal
blue staining (Invitrogen) in addition to Western blotting using anti-
bodies against His-tag and H4.

Phosphotyrosine binding SH2 domain array
The cloning of the human SH2 domain library has been described
previously (21). All SH2 domains were expressed as GST fusions in
E. coli and purified on glutathione-Sepharose beads. The recombinant
SH2 domains were arrayed onto nitrocellulose-coated glass slides
(Oncyte Avid slides, Grace Bio-Labs) using a robotic pin arrayer as
previously described (22). A list of the SH2 domains on this array
is given in fig. S13. The fluorescent labeling of the biotinylated pep-
tide probe and slide binding has also been previously described (22).
Fluorescent signal was detected using a GeneTAC LSIV scanner (Ge-
nomic Solutions). The peptides used in this array [phosphopeptide:
Biot-Ahx-KRISGLI(pY)EETRGVL-amide; nonphosphopeptide: Biot-
Ahx-KRISGLIYEETRGVL-amide] were synthesized by 21st Century
Biochemicals.
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