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� CPVT is often caused by increased levels

of circulating catecholamines; however,

the mechanistic link between b-AR

stimulation and the subcellular/molecular

arrhythmogenic trigger(s) is unclear.

� In both CPVT and wild type mice, a

subpopulation of NaD channels (nNav)

colocalize with RyR2 and NCX.

� Augmented NaD entry via nNav and

enhanced SR Ca2D-ATPase (SERCA)-

mediated SR Ca2D refill are both essential

and necessary for CPVT.

� Augmentation of NaD entry involves

b-AR–mediated activation of

Ca2D/CAMKII.

� Selective pharmacological blockade as

well as silencing of Nav1.6 inhibit myocyte

arrhythmic potential and prevent

arrhythmias in vivo.
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ABBR EV I A T I ON S

AND ACRONYMS

b-PMTX = b-pompilidotoxin

b-AR = b-adrenergic receptor

CaMKII = Ca2D/calmodulin-

dependent protein kinase II

CASQ2 = calsequestrin

CPVT = catecholaminergic

polymorphic ventricular

tachycardia

DCR = diastolic Ca2D release

INa = NaD current

ISO = isoproterenol

nNav = neuronal NaD channels

NCX = NaD/Ca2D exchange

PLB = phospholamban

Ril = riluzole

RyR2 = ryanodine receptor 2

SR = sarcoplasmic reticulum

SERCA2a = sarcoplasmic

reticulum Ca2D-ATPase 2a

TTX = tetrodotoxin

VT = ventricular tachycardia

WT = wild type
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Although triggered arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are

often caused by increased levels of circulating catecholamines, the mechanistic link between b-adrenergic

receptor (AR) stimulation and the subcellular/molecular arrhythmogenic trigger(s) is unclear. Here, we sys-

tematically investigated the subcellular and molecular consequences of b-AR stimulation in the promotion of

catecholamine-induced cardiac arrhythmias. Using mouse models of cardiac calsequestrin-associated CPVT,

we demonstrate that a subpopulation of Naþ channels, mainly the neuronal Naþ channels (nNav), colocalize

with ryanodine receptor 2 (RyR2) and Naþ/Ca2þ exchanger (NCX) and are a part of the b-AR-mediated

arrhythmogenic process. Specifically, augmented Naþ entry via nNav in the settings of genetic defects within

the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2þ-ATPase (SERCA)-mediated SR Ca2þ refill is

both an essential and a necessary factor for arrhythmogenesis. Furthermore, we show that augmentation of

Naþ entry involves b-AR–mediated activation of CAMKII, subsequently leading to nNav augmentation.

Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic

potential and prevent arrhythmias in vivo. Taken together, these data suggest that the arrhythmogenic

alteration in Naþ/Ca2þ handling evidenced ruing b-AR stimulation results, at least in part, from enhanced

Naþ influx through nNav. Therefore, selective inhibition of these channels and of Nav1.6 in particular can serve

as a potential antiarrhythmic therapy. (J Am Coll Cardiol Basic Trans Science 2016;1:251–66) © 2016 The

Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
C ardiac arrhythmias are a leading
cause of death in the United States
(1). Arrhythmias caused by
abnormal impulse generation are often associated
with aberrant diastolic Ca2þ release (DCR) through
dysregulated ryanodine receptor 2 (RyR2) Ca2þ

release channels. This is especially evident when ge-
netic defects in the RyR2 complex—either the RyR2
itself or 1 of the regulatory proteins associated with
the channel (i.e., calmodulin, calsequestrin
[CASQ2], triadin and/or calstabin)—facilitate aberrant
DCR (2–5). In particular, recent findings demonstrate
that either dysfunction or loss of cardiac calseques-
trin (CASQ2), an intra-sarcoplasmic reticulum (SR)
Ca2þ-binding protein and a regulator of RyR2, im-
pairs the ability of RyR2s to deactivate and become
refractory following systolic Ca2þ release (6–12).
This compromised refractoriness of Ca2þ release, in
turn, permits the RyR2 channels to reopen during
diastole, causing DCR to activate depolarizing mem-
brane currents, resulting in pro-arrhythmic delayed
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Episodes of cardiac arrhythmias in CPVT patients
are precipitated by emotional stress or exercise, which
are associated with increased levels of circulating
catecholamines (2,11,16). In accordance with the clin-
ical presentation of a vast majority of these arrhyth-
mias, b-blocker therapy is the mainstay of treatment
for cardiac rhythm disorders (17). Recent years have
witnessed research endeavors that have focused on
alterations in Ca2þ handling and their roles in precip-
itating triggered arrhythmias; however, the precise
mechanistic link between b-adrenergic receptor (b-AR)
stimulation and arrhythmogenesis in Ca2þ-mediated
arrhythmias remains elusive. Several targets for
phosphorylation, including Cav1.2, phospholamban
(PLB), and RyR2, may be involved in the arrhythmo-
genic effects of b-AR stimulation (15). For instance,
protein kinase A phosphorylation of PLB will
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accelerate SR Ca2þ-ATPase 2a (SERCA2a)–mediated
Ca2þ refilling of the SR, thereby providing adequate
substrate for aberrant DCR (18). However, it is unclear
whether phosphorylation of RyR2 by Ca2þ/calmodulin-
dependent protein kinase II (CaMKII) plays a role in the
pathogenesis of cardiac arrhythmias (19). Surprisingly,
considering the Ca2þ-dependent nature of CPVT, these
patients often respond to treatment with Naþ-channel
blockers such as flecainide (20–22). It has been pro-
posed that flecainide may exert its antiarrhythmic
effect through a direct effect on RyR2 (23); however,
this would not explain the effect of other Naþ-channel
blockers on aberrant Ca2þ handling (24,25). Recently,
we suggested that a subset of Naþ channels, mainly the
neuronal Naþ channels (nNav), are present in the
transverse (T)-tubule, near Ca2þ handling machinery
(26). These channels were initially described in neu-
rons (hence their eponym) and are characterized by a
high sensitivity to tetrodotoxin (TTX) (24,27–29).
However, little is known about the pro-arrhythmic
interaction between nNav and aberrant Ca2þ handling
during b-AR stimulation as well as the effects flecai-
nidemay have on this cross talk. Furthermore, because
there are multiple nNav isoforms expressed in cardiac
myocytes (30–32) their specific roles need to be
characterized.

In this present study, we have systematically
investigated the subcellular and molecular conse-
quences of b-AR stimulation in the promotion
of catecholamine-induced cardiac arrhythmias. Be-
cause, in certain variants of human CPVT, CASQ2 may
be virtually absent or may exist at very low levels due
to missense or other mutations, knocking out or
mutating CASQ2 in a mouse realistically mimics the
phenotype of human disease (2,33). Therefore, to
investigate the role of Naþ/Ca2þ signaling, we used
well-established murine models of CVPT in which
arrhythmogenic oscillation of intracellular Ca2þ and
membrane potential are caused by depletion or
dysfunction in CASQ2 (CASQ2 null and R33Q,
respectively) (6,14,26). We report that, in the setting
of dysregulated RyR2 channels, catecholamines pro-
mote aberrant DCR by facilitating SR Ca2þ refilling
while enhancing nNav-mediated persistent Naþ cur-
rent (INa), respectively, forming the functional basis
for catecholamine-induced polymorphic ventricular
tachycardia (CPVT).

METHODS

All animal procedures were approved by The Ohio
State University Institutional Animal Care and Use
Committee and conformed to the Guide for the Care
and Use of Laboratory Animals published by the U.S.
National Institutes of Health (NIH Publication No.
85-23, revised 2011).
GENETICALLY-ENGINEERED MOUSE MODELS. All
genetically-engineered mice used in our study were
homozygous for their respective mutations and/or
deletions. Cardiac calsequestrin (CASQ2) null mice
(on mixed background) (34) were crossbred with:
1) mice conditionally overexpressing SERCA2a in a
doxycycline-dependent manner (on FVB/N back-
ground) (35); or 2) RyR2 S2814A mice (on C57BL/6
background; generous gift from Dr. Xander Wehrens)
(36). The genotypes of the crossbred mice were
confirmed by polymerase chain reactions (PCR) (for
CASQ2, reverse tetracycline transactivator driven
by the cardiac specific a-myosin heavy chain pro-
moter [35], tetracycline response element-SERCA2a
(35), and RyR2 S2814A mutation) using tail deoxy-
ribonucleic acid. To induce the overexpression of
SERCA2a, animals received doxycycline diet (Harlan
TD 09295 1000 ppm Doxycycline Diet 2018, Harlan,
Indianapolis, Indiana) for 14 to 21 days. We also used
cardiac CASQ2-R33Q as well as wild type (WT) mice
(both on C57BL/6 background) to examine the role of
Nav1.6 and Naþ/Ca2þ exchange (NCX) in aberrant
Naþ/Ca2þ signaling (26).
MYOCYTE ISOLATION, CONFOCAL CA2D IMAGING,

AND NAD CURRENT RECORDINGS. Ventricular myo-
cytes were obtained by enzymatic isolation from 3- to
9-month-old mice of both sexes. Mice were anes-
thetized with isoflurane, and after a deep level of
anesthesia was reached, the heart was rapidly
removed and perfused via a Langendorff as previ-
ously described (14,26). Peak INa was recorded using
an internal solution that contained (in mmol/l): 10
NaCl, 20 tetraethylammonium chloride, 123 CsCl, 1
MgCl2, 0.1 Tris guanosine-5’-triphosphate, 5 Mg
adenosine triphosphate, 10 HEPES, and 10 BAPTA (pH
7.2, CsOH). For persistent INa recordings, we
substituted BAPTA with 1 mmol/l EGTA and main-
tained free Ca2þ 100 nmol/l with CaCl2. The extra-
cellular bathing solution for peak INa contained (in
mmol/l): 10 NaCl, 130 tetraethylammonium chloride,
4 CsCl, 0.4 CaCl2, 2 MgCl2, 0.05 CdCl2, 10 HEPES, and
10 glucose. The extracellular bathing solution for
persistent INa recordings contained (in mmol/l): 140
NaCl, 4 CsCl, 1 CaCl2, 2 MgCl2, 0.05 CdCl2, 10 HEPES,
10 glucose, 0.03 niflumic acid, 0.004 strophanthidin,
and 0.2 NiCl2. The pH was maintained at 7.4 with
CsOH for both types of solutions. Whole-cell capaci-
tance and series resistance compensation ($60%) was
applied along with leak subtraction. Signals were
filtered with 10 kHz Bessel filter, and INa was then
normalized to membrane capacitance. Late INa was
estimated by integrating INa between 50 and 450 ms.
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Electrical field stimulation experiments were
performed using the following external solution
(in mmol/l): 140 NaCl, 5.4 KCl, 1.0 CaCl2, 0.5 MgCl2,
10 HEPES, and 5.6 glucose (pH 7.4, NaOH). To assess
the SR Ca2þ load, 20 mmol/l caffeine was applied at the
end of the experiments. Intracellular Ca2þ cycling was
monitored by a Nikon A1 laser scanning confocal
microscope (Nikon Instruments Inc., Melville, New
York). For intact myocytes, we used the cytosolic Ca2þ-
sensitive indicators Fluo-3 AM. For more reliable
measurements of SR Ca2þ release from inside the
SR in control and isoproterenol-treated CPVT car-
diomyocytes, we performed experiments in Figure 1
using a low-affinity Ca2þ indicator Fluo-4FF-AM. The
fluorescent probes were excited with the 488-nm line
of an argon laser, and emission was collected at 500 to
600 nm. Fluo-3/Fluo-4FF fluorescence was recorded
in the line scan mode of the confocal microscope. For
Ca2þ wave recordings, myocytes were paced at 0.3 Hz
using extracellular platinum electrodes to obtain DCR
frequency. Any DCR event (i.e., wave, wavelet) that
increased cell-wide fluorescence intensity above 10%
of the signal generated by the preceding stimulated
Ca2þ transient was included in the analysis. The fluo-
rescence emitted was expressed as F/F0, where F is the
fluorescence at time (t), and F0 represents the back-
ground signal. All experiments were performed at
room temperature (26�C).
CONFOCAL MICROSCOPY OF IMMUNOLABELED

MYOCYTES. Isolated ventricular myocytes were pre-
pared for immunofluorescence as well as proximity
ligation assay (PLA) as described previously (26). PLA
is a histochemical/cytochemical and confocal micro-
scopy technique for determining when specific pro-
teins are colocalized within <40 nm (37). Briefly, cells
were plated on laminin-coated glass coverslips, fixed
with 4% paraformaldehyde (5 min), permeabilized
with 0.1% Triton X-100, and washed with PBS.
Endogenous immunoglobulin was blocked using a
mouse-on-mouse blocking reagent (M.O.M. kit, Vector
Laboratories, Burlingame, California) for 1 h at room
temperature and subsequently incubated with pri-
mary antibodies (Nav1.1, 1.3, 1.6, 1.5: 1:32, 1:32, 1:50,
and 1:50, respectively, for nNavs, Alomone, Jerusalem,
Israel; Nav1.5 was a generous gift from Dr. Peter Moh-
ler; and RyR2 1:100 and NCX 1:50 were from Pierce
Antibodies, Rockford, Illinois) overnight at 4�C. After
washing for immunofluorescence, goat secondary an-
tibodies (antimouse and antirabbit) conjugated to
Alexa Fluor (Life Technologies, Grand Island, New
York) were added for 1 h, whereas the PLA reactions
were carried out using appropriate Duolink secondary
antibodies (Sigma, St. Louis, Missouri) according to the
manufacturer’s instructions. The sensitivity of PLA
was assessed by staining for Nav1.5 (1:50, a generous
gift from Dr. Peter Mohler) and Connexin 43 (1:100,
Millipore, Billerica, Massachusetts) (Supplemental
Figure 1), which were previously demonstrated to
colocalize at the intercalated disc (37).

SILENCING RIBONUCLEIC ACID. Targeting silencing
ribonucleic acid (siRNA) was purchased from Santa
Cruz (Santa Cruz Biotechnology, Inc., Dallas, Texas).
We used a previously validated approach of intra-
peritoneal injection (1.5 mg/kg) mixed with an equal
volume of siPORT amine (Ambion, Thermo Fisher
Scientific, Waltham, Massachusetts,) in the live ani-
mal (38). We administered the siRNA every 24 h for 2
days. Silencing efficacy was evaluated 72 h after
initiation of therapy by quantitative real-time (qRT)
PCR as well as protein analysis.

QUANTITATIVE REAL-TIME PCR. Hearts were
collected 72 h after initiations of siRNA therapy (n ¼ 3
per each group). Total ribonucleic acid (RNA) was
prepared from cells using an RNA Purification Kit
(Norgen Biotek, Thorold, Ontario, Canada) in accor-
dance with the manufacturer’s instructions. Total
RNA was subjected to qRT PCR. RNA levels were
analyzed using the TaqMan Gene Expression Assays
in accordance with the manufacturer’s instructions
(scn1a: Mm00450580_m1, scn3a: Mm00658167_m1,
scn5a: Mm01342518_m1, and scn8a: Mm00488110_m1,
Life Technologies). RNA concentrations were deter-
mined with a NanoDrop 20000 (Thermo Fisher Sci-
entific, Waltham, Massachusetts). Samples were
normalized to OAZ1 for mRNAs (Life Technologies).
Gene expression levels were quantified using the
ABI Prism 7900HT Sequence detection system
(Life Technologies). Comparative real-time PCR was
performed in triplicate. Relative expression was
calculated using the comparative Ct method.

IMMUNOBLOTS. Heart tissue lysates, following
quantitation by the bicinchoninic acid (BCA) assay
(Pierce), were loaded into 4% to 15% pre-cast TGX gels
(Bio-Rad) and transferred to nitrocellulose mem-
branes. Membranes were blocked for >1 h at room
temperature in 3% bovine serum albumin and incu-
bated in primary antibody overnight at 4

�
C. Primary

antibodies included: Nav1.6 (1:500, Alomone) and
glyceraldehyde 3-phosphate dehydrogenase (1:5,000,
Fitzgerald, Acton, Massachusetts). Secondary anti-
bodies used were donkey antimouse-horseradish
peroxidase (HRP) and donkey antirabbit-HRP (Jack-
son Laboratory, Farmington, Connecticut). Densito-
metric analysis was performed using Image Lab
software (Bio-Rad Laboratories, Hercules, California),
and all data was normalized to glyceraldehyde
3-phosphate dehydrogenase.
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FIGURE 1 b-AR Simulation Increases Propensity for CPVT by Augmenting TTX-Sensitive nNav-Mediated Late INa

(A) Effect of b-adrenergic receptor (b-AR) stimulation on neuronal Naþ channel (nNav) blockade and Ca2þ handling. (Top) Representative examples of the line-scan images

and corresponding Ca2þ transients (CaT) recorded in catecholaminergic polymorphic ventricular tachycardia (CPVT) ventricular cardiomyocytes loaded with Ca2þ indicator,

Fluo-4FF AM, and paced at 0.3 Hz. Cells were treated with isoproterenol (Iso) (100 nmol/l) and tetrodotoxin (TTX) (100 nmol/l), riluzole (Ril) (10 mmol/l), or flecainide (Flec)

(2.5 mmol/l). b-AR stimulation with Iso promotes diastolic Ca2þ release (DCR) events in the form of Ca2þ waves relative to untreated CPVT cardiomyocytes (n¼ 166 and n ¼
34 cells, respectively; #p < 0.001 Wilcoxon rank sum test). TTX, Ril, and Flec significantly decreased DCR frequency in CPVT cardiomyocytes exposed to Iso (n ¼ 109, 48,

and 66 cells, respectively; p < 0.001 Kruskal-Wallis test; *p ¼ 0.003, *p < 0.001, and *p ¼ 0.032 Wilcoxon rank sum test for TTX, Ril, and Flec vs. ISO, respectively).

(Bottom) Representative caffeine (Caff)-induced (20 mmol/l) CaT. ISO significantly increased caffeine-induced CaT relative to untreated CPVT cardiomyocytes (n ¼ 13 and

n ¼ 11 cells, respectively; *p ¼ 0.005 Wilcoxon rank sum test). This elevation in caffeine-induced CaT persisted despite concomitant treatment with TTX, Ril, and Flec (n ¼
11, 13, and 10 cells, respectively; p ¼ 0.99 Kruskal-Wallis test). (B) Effect of b-AR stimulation and subsequent nNav blockade of persistent Naþ current (INa). Representative

traces of persistent INa elicited using the protocol are shown in the inset. Iso enhanced persistent INa in CPVT cardiomyocytes (n ¼ 18 and n ¼ 21 cells, respectively; #p ¼
0.004Wilcoxon rank sum test). This response to Iso was completely abolished upon addition of TTX, Ril, or Flec (n¼ 9, 7, and 9 cells, respectively; p< 0.001 Kruskal-Wallis

test; *p < 0.001 Wilcoxon rank sum test for each treatment group vs. ISO). Summary data presented as persistent INa integral amp-ms/F (AmsF�1). (C) Effect of b-AR

stimulation on nNav-mediated ventricular arrhythmias in vivo. Representative electrocardiography (ECG) recordings of CPVT mice after catecholamine challenge with

intraperitoneal injection of epinephrine (1.5 mg/kg) and caffeine (120 mg/kg; red ECGs). A subset of mice was pre-treated with Ril (15 mg/kg; purple ECGs). Arrhythmia and

ventricular tachycardia (VT) incidence (%) in CPVTmice exposed to catecholamine challenge during Naþ-channel blockade with riluzole (n¼ 13 vs. n¼ 18 CPVT-EpiþCaff vs.

CPVT-EpiþCaff-Ril treated mice. *p ¼ 0.043 and *p ¼ 0.023 Fisher exact test for arrhythmia and VT incidence, respectively).
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ELECTROCARDIOGRAPHIC RECORDINGS. Contin-
uous electrocardiographic (ECG) recordings (PL3504
PowerLab 4/35, ADInstruments, Sydney, Australia)
were obtained from mice anesthetized with isoflurane
(1.0% to 1.5%) as previously described (26). Briefly,
after baseline recording (5 min), a subset of animals
received either riluzole (15 mg/kg) or b-pompilido-
toxin (b-PMTX) (30 mg/kg). After 5 min, those ani-
mals that were pre-treated with b-PMTX received
vehicle, riluzole, or flecainide (20 mg/kg). After an
additional 5 to 10 min, animals were exposed to
an intraperitoneal epinephrine (1.5 mg/kg) and
caffeine (120 mg/kg) challenge, and ECG recording
continued for 10 min. We also obtained continuous
ECG recordings from CPVT-SERCA mice pre- and
post-doxycycline induction. After baseline recording
(5 min), each CPVT-SERCA mouse received only
b-PMTX (30 mg/kg) intraperitoneally, and ECG
recording continued for 10 min. ECG recordings were
analyzed using the LabChart 7.3 program (ADIn-
struments). Arrhythmia was defined as bigeminy or
frequent ectopic ventricular activity, whereas ven-
tricular tachycardia (VT) was defined as 3 or more
premature ectopies.

REAGENTS. Unless otherwise stated, all chemicals
were purchased from Sigma, Torcis (Bristol, United
Kingdom), Focus Biomolecules (Plymouth Meeting,
Pennsylvania), Cusabio (Wuhan, China), Medchem-
express LLC (Monmouth Junction, New Jersey),
Millipore, or Alomone. Fluorescent dyes were pur-
chased from Molecular Probes (Eugene, Oregon).

DATA ANALYSIS. INa analysis was performed using
pCLAMP9 software (Molecular Devices, Sunnyvale,
California). Line scanning images of Ca2þ were
normalized for baseline fluorescence (14). The Ca2þ

imaging data were processed using ImageJ (NIH,
Bethesda, Maryland) and Origin 7.0 software Origin-
Lab Corporation, Northampton, Massachusetts.
Confocal micrographs of PLA signal were low pass
filtered (Gaussian) and thresholded to generate a
black and white mask of the whole myocyte. This was
used to calculate myocyte area. The unfiltered image
was then thresholded using Otsu’s method, followed
by nearest-neighbor cluster detection to segment the
PLA punctae. The punctae within the whole cell mask
areas were counted to determine the density of PLA
punctae within the cell (per mm2). Statistical analysis
of the data was performed using a Wilcoxon signed
rank test and Wilcoxon rank sum test for paired and
nonpaired continuous data, respectively, or a
Kruskal-Wallis test. The �Sidák correction was applied
to adjust for multiple comparisons. Fisher exact or
McNemar tests were used to test differences in VT
incidence. On the basis of our previous observations
of mice with high incidence of VT ($70%) (26), 4
CASQ2-R33Q or other high-VT incidence mice/group
were required to have an 80% chance of detecting, as
significant at the 5% level, a decrease in the VT inci-
dence from 70% in the control group to 0% in the
treatment group. However, due to a lower VT inci-
dence in the CASQ null mice (39), a total sample size
of 30 mice in that group was needed. All statistical
analyses were performed using Origin 7.0 or R (R
Foundation for Statistical Computing, Vienna,
Austria). All values are reported as mean � SEM un-
less otherwise noted. A p value <0.05 was considered
statistically significant.

RESULTS

b-AR STIMULATION IS NECESSARY FOR ABERRANT

DCR. In this study, we used mouse models of cardiac
calsequestrin-associated CPVT. Consistent with the
dependence of arrhythmia in CPVT patients on b-AR
stimulation, CPVT murine myocytes presented only a
few incidents of aberrant DCR in the absence of
isoproterenol (ISO) (Sigma) (Figure 1A, black trace
and bars). Addition of ISO (100 nmol/l) markedly
increased the frequency of arrhythmogenic DCRs
(Figure 1A, red traces and bars). This effect of ISO
was accompanied by a significant increase in the SR
Ca2þ content (Figure 1A, red trace and bar). The
ISO-dependent increase in the frequency of
arrhythmogenic DCRs could, therefore, be attributed
to: 1) increase in the SR Ca2þ content (via phos-
phorylation of PLB and/or Cav1.2); 2) altered RyR2
function (via phosphorylation of RyR2 at S2814);
or 3) augmented nNav-dependent local Naþ/Ca2þ

signaling (26).

b-AR SIMULATION INCREASES PROPENSITY FOR

CPVT BY AUGMENTING TTX-SENSITIVE nNaV-MEDIATED

PERSISTENT INa. In addition to the predominant
TTX-resistant cardiac Naþ channels (Nav1.5) localized
predominantly at the intercalated disc and lateral
membrane (26,37), cardiac myocytes express several
types of TTX-sensitive nNav localized in the
cardiac T-tubule (26,30,31). The nNav blockade with
100 nmol TTX (Tocris Bioscience, Avonmouth, United
Kingdom) significantly decreased the frequency of
ISO-promoted DCRs (Figure 1A, green traces and bars).
Recently, Naþ channel inhibitors flecainide and rilu-
zole emerged as effective therapies in CPVT models
(23,26). Interestingly, riluzole (10 mmol/l, Sigma) and
flecainide (2.5 mmol/l, Sigma) both also reduced DCR
frequency (Figure 1A, purple and blue traces and
bars). Notably, consistent with previous reports
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(25,26), none of the aforementioned interventions
(i.e., TTX, riluzole, or flecainide) was associated with
alterations in the SR Ca2þ content (Figure 1A). Taken
together, these findings suggest that, in the setting of
dysregulated RyR2 function, increased Naþ influx
through nNav during the post-systolic phase may
contribute to the arrhythmogenesis evidenced in this
model upon b-AR stimulation. To examine the pos-
sibility of increased Naþ flux through nNav during
b-AR stimulation, we assessed persistent INa in CPVT
and WT cardiomyocytes. Exposure to ISO (100 nmol/l)
elicited persistent INa both in CPVT and WT myocytes
(Figure 1B, Supplemental Figure 2, respectively, red
traces and bars). Notably, this current was sensitive to
100 nmol/l TTX (Figure 1B, Supplemental Figure 2,
green traces and bars), riluzole, as well as flecainide
(Figure 1B, purple and blue traces and bars, respec-
tively), despite the 2 former agents exhibiting only a
fraction of flecainide’s total peak INa blocking poten-
tial (Supplemental Figure 3).

Next, we examined the effect of nNav-mediated
persistent INa on CPVT in vivo. A catecholamine chal-
lenge composed of caffeine (Sigma) and epinephrine
(Sigma) induced frequent ventricular arrhythmias,
which degenerated into polymorphic VT (Figure 1C,
red ECG and bars). Consistent with the notion of
b-AR–mediated TTX-sensitive persistent INa contrib-
uting to pro-arrhythmic DCR, the vast majority of
CPVT animals tested remained in sinus rhythm
when pre-treated with riluzole (Figure 1C, purple ECG
and bars). Therefore, augmentation of Naþ influx
through nNav by catecholamines appears to be
necessary for the pro-arrhythmic aberrant Naþ/Ca2þ

signaling in CPVT.

TTX-SENSITIVE nNaV-MEDIATED PERSISTENT INa

AUGMENTATION AND INCREASED SR CA2D LOAD ARE

NECESSARY AND SUFFICIENT FOR ARRHYTHMIAS IN

CPVT. To determine whether augmentation of
nNav-mediated Naþ influx alone (independent of
b-AR stimulation) is sufficient for inducing arrhyth-
mogenic DCR, we induced persistent INa via nNav
augmentation with b-PMTX (40) in CPVT cardio-
myocytes (Figure 2A). Persistent INa induced by 40
mmol/l b-PMTX (Alomone) was completely reversed
by TTX (100 nmol/l), riluzole (10 mmol/l) as well as
flecainide (2.5 mmol/l) (Figure 2A). Stimulation of nNav
channels by b-PMTX (30 mg/kg intraperitoneally) in
the absence of catecholamine challenge, however,
failed to induce VT in vivo (Figure 2D).

Of note, b-PMTX further promoted DCR in the
presence of ISO on the cellular level (Figure 2B). This
resulted in over 90% VT incidence in the CPVT mice
undergoing concomitant b-PMTX treatment and
catecholamine challenge (Figure 2C, orange ECG and
bar). Confirming the involvement of nNav in this
pro-arrhythmic process, Naþ-channel blockade—both
selective and nonselective—significantly reduced
DCR and VT incidence in b-PMTX exposed, catechol-
amine challenged myocytes and animals, respec-
tively, which was independent of changes in SR Ca2þ

load (Figures 2B and 2C, Supplemental Figure 4A,
green, purple and blue bars, and ECGs). Thus, stim-
ulation of nNav alone, although necessary, is not
sufficient to reproduce the proarrhythmic action of
catecholamines in CPVT.

To test whether increased SR Ca2þ content is
another necessary condition for arrhythmogenesis in
CPVT, we performed experiments in CPVT mice that
conditionally overexpress SERCA2a (CPVT-SERCA)
(35). Even without b-AR stimulation, CPVT-SERCA
myocytes evidenced comparable SR Ca2þ load to ISO-
exposed CPVT myocytes (Supplemental Figure 4A)
and significantly more arrhythmic DCR events relative
to ISO-naive CPVT myocytes (Figures 1A and 2B).
However, this was insufficient to promote VT in vivo
(Figure 2D, red ECG and bar). Importantly, augmen-
tation of Naþ flux through nNav with b-PMTX in
ISO-naive CPVT-SERCA myocytes was sufficient to
significantly increase aberrant DCR on the cellular
level, relative to untreated CPVT-SERCA myocytes
(Figure 2B) This, in turn, precipitated VT in all the
CPVT-SERCA mice exposed to b-PMTX (Figure 2D,
orange ECG and bar). Of note, in 2 instances when
SERCA2a overexpression was reversed in CPVT-
SERCA mice by stopping the doxycycline-rich diet
for 14 days, exposure to b-PMTX failed to induce
VT. Taken together, these results suggest that nNav-
mediated persistent INa combined with genetically
impaired RyR2 function and enhanced SR Ca2þ refill
are necessary and sufficient for the arrhythmogenic
phenotype responsible for CPVT.

PROARRYTHMIC EFFECT OF b-AR STIMULATION ON

TTX-SENSITIVE PERSISTENT INa AUGMENTATION

INVOLVES CAMKII PHOSPHORYLATION OF nNaV

AND IS INDEPENDENT OF RyR2 PHOSPHORYLATION.

The aforementioned finding that b-AR stimulation
promotes Naþ influx through nNav suggests that cat-
echolamines may modulate nNav function through
phosphorylation. Recently, Naþ channels have been
shown to be subject to phosphorylation by CaMKII
(41,42). To investigate the role of CaMKII-mediated
modulation of Naþ/Ca2þ signaling in CPVT, we
pharmacologically or genetically perturbed CaMKII
signaling in CPVT cardiomyocytes. First, we observed
that pharmacological blockade of CaMKII with KN93
(1 mmol/l, Sigma) prevented ISO-induced persistent
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FIGURE 2 TTX-Sensitive nNav-Mediated Persistent INa Augmentation in Conjunction With Increased SR Ca2þ Load Contribute to CPVT

(A) Slowed inactivation of nNav with b-PMTX results in TTX-sensitive persistent INa in CPVT mice. Representative traces of persistent INa
recorded in CPVT cardiomyocytes. Direct augmentation of nNav-mediated persistent INa with b-PMTX (40 mmol/l) in CPVT myocytes increased

persistent INa relative to the control group (n ¼ 12 and n ¼ 31 cells, respectively; #p ¼ 0.004 Wilcoxon rank sum test). b-PMTX–induced

persistent INa was reduced by 100 nmol/l TTX, 10 mmol/l Ril, and 2.5 mmol/l Flec (n ¼ 8, 6, and 5 cells; p < 0.001 Kruskal-Wallis test;

*p ¼ 0.002, *p ¼ 0.039, *p ¼ 0.003 Wilcoxon rank sum test vs. b-PMTX alone, respectively). (B) Pharmacological augmentation of nNav-

mediated persistent INa promotes DCR in CPVT. Representative line-scan images obtained from CPVT cardiomyocytes and those conditionally

overexpressing SERCA2a (CPVT-SERCA) that were loaded with Ca2þ indicator, Fluo-3 AM, and paced at 0.3 Hz. Concomitant application of Iso

(100 nmol/l) and b-PMTX (40 mmol/l) further promoted DCR frequency in CPVT cardiomyocytes relative to CPVT myocytes exposed to Iso alone

(n ¼ 79 and 166 cells, respectively, #p ¼ 0.001 Wilcoxon rank sum test). Addition of TTX (n ¼ 38), Ril (n ¼ 61), or Flec (n ¼ 70) significantly

reduced Iso/b-PMTX–promoted DCRs (p < 0.001 Kruskal-Wallis test; *p < 0.001 Wilcoxon rank sum test for each experimental group vs. ISO þ
b-PMTX). In the absence of catecholamines, CPVT-SERCA cardiomyocytes exposed to b-PMTX evidenced greater DCR frequency relative to the

untreated ones (n ¼ 80 and 83 cells, respectively; *p ¼ 0.01 Wilcoxon rank sum test). (C) Representative ECG recordings of CPVT mice after

catecholamine challenge with intraperitoneal injection of epinephrine (1.5 mg/kg) and caffeine (120 mg/kg) and pre-treatment with b-PMTX (30

mg/kg), b-PMTXþRil (15 mg/kg), or b-PMTXþFlec (20 mg/kg). VT incidence in CPVT mice exposed to catecholamine challenge during various

interventions (n ¼ 14, 10, and 9 mice for CPVT-b-PMTX, CPVT-b-PMTXþRil, and CPVT-b-PMTXþFlec, respectively; *p < 0.001 and *p ¼ 0.005

Fisher exact test for CPVT-b-PMTX vs. CPVT-b-PMTXþRil and CPVT-b-PMTX vs. CPVT-b-PMTXþFlec, respectively). (D) Representative ECG

recordings and summary VT incidence of CPVTþSERCA mice before and after doxycycline-induced SERCA2a overexpression and in the presence

or absence of b-PMTX (30 mg/kg; n ¼ 6; *p ¼ 0.031 McNemar test for CPVT-SERCA vs. CPVT-SERCAþb-PMTX). All experiments in CPVT-SERCA

mice were conducted in the absence of epinephrine and caffeine. Before induction of SERCA2a overexpression, all 6 mice were exposed to b-

PMTX. After 2 to 3 weeks of doxycycline-supplemented diet, all 6 mice (horizontal line connecting the hash marks that represent VT incidence)

were assessed for arrhythmias, after which they were again exposed to b-PMTX. Abbreviations as in Figure 1.
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INa (Figure 3A). Second, KN93 significantly reduced
ISO-promoted DCR in CPVT myocytes (Figure 3B,
black and red bars, respectively). These results sug-
gested that CaMKII promotes aberrant Naþ/Ca2þ

signaling by augmenting Naþ influx through nNav. To
examine the potential direct effects of CaMKII
phosphorylation on RyR2 function in CPVT, we
used CPVT-S2814A mice in which RyR2 is rendered
nonphosphorylatable by CaMKII at S2814 (36).
Cardiomyocytes isolated from CPVT-S2814A mice
evidenced similar frequency of ISO-promoted DCR
relative to those isolated from CPVT mice (Figure 3B,
red and gray bars, respectively). Furthermore, the
frequency of these aberrant DCRs was significantly
reduced by Naþ blockade with riluzole (Figure 3B,
purple bar). Notably, none of the aforementioned
interventions affected SR Ca2þ load (Supplemental
Figure 4B). Thus CaMKII-mediated Naþ influx

http://dx.doi.org/10.1016/j.jacbts.2016.04.004
http://dx.doi.org/10.1016/j.jacbts.2016.04.004


FIGURE 3 Proarrhythmic Effect of b-AR Stimulation on TTX-Sensitive Persistent INa Augmentation Involves CAMKII Phosphorylation

of nNav and Is Independent of RyR2 Phosphorylation

(A) The effect of b-AR stimulation on persistent INa is mediated through CaMKII. Representative traces of persistent INa recorded in CPVT

cardiomyocytes exposed to CaMKII inhibitor KN93 (1 mmol/l) before and after treatment with 100 nmol/l Iso (n ¼ 9 cells for both groups;

p ¼ 0.14 Wilcoxon signed rank test). (B) CaMKII modulates DCR independent of RyR2 phosphorylation at S2814. Representative line-scan

images recorded in CPVT ventricular cardiomyocytes as well as those expressing RyR2 that cannot be phosphorylated by CaMKII at site 2814

(S2814A). Myocytes were loaded with Ca2þ indicator, Fluo-3 AM, and paced at 0.3 Hz. CaMKII inhibition with 1 mmol/l KN93 reduced DCR

frequency in Iso-treated CPVT cardiomyocytes (n ¼ 166 and n ¼ 105, respectively; *p ¼ 0.001 Wilcoxon rank sum test). CPVT2814 car-

diomyocytes did not evidence altered DCR frequency relative to Iso-treated CPVT myocytes; however, exposure of Iso-treated CPVT2814

cardiomyocytes to Ril 10 mmol/l significantly reduced DCR frequency relative to Iso alone (n ¼ 57 and n ¼ 61 cells, respectively; *p ¼ 0.003

Wilcoxon rank sum test). Abbreviations as in Figure 1.
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through nNav can modulate DCR independently of
RyR2 phosphorylation.
ARRHYTHMOGENESIS IN CPVT DEPENDS ON NaV1.6-

MEDIATED PERSISTENT INa. As we have previously
demonstrated (26), cardiac myocytes contain several
types of Naþ channels, including TTX-sensitive nNav
(Nav1.1, Nav1.3, and Nav1.6) as well as the
TTX-resistant Nav1.5. The former are located in the
vicinity of RyR2 in the junctional microdomain, and
the latter, in the lateral membrane and the interca-
lated discs (Figure 4A). To more precisely examine the
localization of these channels with respect to RyR2 in
CPVT, we performed a PLA (37). We found that all Naþ

channel isoforms were closely colocalized (within
<40 nm [37]) with RyR2 (Figure 4B); however, Nav1.5
appeared to be primarily colocalizing with RyR2 in
the cell periphery, whereas the nNavs exhibited a
more diffuse pattern of colocalization. Specifically,
Nav1.6 evidenced the highest degree of colocalization
with RyR2 relative to the other nNav isoforms
(Figure 4C). The pattern and degree of colocalization
of Nav1.6 with RyR2 were similar between myocytes
isolated from WT and CPVT hearts, whereas this was
not the case for Nav1.1 and 1.3 (Supplemental
Figure 5). These data, in the context of recent work
suggesting a role for Nav1.6 in progression of demy-
elinating disease (43), led us to hypothesize a mech-
anistic role for Nav1.6 in CPVT. Further, the nNaV
inhibitor riluzole may exert a therapeutic effect in
amyotrophic lateral sclerosis, a demyelinating disor-
der, through the blockade of Nav1.6 (44). We there-
fore examined the functional role of Nav1.6 in CPVT.
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FIGURE 4 Neuronal Naþ Channels and RyR2 Colocalize to the Same Discrete Subcellular Regions

(A) Representative confocal micrographs of isolated CPVT ventricular myocytes labeled for RyR2 (red) with various Nav isoforms (Nav1.x, green) often resulted in an

overlap between the immunofluorescent (IF) signals (yellow) when overlaid. (Right) Close-up views of regions highlighted by dashed white boxes. (B) Repre-

sentative confocal micrographs of ventricular myocytes isolated from CPVT mice showing fluorescent proximity ligation assay (PLA) signal for RyR2 with different

nNav isoforms (NaV1.x). Below each image are the results of digital segmentation, with the cell mask in gray and PLA signal in red. (C) Plot of average number of

PLA punctae/mm2 (p < 0.001 Kruskal-Wallis test; *p ¼ 0.002, *p ¼ 0.019, *p < 0.001 Wilcoxon rank sum test for Nav1.6 vs. Nav1.1, 1.3, and 1.5, respectively;

n ¼ 1,231, 1,223, 1,291, and 2,848 punctae from 7, 6, 12, and 7 cells for Nav1.1, 1.3, 1.5, and 1.6, respectively). Abbreviations as in Figure 1.
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FIGURE 5 Dose Response of ISO-Induced Persistent INa in CPVT Cardiomyocytes to

nNav Blockade With m-Conotoxin SmIIIA

(Top) Representative traces of persistent INa recorded in CPVT cardiomyocytes exposed

to ISO (100 nmol/l) and subsequent increasing concentrations of m-conotoxin SmIIIA

(50, 100, and 300 nmol/l). (Bottom) Summary of ISO-induced persistent INa dose

response to m-conotoxin SmIIIA. ISO-induced persistent INa was not significantly

affected by 50 nmol/l m-conotoxin SmIIIA (n ¼ 10 for both CPVT-ISO and CPVT-ISOþ50

nmol/l m-conotoxin SmIIIA; p ¼ 1 Wilcoxon rank sum test), partially inhibited by 100

nmol/l (n ¼ 9; *p ¼ 0.048 Wilcoxon rank sum test vs. CPVT-ISO) and almost

completely blocked by 300 nmol/l (n ¼ 6; *p ¼ 0.003 Wilcoxon rank sum test vs.

CPVT-ISO). Abbreviations as in Figure 1.
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To test this, first we conducted a dose response
experiment with m-conotoxin SmIIIA, which can
discriminate between TTX-sensitive Naþ channel
isoforms (45). Specifically, at very low nmol/l con-
centrations, m-conotoxin SmIIIA inhibits Nav1.1 and
Nav1.3 (45). Despite the putative inhibition of Nav1.1
and Nav1.3, 50 nmol/l m-conotoxin SmIIIA (Cusabio,
Wuhan, China) did not significantly alter ISO-induced
persistent INa in CPVT myocytes (Figure 5). However,
a concentration of m-conotoxin SmIIIA near the IC50

for Nav1.6 (100 nmol/l) (45) partially reduced
ISO-induced persistent INa, whereas 300 nmol/l
m-conotoxin SmIIIA virtually abolished this
ISO-induced phenomenon (Figure 5). These data
suggest that Nav1.6 can potentially contribute to the
ISO-induced persistent INa and arrhythmias in CPVT.
To examine this possibility further in both cardiac
myocytes and in vivo we used a selective Nav1.6 in-
hibitor, 4,9-anhydro-TTX (Focus Biomolecules)
(46,47). Notably, ISO-induced persistent INa in CPVT
cardiomyocytes was sensitive to 300 nmol/l
4,9-anhydro-TTX (Figure 6A), suggesting that this
ISO-promoted persistent INa is for the most part car-
ried by Nav1.6.

Furthermore, the addition of 300 nmol/l 4,9-
anhydro-TTX to CPVT myocytes reduced the fre-
quency of ISO-promoted DCRs (Figure 6B). Similarly,
pre-treatment of CPVT mice with 4,9-anhydro-TTX
(750 mg/kg) markedly reduced VT vulnerability dur-
ing catecholamine challenge (Figure 6C, blue ECG
and bar). Notably, this intervention had no signifi-
cant effect on SR Ca2þ load (Supplemental Figure 6).
We further addressed the role of Nav1.6 in CPVT by
an siRNA approach to selectively target Nav1.6
(Supplemental Figure 7). CPVT mice injected with
siRNA against Nav1.6 showed a marked decrease in
arrhythmia episodes during catecholamine challenge
(Figure 6C, purple ECG and bar). Taken together,
these results suggest that Nav1.6 may be in part
involved in CPVT-related arrhythmogenesis, which
likely involves NCX.

Last, to assess the potential role of NCX in the Naþ/
Ca2þ signaling, we examined the structural correla-
tion between NCX and nNavs as well as the functional
effect of NCX inhibition on aberrant DCR. We found
with the aid of PLA that NCX colocalizes with
the TTX-sensitive nNav isoforms (Supplemental
Figure 8). Furthermore, NCX inhibition with
SEA0400 (48) (1 mmol/l, MedChem Express, Mon-
mouth Junction, New Jersey) had a similar effect on
DCR relative to that observed with 4,9-anhydro-TTX
(Figure 6B). Therefore, these data suggest that
NCX may be a component of the pro-arrhythmic
interaction between nNavs and RyR2 that, in part,
may be responsible for CPVT.

DISCUSSION

Cardiac arrhythmias are often precipitated by cate-
cholamine release during physical or emotional
stress. The role of b-AR stimulation is particularly
evident in inherited forms of cardiac arrhythmia such
as CPVT, where genetic defects in the RyR2 complex
(i.e., RyR2, CaM, CASQ2, TRD, and/or calstabin) alter
RyR2 channel function and facilitate arrhythmogenic,
aberrant DCR (2–5). Specifically, in the normal heart
after each systolic Ca2þ release, RyR2s become re-
fractory via a process that involves a decrease in the
SR luminal Ca2þ (10). An intra-SR Ca2þ buffering
protein, CASQ2, has been implicated in this process,
acting as a Ca2þ buffer and a luminal Ca2þ sensor that
regulates RyR2 gating (7–9,11,12,15). Therefore, CPVT-
associated mutations in CASQ2 impair the ability of
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FIGURE 6 Arrhythmogenesis in CPVT Depends on Nav1.6-Mediated Persistent INa

(A) The effect of Nav1.6 blockade on ISO-induced persistent INa. Representative traces

of persistent INa pre- and post-exposure to 100 nmol/l ISO in CPVT cardiomyocytes

(p ¼ 0.007 Kruskal-Wallis test, n ¼ 6 for both; *p ¼ 0.035 Wilcoxon rank sum test vs.

CPVT control). The persistent INa response to ISO was abolished by 300 nmol/l 4,9-

anhydro-TTX (4,9-ah-TTX) (n ¼ 5; #p ¼ 0.016 Wilcoxon rank sum test vs. CPVT-ISO).

(B) Nav1.6 and NCX blockade reduce DCR. Representative line-scan images recorded in

CPVT ventricular cardiomyocytes that were loaded with Ca2þ indicator, Fluo-3 AM, and

were paced at 0.3 Hz. Nav1.6 inhibition with 300 nmol/l 4,9-ah-TTX as well as NCX

inhibition with SEA0400 (1 mmol/l) reduced DCR frequency in ISO-treated CPVT car-

diomyocytes (n ¼ 99, 123, and 74 cells for ISO-4,9-ah-TTX, ISO-SEA0400, and ISO-

treated cells, respectively; p ¼ 0.026 Kruskal-Wallis test; *p ¼ 0.031 and *p ¼ 0.032

Wilcoxon rank sum test for ISO-4,9-ah-TTX and ISO-SEA0400 vs. ISO, respectively).

(C) Representative ECG recordings and summary VT incidence of CPVT mice

exposed to catecholamine challenge (epinephrine and caffeine) as well as those with

pharmacological or genetic inactivation of Nav1.6. Pre-treatment with 4,9-ah-TTX

(750 mg/kg intraperitoneally) or administration of siRNA selectively targeting Nav1.6

prevented VT during catecholamine challenge (n ¼ 9, 7, and 4 mice for CPVT-

EpiþCaff, CPVT-EpiþCaff þ4,9ah-TTX, and CPVT- EpiþCaffþNav1.6 siRNA, respectively;

*p ¼ 0.003 and *p ¼ 0.021 Fisher exact test for CPVT- EpiþCaff þ4,9ah-TTX and CPVT-

EpiþCaffþNav1.6 siRNA vs. CPVT-EpiþCaff, respectively). Abbreviations as in Figure 1.
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the RyR2 channel to deactivate during the diastolic
phase, thereby making RyR2s prone to premature
activation that result in DCR (10,13–15). This defective
RyR2 gating and the resulting DCR, which are evi-
denced in CPVT, are enhanced by b-AR stimulation.
Despite the critical role of b-AR stimulation as an
arrhythmia trigger, the precise mechanisms that link
b-AR signaling to arrhythmogenesis remain elusive.
Here, we demonstrate that augmented Naþ entry via
nNav in the settings of the genetically compromised
RyR2s and enhanced SR Ca2þ refill are essential and
necessary for the arrhythmogenesis during b-AR
stimulation in CPVT. Furthermore, we show that
augmentation of Naþ entry involves b-AR–mediated
activation of CAMKII, subsequently leading to nNav
augmentation. Importantly, selective inhibition of
Nav1.6 effectively prevents arrhythmia in vivo, thus
potentially presenting a clinically useful antiar-
rhythmic approach.

Recently we and others have suggested that nNav
may facilitate excitation-contraction coupling and
contribute to aberrant local Naþ/Ca2þ signaling, that,
in part, may contribute to cardiac arrhythmias
(24,26,49–52). On the basis of these studies, we set out
to determine whether b-AR stimulation augments
nNav-mediated Naþ entry and thereby facilitates Ca2þ

influx via the NCX that, in turn, may stimulate
arrhythmogenic DCR through RyR2s. Here, we show
that Naþ influx via nNav is not merely a compounding
factor, but rather that augmentation of this Naþ influx
plays a key role in mediating the proarrhythmic
effect of b-AR stimulation in CPVT. Specifically, our
findings highlight a distinct nanodomain where nNav
are in close proximity (<40 nm) to RyR2s (Figure 4)
and NCX (Supplemental Figure 8), and where b-AR–
augmented Naþ entry enhances aberrant Naþ/Ca2þ

signaling, including DCR, thus resulting in CPVT. Of
note, the amplitude of the nNav-mediated persistent
INa was similar between WT and CPVT myocytes both
at baseline and in the presence of ISO (Figures 1 and 6,
Supplemental Figure 2). Thus, putative “physiolog-
ical” b-AR augmentation of nNav activity can become
arrhythmogenic in a setting of genetically compro-
mised RyR2 in CPVT.

Stimulation of b-AR has been previously shown to
affect intracellular Naþ influx both early and late after
a depolarizing stimulus (53,54). In the case of peak
INa, Yarbrough et al. (53) suggested that this phe-
nomenon is coordinated by caveolin-3. Recently,
caveolin-3 has been demonstrated to coordinate local
nanodomain b2-AR–mediated regulation of L-type
Ca2þ channels in the T-tubules (55,56). However,
future studies will need to address the role of
caveolin-3 compartmentation on regulation of b-AR–
mediated signaling of subpopulations of Naþ chan-
nels in various cellular compartments.

Our structural and functional studies make a very
compelling case for the involvement of nNav in
the arrhythmogenic process. However, this does not
preclude the cardiac isoform of the Naþ channels
(Nav1.5) from contributing to arrhythmogenesis. In
fact, early reports have described late INa as a compo-
nent of the cardiac INa that can be inhibited by
ranolazine (54). This late INa was presumably carried
by Nav1.5 and is a reflection of cell-wide sarcolemmal
Nav1.5 activity. Here, we show that Nav1.5 is present
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FIGURE 7 Arrhythmogenic Targets of b-AR Stimulation

Responsible for CPVT
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influx through the L-type Ca2þ channels (LTCC) results in activa-

tion of RyR2 and subsequent Ca2þ release from the SR (68). On the

basis of the present study, in the presence of b-adrenergic receptor

(b-AR) agonist isoproterenol: ①① CaMKII-dependent augmentation

of Naþ influx during the post-systolic phase (i.e., persistent Naþ

current) may facilitate diastolic Ca2þ release (DCR) by enhancing

Naþ-Ca2þ exchange (NCX)–dependent Ca2þ accumulation in the

dyadic cleft (i.e., space between the sarcolemma and the RyR2); ②②

this nanodomain Ca2þ accumulation in turn promotes DCR via

Ca2þ-induced Ca2þ release from the RyR2 that are sensitized due

to genetic defects in the RyR2 complex (i.e., RyR2, CaM, CASQ2,

TRD, and/or calstabin) (2–5); which along with ③③ increased SR

Ca2þ load play a critical role in triggering aberrant DCR during b-AR

stimulation in CPVT. Abbreviations as in Figure 1.
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in the core-compartment of cardiomyocytes, pre-
sumably in the T-tubules, albeit its presence in that
compartment is very limited (Figure 4). However,
nNav, which include Nav1.6, are the predominant
isoforms present within these distinct nanodomains
(Figure 4) and are responsible for the persistent INa

phenotype during b-AR stimulation (Figures 1 and 6,
Supplemental Figure 2). In this vein, nonselective
(Nav1.5 and nNav) inhibition with flecainide (57),
despite having similar effect on persistent INa, more
profoundly affected peak INa relative to 100 nmol/l
TTX (Supplemental Figure 3), a concentration that
completely blocks nNav although mostly sparing
Nav1.5 (24,27–29). These data would further suggest
that because 10 mmol/l riluzole inhibits both peak
and persistent INa to a similar extent as 100 nmol/l
TTX, it may perhaps elicit its DCR-stabilizing effect
through blockade of nNav. However, future studies
will need to determine the specific Naþ channel
isoforms blocked by this agent.

At least 3 isoforms of nNav have been identified in
the heart as follows: Nav1.1, Nav1.3, and Nav1.6
(Figure 4) (26,30–32,58). To examine whether a
particular nNav isoform is essential for both aberrant
Naþ/Ca2þ signaling and in vivo arrhythmia in CPVT,
we used structural and functional assays. PLA as
well as pharmacological and silencing approaches
(Figure 4B, Supplemental Figure 5, and Figures 5 and 6,
respectively) pointed to the involvement of Nav1.6
in the arrhythmogenic process. Moreover, WT and
CPVT myocytes exhibited a similar degree of Nav1.6
and RyR2 colocalization (Figure 4, Supplemental
Figure 5), in contrast to changes in RyR2 colocaliza-
tion observed with other nNav isoforms; thus, the
bulk of ISO-promoted late INa in WT and CPVT is likely
carried by Nav1.6. Taken together, these findings
are consistent with the prevalence of this Naþ channel
isoform in cardiomyocytes (26,30–32,58), its substan-
tial persistent current (59,60), and its localization in
the T-tubules in the vicinity of the RyR2 (Figure 4).
Furthermore, the persistent INa that was generated by
Nav1.6 during application of ISO was modulated by
CAMKII-dependent nNav augmentation (Figure 3).
Although the exact CaMKII phosphorylation site(s) in
Nav1.6 or the other nNavs are not known, there are
consensus CaMKII phosphorylation sites in these
channels that correspond to DI-II linker conforming
to Arg/Lys-X-X-Ser/Thr (61). In particular, S571 in
Nav1.5 appears to be conserved in TTX-sensitive
nNavs, suggesting that this might be the putative
CaMKII phosphorylation site; however, future studies
will need to determine the particular phosphory-
lation site(s) responsible for catecholamine-mediated
augmentation of persistent INa.
What other factors, apart from nNav stimulation,
are critical to arrhythmogenesis in CPVT? To address
this question, we omitted exposure to catechol-
amines and selectively slowed nNav inactivation with
b-PMTX (40) to mimic b-AR–induced nNav augmen-
tation in CPVT mice with inducible SERCA2a over-
expression. These studies suggested that enhanced
SR Ca2þ refilling or phosphorylation of effector
sites such as RyR2 may be necessary for arrhythmo-
genesis in cardiac CASQ2-associated CPVT. Further
experiments where we inhibited nNav activity in
CPVT mice exposed to b-AR stimulation that were
deficient in RyR2 CaMKII phosphorylation (S2814A)
revealed that CaMKII phosphorylation of RyR2 does
not play a pivotal role in CASQ2-associated CPVT.
Taken together, these data suggest a novel concep-
tual framework for b-AR–promoted arrhythmogenesis
(Figure 7). Mainly, the cross talk among nNav, NCX,
and RyR2 may play a critical role in triggering
aberrant DCR during b-AR stimulation in CPVT.
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various etiologies, including ischemic and nonischemic

cardiomyopathy, inhibition of nNav can potentially be

applied to treat these diverse conditions. Interestingly,

although non-isoform-selective Naþ channel inhibition

initially appeared beneficial in the management of

Ca2þ-mediated arrhythmias due to myocardial infarc-

tion, it has proven to be pro-arrhythmic and enhance

the risk of arrhythmic death in patients with structural

heart disease evidently due to reduced availability of

Nav1.5 and the consequent loss of myocardial excit-

ability. In this context, nNav appears to be particularly

suitable antiarrhythmic target, where the antiar-

rhythmic effect of selective nNav blockade can be

uncoupled from the proarrhythmic effect of reduced

cellular excitability associated with Nav1.5 inhibition.
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Furthermore, it is likely that a similar mechanism
may contribute to arrhythmogenesis in other genetic
and acquired forms of catecholamine-dependent ar-
rhythmias. Likewise, there is evidence to suggest that
CPVT is associated with DCR in the atria as well
(34,62). Further, aberrant Ca2þ release events are also
observed in atria of patients with various forms of
atrial fibrillation (63). Thus, it is very likely that the
mechanism described herein may apply to the atrium
as well. However, future studies will need to address
the involvement of such aberrant Naþ/Ca2þ signaling
in atrial as well as ventricular variants of genetic
and acquired forms of catecholamine-dependent
arrhythmias.

Although Naþ-channel blockade, with flecainide in
particular, has been shown to be effective in manage-
ment of CPVT (21,23), the mechanism through which it
alleviates arrhythmia remains to be clarified. Initially,
the antiarrhythmic effect of flecainide was attributed
to the direct inhibition of the RyR2 (23). Subsequent
studies have suggested that it reduces the availability
of cardiac-type Naþ channels (NaV1.5), thus preventing
the development of triggered activity (64). Here, we
propose an additional and novel antiarrhythmic
mechanism for flecainide in CPVT as follows: antago-
nizing catecholamine-dependent augmentation of
Naþ influx via nNavs in general, and Nav1.6 in partic-
ular. Considering that altered RyR2 function contrib-
utes to acquired arrhythmias of various etiologies,
including ischemic and nonischemic cardiomyopathy
(65), inhibition of nNav can potentially be applied to
treat these diverse conditions. Interestingly,
although non–isoform-selective Naþ channel inhibi-
tion initially appeared to be beneficial in the man-
agement of Ca2þ-mediated arrhythmias due to
myocardial infarction (20), it has proven to be pro-
arrhythmic and enhance the risk of arrhythmic
death in patients with structural heart disease,
evidently due to reduced electrical excitability of
the myocardium (66,67). In this context, nNav ap-
pears to be a particularly suitable antiarrhythmic
target, where the antiarrhythmic effect of selective
nNav blockade can be uncoupled from the proar-
rhythmic effect of reduced cellular excitability
associated with Nav1.5 inhibition. Taken together,
our study brings well established findings on the
global plane regarding the efficacy of Naþ channel as
well as b-AR blockers under 1 mechanistic umbrella.
Specifically, the novel catecholamine-mediated ar-
rhythmogenic mechanism described herein relies on
the maintenance of enhanced SR Ca2þ load in the
setting of genetically compromised RyR2 along with
augmentation of nNav activity. The combination of
these factors promotes aberrant Naþ/Ca2þ signaling,
resulting in DCR and arrhythmias in vivo. Selective
inhibition of nNavs in general, and Nav1.6 in
particular, may represent effective treatment for a
wide range of arrhythmias associated with altered
RyR2 function and sympathetic stimulation.
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