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Abstract

Biological N2 fixation to NH3 may proceed at one or more Fe sites in the active-site cofactors of 

nitrogenases. Modeling individual e−/H+ transfer steps of iron-ligated N2 in well-defined synthetic 

systems is hence of much interest but remains a significant challenge. While molecular Fe species 

have been recently demonstrated to catalyze the formation of NH3 from N2, mechanistic details of 

these processes remain elusive. Herein, we report the synthesis and isolation of a diamagnetic, 5-

coordinate formally iron(IV) Fe═NNH2
+ species supported by a tris(phosphino)silyl ligand via 

the direct protonation of a terminally bound Fe-N2
− complex. The Fe═NNH2

+ complex is redox-

active, and low-temperature spectroscopic data and DFT calculations evidence an accumulation of 

significant radical character on the hydrazido ligand upon one-electron reduction to S = 1/2 Fe═ 
NNH2. At warmer temperatures, Fe═NNH2 rapidly converts to an iron hydrazine complex, Fe-

NH2NH2
+, via the additional transfer of proton and electron equivalents in solution. Fe-NH2NH2

+ 

can liberate ammonia, and the sequence of reactions described here demonstrates that an iron site 

can shuttle from a distal intermediate (Fe═NNH2
+) to an alternating intermediate (Fe-NH2NH2

+) 

en route to NH3 liberation from N2. It is interesting to consider the possibility that similar “hybrid” 

mechanisms for N2 reduction may be operative in biological N2 fixation.
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INTRODUCTION

The proton-coupled reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase enzymes 

sustains life and has been under study for decades. Known nitrogenases employ a cofactor 

comprised of seven Fe-atoms and one additional metal site (Mo, V, or Fe).1 Despite a suite 

of crystallographic, theoretical, and spectroscopic studies,2 the mechanistic details of N2 

reduction and the metallic site(s) of N2 coordination are uncertain.

The feasibility of N2 reduction at an Fe or Mo site has been tested with synthetic model 

complexes.3 Well-defined Mo systems have been reported to catalyze the direct reduction of 

N2 to NH3 in the presence of proton and electron equivalents,4 and our laboratory has 

recently disclosed molecular Fe complexes that furnish catalytic yields of NH3 from N2.5 

While synthetic studies of the Mo systems have revealed a number of isolable Mo(NxHy) 

species that inform likely mechanistic scenarios of N2 activation and overall reduction,6,4c 

similar studies on the Fe catalyzed systems are challenged by the high reactivity of the 

putative Fe(NxHy) intermediates and their varied spin states.

An iron hydrazido(2−) complex, Fe═NNH2
+, has been invoked as a likely intermediate in 

Fe-catalyzed reaction mixtures with the tris(phosphine)borane (TPB) system (TPB = tris(2-

(diisopropylphosphino)phenyl)borane)).5,7 Its detection in operando when both strong acid 

and reductant are present is not feasible; the species is far too reactive under such conditions. 

We therefore generated {[TPB]Fe═NNH2}+ at low temperature by double protonation of 

{[TPB]Fe(N2)}− in the absence of exogenous reductant and characterized this species with a 

suite of spectroscopic techniques including EPR/ ENDOR, XAS, and Mössbauer 

spectroscopies.7 {[TPB]Fe═ NNH2}+ decays rapidly at temperatures above −78 °C, 

frustrating our attempts to purify and study it by X-ray crystallography and to map its further 

reactivity patterns.

The complex {[SiPiPr
3]Fe(N2)}− ([SiPiPr

3] = tris(2-(diisopropylphosphino)phenyl)silyl(−)) is 

isostructural to the {[TPB]Fe(N2)}− catalyst. While catalytic amounts of NH3 (7.0(1) equiv 

of NH3 per Fe) are generated when {[TPB]Fe-(N2)}− is exposed to the originally reported 

catalytic conditions (−78 °C in Et2O, 1 atm N2, 50 equiv of {H(OEt2)2}{BArF
24}, 60 equiv 

of KC8), {[SiPiPr
3]Fe(N2)}− liberates substoichiometric amounts of NH3 (0.8(1) equiv of 

NH3 per Fe) under the same conditions.5 We surmised that the doubly protonated form of 

this species, {[SiPiPr
3]Fe═NNH2}+, might be more readily characterized than 

{[TPB]Fe═NNH2}+ owing to its predicted diamagnetism (18-electron species). Herein, we 

report its synthesis and high-resolution crystal structure. This isolable Fe═NNH2
+ species is 

derived from protonation of its Fe(N2)− congener. We additionally explore the redox pairs 

Fe═NNH2
+/Fe═NNH2 and Fe═NNMe2

+/Fe═NNMe2 and demonstrate the overall 

conversion of Fe NNH2
+ to NH3 via an Fe-NH2NH2

+ intermediate. These observations in 

sum establish that a molecular iron system can traverse both distal (Fe═NNH2) and 

alternating (Fe-NH2NH2) intermediates en route to NH3 formation from N2, providing 

synthetic precedent for a new “hybrid” pathway for Fe-mediated N2 reduction (Scheme 

1).7,8
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RESULTS AND DISCUSSION

As for {[TPB]Fe(N2)}−,7 the successful protonation of Fe(N2) complexes supported by the 

[SiPiPr
3] ligand required very low temperatures.9 For example, the addition of 1 or 2 equiv 

of the acid {H(OEt2)2}{BArF
24} to {K(Et2O)}{[SiPiPr

3]Fe(N2)} (1) at −78 °C resulted in 

the immediate formation of mixtures containing both one-electron oxidized [SiPiPr
3]Fe(N2) 

(2) and two-electron oxidized {[SiPiPr
3]Fe(N2)}{BArF

24} (3). These proton-induced 

oxidation reactions likely proceed via an unstable and as yet unobserved iron diazenido 

species, [SiPiPr
3]Fe(NNH) (4), structurally and electronically related to the previously 

reported and stable silyldiazenido complex, [SiPiPr
3]Fe(NNSiMe3).9 An alternative hydride 

product, [SiPiPr
3]Fe(N2)(H), that would derive from protonation at iron instead of N2 is not 

observed; [SiPiPr
3]Fe(N2)(H) is a very stable complex that has been characterized,10 and 

were it produced as the kinetic product of protonation, we would anticipate observing it, as it 

should also be the thermodynamically preferred isomer.

Combination of 1 with 5 equiv of {H(OEt2)2}{BArF
24} in thawing 2-MeTHF at −135 °C 

instead produced a pale lavender solution (Figure 1A) with UV–visible features that are 

distinct from the oxidation products Fe-N2 2 and Fe-N2
+ 3. The in situ 57Fe Mössbauer 

spectrum (Figure 1B) collected on similarly prepared solutions derived from 57Fe-enriched 1 
evidences a new integer-spin Fe complex (δ = 0.126 mm/s and ΔEQ = 1.484 mm/s) assigned 

as Fe═NNH2
+ 5 (vide infra), that constitutes ~90% of the Fe in solution; Fe-N2

+ 3 is 

present as a minor (~10%) component. Compound 5 is persistent for hours in solution at 

temperatures of −78 °C once prepared in this manner but is increasingly unstable as the 

solution is warmed further.

The isolation of 5 as a crystalline solid free of Fe-containing impurities was facilitated by 

the substitution of the BArF
24 counteranion with a less-soluble analogue. The reaction of 1 

with 3 equiv of trifluoromethanesulfonic acid (HOTf) proceeded similarly at −135 °C, but 

this compound (5′) could be effectively precipitated out of solution in 49% yield by the 

addition of pentane at temperatures of −78 °C or lower (Scheme 2). The 57Fe Mössbauer 

spectrum of solid 5′ (Supporting Information) reveals a single Fe-containing species with 

parameters that are similar to those of 5 in frozen solution (Figure 1B). Solid 5′ displays 

intense vibrational features at 3207 and 3039 cm−1 that shift to 2380 and 2241 cm−1 in 5′-d2 

(prepared from the reaction of 1 with DOTf) assigned to N–H stretching frequencies with 

strong hydrogen bonding interactions.11,12 These vibrational features persist in solid 

samples of 5′ that have been stored for days at −30 °C in the absence of air and moisture.

Characterization of {[SiPiPr
3]Fe═NNH2}+

The stability of 5 and 5′ in solution at −78 °C permitted growth of single crystals suitable 

for X-ray diffraction, and their respective structures are depicted in Figure 2. The structures 

differ in that 5 features an independent Et2O molecule hydrogen bonded to each of the 

protons of the NNH2 ligand, and in 5′ the NNH2 protons feature tight hydrogen bonding 

interactions with the triflate anion, and these interactions form the basis of dimeric (5′)2 

units in the crystal lattice (Supporting Information). The structures are nonetheless highly 

similar with respect to the Fe═NNH2
+ subunit; short Fe–N distances (~1.67 Å) are found 
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that reflect substantial Fe–N multiple bond character (Table 1), a characteristic feature of 

most terminal metal hydrazido(2−) complexes.6,11 The αN-atoms display linear geometries, 

and the location of the nitrogen-bound protons in the Fourier difference map divulges 

trigonal-planar βN-atoms. The N–N distances (~1.27 Å) are markedly increased from that 

displayed by {Na(12-crown-4)2}{[SiPiPr
3]Fe(N2)} (1.132(4) Å) and 1 (1.146(4) Å) 

(Supporting Information).9a The N–N distance in 5′ correlates with a broad feature centered 

at 1443 cm−1 in the IR spectrum that shifts to 1401 cm−1 in 15N-5′ and is assigned to the 

ν(NN) stretching frequency. IR features of similar energy have been observed in Mo- and 

W═NNH2 complexes.11 While a number of X-ray diffraction studies on mononuclear13 and 

dinuclear14 ═ Fe complexes that support the isomeric diazene ligand (HN NH) have been 

disclosed, 5 and 5′ are the first crystallographically characterized complexes that contain a 

terminal Fe═NNH2 unit. The structural parameters they reveal are consistent with those 

recently deduced from XAS and ENDOR spectroscopies for the catalytically relevant 

species, [TPB]Fe═NNH2
+.7

Although Fe═NNH2
+ 5′ is a stable solid, solutions of 5′ decompose at temperatures of 

0 °C and higher to an intractable mixture of Fe-containing species. Seeking to prepare a 

more stable analogue of 5′, we reacted 1 with excess MeOTf at −78 °C which, upon 

warming the reaction mixture to room temperature, precipitated {[SiPiPr
3]Fe(NNMe2)}

{OTf} (6) as a purple solid. Unlike the isoelectronic Fe═NNH2
+ species, Fe═NNMe2

+ 6 is 

quite stable both in the solid state and in solution. The relevant metrical data derived from 

the solid-state crystal structure of 6 (Figure 2) are similar to those of 5′ (Table 1).

Compounds 5′ and 6 exhibit diamagnetic ground states, permitting their further 

characterization by multinuclear NMR spectroscopies (Figure 3).15 A single broad 

resonance is found in the 31P{1H} NMR spectrum of 5′, consistent with averaged 3-fold 

symmetry in solution. Compound 15N-5′ exhibits two resonances in the 15N NMR spectrum 

at δ = 518 and 198 ppm, corresponding to the αN- and βN-atoms, respectively (Figure 

3A).6b,16 The resonance at δ = 198 ppm appears as a triplet of doublets (1JNH = 96 Hz, 1JNN 

= 11 Hz) whereas the feature at 518 ppm is broadened due to unresolved coupling to the 

phosphine ligands. In the 1H NMR spectrum, 15N-5′ displays a broad doublet (1JNH = 97 

Hz) at δ = 9.5 ppm assigned to the NNH2 protons. The magnitude of the 1JNH coupling 

constant in 5′ is consistent with sp2 hybridization at the βN-atom17 and similar to that found 

in other terminal metal-hydrazido(2−) complexes.6b,16 These data confirm that the structure 

of 5′ found in the solid state is maintained in solution. Related NMR data for 6 reproduces 

the salient features exhibited by 5′ (Supporting Information).

Redox Chemistry of [SiPiPr
3]Fe═NNR2

+

The intermediacy of Fe═NNH2
+ 5′ in the formation of NH3 requires additional proton or 

electron equivalents. Both 5 and 5′ were found to be stable at −78 °C to the presence of 

additional proton equivalents; we therefore explored the one-electron reduction chemistry of 

5′ and Fe═NNMe2
+ 6 to generate neutral [SiPiPr

3]Fe═NNH2 (7) and its methylated 

derivative [SiPiPr
3]Fe═NNMe2 (8), respectively. Cyclic voltammetry measurements on THF 

electrolytes of Fe═NNMe2 6 reveal a reversible reduction event at −1.73 V (Supporting 

Information). The chemical reduction of 6 with 1 equiv of Na(Hg) (Scheme 2) and 
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subsequent workup furnished paramagnetic 8, whose crystal structure (Figure 3) reveals a 

lengthened Fe–N distance (from 1.69 to1.77 Å) concomitant with substantial bending at the αN-atom from 175° to 159° (Table 1). The βN-atom retains sp2 

hybridization, and the N–N bond length is essentially unchanged. The X-band EPR 

spectrum of 8 indicates an S = 1/2 ground state (Figure 4A, gavg = 2.04), consistent with its 

room temperature magnetic moment in C6D6 (μeff = 1.7 μB). Magnetically perturbed 57Fe 

Mössbauer studies of 8 (Figure 4B) demonstrate strong 57Fe hyperfine coupling and much 

slower relaxation properties compared to Fe(N2) 2 (Supporting Information); distinctive 

features that span a range of 5 mm/s at temperatures of 80 K and lower are observed.

Fe═NNH2 7 is far less stable than 8 and required characterization at cryogenic 

temperatures. Compound 5′ reacted with Cp*2Co in 2-MeTHF at −135 °C to produce dark 

brown solutions that rapidly bleached when warmed to −78 °C or higher temperatures (vide 
infra). EPR (Figure 4A) and 57Fe Mössbauer spectra (Figure 4B) collected on similarly 

prepared frozen reaction mixtures derived from 5′ confirmed the generation of a new S = 1/2 

species (gavg = 2.04) as the major Fe-containing component. Notably, the 57Fe Mössbauer 

spectrum of this complex is nearly identical to that displayed by Fe═NNMe2 8, allowing us 

to assign it as the isoelectronic species 7. Accordingly, the theoretically predicted gas-phase 

optimized geometry and electronic structure of 7 are very similar to those of 8 (Supporting 

Information). Compounds 7 and 8 are predicted to have substantial radical character on the 

NNR2 and phosphine ligands, as also evident from their respective EPR data. Differences 

between the X-band EPR spectra of 15N-8 and 8 establish strong hyperfine coupling (ca. 30 

MHz) to a single N-atom (Inset of Figure 4A). In addition, marked differences in the EPR 

spectra of Fe═NNH2 7 and Fe═NND2 7-d2 demonstrate significant hyperfine coupling to 

one or both nitrogen-bound H-atom(s); this value is estimated to be as high as 25 MHz 

through analysis of the second derivative EPR spectrum at g2 and g3 (Supporting 

Information. The related S = 1/2 {[TPB]Fe(NNH2)}+ exhibited 1H hyperfine coupling as 

large as 18 MHz between g2 and g3.7

Conversion of [SiPiPr
3]Fe═NNH2

+ to [SiPiPr
3]Fe-NH2NH2

+

Upon warming to temperatures of −78 °C and higher, solutions that contain Fe═ NNH2 7 
and Fe═NNH2

+ 5′ undergo a spontaneous disproportionation to a mixture of Fe species 

that include the previously reported iron hydrazine complex, {[SiPiPr
3]Fe(NH2NH2)}{OTf} 

(9),9a as a major component. Thawing THF solutions of 5′ were combined with 

stoichiometric Cp*2Co and allowed to warm slowly to room temperature over 10 min. After 

minimal workup, NMR analyses of the resulting mixtures (Supporting Information) revealed 

the formation of roughly equal amounts of Fe-NH2NH2
+ 9 and Fe-N2 2 as major products, 

alongside small amounts of [SiPiPr
3]Fe(OTf) (10) and {[SiPiPr

3]Fe(NH3)}− {OTf} (11).9 9 
was also detected in a one-pot reaction from Fe-N2

− 1 via the sequential addition of 2 equiv 

of HOTf and 0.5 equiv of Cp*2Co to 1 in 2-MeTHF at −135 °C. Significant quantities of 

free N2H4 (0.53(6) equiv per Fe) and NH3 (0.16(2) equiv) were detected when these reaction 

mixtures were quenched with HCl 10 min after warming. This product distribution was 

found to be time dependent: reaction mixtures quenched after standing at room temperature 

for 24 h revealed the presence of 0.27(6) equiv of N2H4 and 0.39(5) equiv of NH3, 

establishing further conversion of N2H4 to NH3 in these mixtures.
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The overall formation of both N2H4 and NH3 from an Fe═NNH2
+/Fe═NNH2 redox pair is 

interesting, given that the complex [SiPPh
3]Fe(N2) was observed to liberate significant 

amounts of N2H4 upon exposure to HBF4(Et2O) and CrCl2 some years ago,18 whereas the 

anion {[SiPiPr
3]Fe(N2)}− was instead observed to liberate NH3 in the presence of KC8 and 

{H(OEt2)2}{BArF
24};5 N2H4 is anticipated to gradually degrade to NH3 under the latter 

conditions,5 and hence, even if formed as an intermediate product, its concentration may not 

build up.

The formation of the Fe-containing products Fe-NH2NH2
+ 9 and Fe-N2 2 can most simply 

be rationalized by the reaction sequence shown in Scheme 3. As discussed above, 57Fe 

Mössbauer and EPR studies indicate that 5′ is reduced by Cp*2Co to generate neutral 

Fe═NNH2 7 at temperatures as low as −135 °C. At higher temperatures, we speculate that 

in situ-generated 7 reacts bimolecularly with remaining 5′ in solution. Exchange of H+ and 

e− equivalents between these two compounds results in the formation of neutral Fe-N2 2 and 

cationic Fe-NH2NH2
+ 9 as the overall reaction products. Whereas 2 is stable to the presence 

of Cp*2Co, 9 is slowly reduced by Cp*2Co to afford detectable quantities of NH3 and 

thereby a mixture of 2 and Fe-OTf 10. DFT studies predict that the conversion of 5′ + 7 → 
2 + 9 is highly exergonic (−45 kcal/ mol) (Supporting Information).

CONCLUSIONS

The present study has described the thorough characterization, including the first 

crystallographic evidence, of a terminally bonded Fe═NNH2 species; this formally iron(IV) 

complex is derived from the activation and protonation of N2 coordinated to iron. Numerous 

examples of iron oxos, nitrides, and imides featuring strong, covalent iron-to-ligand 

multiples bonds have been characterized in the past 15 years.20 The possibility to use such 

covalency as a strategy for N2 reduction to NH3 is a plausible one, and the stoichiometric 

chemistry established with the present tris(phosphino)silyl iron system underscores this 

point. Our ability to isolate diamagnetic [SiPiPr
3]Fe═NNH2

+ and its more stable methylated 

analogue, [SiPiPr
3]Fe═ NNMe2

+, enables their thorough characterization and also a study 

of their one-electron reduction chemistry. The stable S = 1/2 complex [SiPiPr
3]Fe═NNMe2 

has been structurally characterized, and its other spectroscopic parameters are very similar to 

those of the far less stable S = 1/2 species [SiPiPr
3]Fe═NNH2, which must instead be 

characterized at very low temperature. Each S = 1/2 species evidences significant spin-

leakage onto the hydrazido ligand.

A fascinating transformation occurs as solutions containing in situ-generated 

[SiPiPr
3]Fe═NNH2 and [SiPiPr

3]Fe═NNH2
+ are allowed to warm, disproportionating to 

[SiPiPr
3]Fe-NH2NH2

+ and [SiPiPr
3]Fe-N2. Some [SiPiPr

3]Fe-NH3
+ is also produced in this 

process; we had previously shown that [SiPiPr
3]Fe-NH2NH2

+ can liberate [SiPiPr
3]Fe-NH3

+ 

and free NH3 in solution. Hence, these collective observations show that iron-bound N2 can 

be protonated to generate a distal8 intermediate, [SiPiPr
3]Fe═NNH2

+, and further reduced/ 

disproportionated to an alternating intermediate,8 [SiPiPr
3]Fe-NH2NH2

+, that serves as a 

source of NH3 via late-stage N–N cleavage. The conversion of N2 to NH3 via an N2H4 

intermediate therefore does not require an alternating pathway; it can instead be initiated 

along a distal pathway. Such a scenario is distinct from the early stage N–N cleavage 
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pathway to generate terminal nitrides that is thought to occur in the molybdenum N2 

reduction catalysts of Schrock and Nishibayashi, respectively.4

The catalytically relevant [TPB]Fe-N2
− system is thought to proceed via a distal S = 1/2 

[TPB]Fe═NNH2
+ intermediate.7 This species cannot be isolated and independently studied 

owing to its greater instability and the presence of additional iron components, and it 

remains unclear whether NH3 production in this case derives from similar late-stage 

cleavage to first produce N2H4, akin to [SiPiPr
3]Fe═NNH2, or if an early-stage cleavage 

pathway instead generates a terminal iron-bound nitride, such as [TPB]Fe═N or 

(TPB)Fe═N+. The greater flexibility of the Fe–B bond relative to the Fe–Si bond may 

afford access to different intermediates. However, that [SiPiPr
3]Fe-N2

− generates appreciable 

amounts of NH3 under the same conditions as [TPB]Fe-N2
−, and that its isostructural carbon 

analogue [CPiPr
3]Fe-N2

− is a catalyst for N2-to-NH3 conversion but is not nearly as flexible 

as the [TPB]Fe system,5b suggest the possibility and perhaps even likelihood of a unifying 

distal-to-alternating mechanistic sequence en route to NH3 for these three iron systems.

While we have here demonstrated the viability of a hybrid distal-to-alternating reaction 

pathway for NH3 generation via N2H4, we still caution that different Fe-mediated N2 

reduction systems, with variable reaction conditions, may sample alternative pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spectroscopic data collected in situ on compound 5. (A) UV–visible absorbance spectra of 

3, 2, and 5. Spectra were collected in 2-MeTHF at −80 °C. (B) Zero-field 57Fe Mössbauer 

spectra of 57Fe-enriched 5 as a 3 mM solution in 2-MeTHF prepared from 1 and collected at 

80 K. The minor component (10%) was identified as complex 3 derived from competitive 

oxidation.
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Figure 2. 
X-ray diffraction crystal structure of 5 and core-atom structures of 5′, 6, and 8 with thermal 

ellipsoids drawn at 50% probability. Hydrogen atoms (excepting the N–H′s), the BArF
24 

counteranion of 5, the triflate counteranion of 6, and cocrystallized solvent molecules have 

been removed for clarity. Refer to the Supporting Information for complete crystallographic 

details.
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Figure 3. 
NMR spectra of 5′ recorded at −60 °C in 9:1 THF-d8:CD3CN. (A) 15N NMR spectrum 

of 15N-5′. (B) 31P{1H} NMR spectrum of 5′. (C) Overlaid 1H and 1H{15N} spectra 

of 15N-5′. The central feature in the 1H spectrum results from contamination of 15N-5′ with 

the natural abundance 5′.
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Figure 4. 
(A) X-band EPR spectra of Fe═NNH2 7 and 7-d2, derived from the in situ reduction of 5′ 
or 5′-d2, respectively, with Cp*2Co; Fe═NNMe2 8 and 15N-8 collected at 77 K in 2-

MeTHF glasses. Signals derived from S = 1/2 Fe-N2 2 have been subtracted from the 

displayed spectra of 7 and 7-d2 for clarity. (Inset) Prominent features of 8 that differ 

in 15N-8. These features arise from hyperfine coupling to single 31P and single 14/15N nuclei 

of comparable magnitude. (B) 57Fe Mössbauer spectra of in situ-prepared 7 and 8 obtained 

by subtracting out quadrupole doublet impurities from the raw data. A 50 mT magnetic field 

was applied (left) perpendicular and (right) parallel to the propagation of γ-beam. The solid 

lines are theoretical fits to an S = 1/2 spin Hamiltonian operating in the slow relaxation 

regime. Refer to the Supporting Information for a detailed discussion and the derived spin 

Hamiltonian parameters.
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Scheme 1. 
Distal and Alternating Pathways for N2 Reduction, and the Hybrid N2 Reduction Pathway 

Emphasized Herein
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Scheme 2. 
Functionalization of [SiPiPr

3]Fe(N2) Complexes
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Scheme 3. 
Comparison of the Reaction Products Observed in the Reduction of (A) Fe═NNH2

+ 7 and 

(B) Mo═NNH2 Supported by the Tri(amido)amine [HIPTN3N]3− Ligand Framework19
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Table 1

Crystallographic Bond Metrics

5 5′ 6 8

Fe–Na 1.672(2) 1.668(2) 1.691(2) 1.773(1)

N–Na 1.272(3) 1.273(3) 1.270(3) 1.276(2)

Fe–N–Nb 175.3(2) 175.0(2) 174.7(2) 158.63(9)

Si–Fe–Nb 173.99(6) 170.82(7) 164.64(9) 174.19(4)

a
Bond distances in Å.

b
Bond angle in degrees.
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