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Abstract

The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identifica-
tion of protein–protein interactions and reconstruction of genome-scale pathways, has accelerated the development of sys-
tems biology research in the yeast organism Saccharomyces cerevisiae. In particular, discovery of biological pathways in yeast
has become an important forefront in systems biology, which aims to understand the interactions among molecules within
a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experi-
mental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal
transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range
of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput
datasets. Here we review selected bioinformatics approaches for modeling biological pathways in S. cerevisiae, including
metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological
pathways followed by discussing key biological databases. In addition, several representative computational approaches for
modeling biological pathways in yeast are discussed.
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Introduction

Biological pathways represent a series of molecular interactions
within a cell at different conditions that lead to end-point biolo-
gicalfunctions. Signals from external environment trigger in-
ternal chemical reactions in biological pathways to tackle
specific tasks. For example, the function of a MAPK-containing
complex can be altered by the phosphorylation of components
due to active MAPK in the MAPK signaling pathway[1]. Over the
past decade, many large-scale experimental and computational
approaches have been developed to decipher chemical reac-
tions in metabolic pathways, gene regulation in regulatory net-
work and the transmission of signals in signaling pathways.

Signaling pathways process the chemical activities in re-
sponse to the signals sent from the exterior of the cell to the
internal receptor. Gene regulatory network represents the
transcriptional regulation activities between genes and tran-
scription factors. Metabolites in a metabolic pathway interact
with each other inside the cell, with enzymes catalyzing the
metabolic reactions. Different chemical signals stimulate spe-
cific proteins inside the signaling pathway to trigger specific
reactions. Identification of relationship among genes, pro-
teins or molecules in biological pathways is critical for under-
standing complex biological activities and biological
functions. Figure 1 represents the interrelationship among
signaling pathway, gene regulatory network and metabolic
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pathway within a cell accomplishing the biological activities.
The three kinds of biological pathways can be represented by
network graph in which the node represents the entity in the
pathway and the edge represents the interaction between the
entities.

Saccharomyces cerevisiae, as one of intensely studied single-
cell eukaryotes, has been commonly used as a template organ-
ism to discover similar cellular processes and specific protein
functions in other organisms. Many important functional path-
ways, such as lipid metabolism [4] and cell cycle [5], have been
identified as similar cellular processes between yeast and
human [6]. Through the historical development of systems biol-
ogy research in yeast, S. cerevisiae has been widely studied from
individual system components to complex module interactions
in order to decipher the complete picture of the cellular
processes.

The first complete genome sequencing of S. cerevisiae was
achieved through the yeast genome project in 1996 [7]. With the
completion of genome sequencing project, identification of pro-
tein–protein interactions became one of the key topics of focus
on system-level molecular network study in S. cerevisiae, and
was accomplished by different types of approaches, ranging
from in vivo studies to in silico studies [8]. Yeast two-hybrid sys-
tem was deemed as an effective in vivo technique to detect dir-
ect interactions between protein pairs based on the activation
of functional transcription factors [9]. In the meantime, the in
silico methods have proven their effectiveness of predicting po-
tential interactions between proteins, for instance, based on the
three-dimension structural similarities [10], and complemented
the experimental approaches [8]. Interactions between proteins
can also be indirectly identified through coexpressed genes
using mRNA levels, which indicates that genes sharing similar
expression patterns under a specific condition interact with
each other [11]. Molecular interactions among cell activities also
drove the study of gene coregulation in response to different
conditions [12, 13]. Functionally correlated modules with sets of
coregulated genes have been identified using S. cerevisiae ex-
pression datasets [14–16].

In addition to the detection of protein–protein interactions
and gene regulatory network, there has also been a significant
effort toward the reconstruction of metabolic pathways for
understanding yeast genes in complex biological systems. The
first genome-scale metabolic network has been manually cura-
ted for S. cerevisiae which contains 1175 metabolic reactions and
584 metabolites [17]. Several groups continued to reconstruct
and expand the metabolic models by integrating the experi-
mental and computational techniques [18–22].

At the same time, experimental approaches combined with
computational methods have contributed toward the recon-
struction of signaling pathways from microarray expression
data and protein–protein interactions [23]. For example,
NetSearch program [24] was proposed to determine the candi-
date pathways among protein interaction data and score each
pathway by calculating the number of pathway members that
were involved in the same cluster derived from the expression
data. This method finally selected highest-ranking pathways
and combined them into signaling pathway. Furthermore,
through the study of signaling pathways in multiple species,
most interactions between proteins in signaling pathways are
directional, including activation, inhibition, phosphorylation,
dephosphorylation and ubiquitination [25]. The authors pro-
posed a signal-flow direction method to predict the potential
upstream–downstream relationships between protein pairs in
protein–protein interaction networks. This method was

successfully used for accurate reconstruction of signaling path-
ways through protein interaction networks. Newer signal-flow
approaches to signaling pathway reconstructions used the in-
formation on pathway components lying on the same signal
transduction cascade to infer the order of the signal-flow using
optimization techniques [26, 27]. Boolean modeling framework
has also shown its good performance in analyzing signaling
pathways [28, 29].

With the emerging growth of public databases by collecting
the biological knowledge including ‘omics’ data (genomic,
proteomic, transcriptomic, metabolomics data etc.) and bio-
chemical pathways, computational methods can be integrated
with comprehensive experimental knowledge to improve the
reconstruction of the biological pathways. Some widely used
databases, such as KEGG [2, 30, 31] and Saccharomyces Genome
Database (SGD) [32], have been discussed in detail in the next
section.

In the remaining part of this review, we start with summa-
rizing some key public data repositories used for biological
pathway modeling followed by presenting selected bioinfor-
matics approaches to pathway identification.

Data resource for S. cerevisiae

The current bioinformatics methods for pathway modeling
mainly rely on known biological knowledge that has been ex-
perimentally validated through decades of study. This experi-
mental knowledge can be used to evaluate the modeled
pathways or integrate with data for pathway construction.
Consequently, several repositories have been built and main-
tained by different research groups, which provide researchers
with the access to biological information, such as mRNA expres-
sion data, protein–protein interactions or biochemical path-
ways. These integrated and comprehensive resources
significantly facilitate various biological research and develop-
ment. A list of selected databases which have been widely used
for pathway modeling, is presented in Table 1.

Databases, including Biogrid [33], Database of Interacting
Proteins (DIP) [34], Molecular INTeraction database (MINT) [35]
and Saccharomyces Genome Database (SGD) [32], store protein–
protein interactions for S. cerevisiae with different scope and
content, including the interactions observed from experiments
or links predicted through computational methods. For ex-
ample, latest version of BioGrid database contains 342 878 pro-
tein interactions that are directly extracted from publication
using computational approaches [43]. MINT contains 62 621 ex-
perimentally validated protein–protein interactions that were
manually collected from online publications. In addition to
protein–protein interactions, SGD, ExpressDB [39] and yStrex
database [40]contain yeast RNA expression datasets under dif-
ferent conditions and experiments. Compared to ExpressDB,
SGD database maintains datasets most frequently and contains
much more datasets including those generated in recent years.
However, ExpressDB only stores expression datasets that were
created prior to the year 2002.

There are three main databases that contain manually cura-
ted biological pathways representing the experimental know-
ledge from published literatures. MetaCyc [38] contains 268
pathways at present whereas KEGG [2, 30, 31]and SGD have 109
and 187 pathways, respectively, for S. cerevisiae. Pathways in the
above mentioned databases are represented using different
views. MetaCyc allows users to view individual pathway and
the interconnections among pathways in a specific organism
whereas KEGG combines several pathways from different
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species into one framework. Additionally, MetaCyc also pro-
vides the information whether a pathway has been experimen-
tally validated [38].

The computationally integrated gene network for S. cerevi-
siae, including coexpression network, genetic interaction net-
work and protein–protein network, can be downloaded from
YeastNet database [36] and Yeast Interactome Database [37].
Metabolomics data for metabolic study are also maintained in
YMDB [41] and BIGG [42].

Rapid growth in public databases covering a vast amount of
biological knowledge is making the use of bioinformatics meth-
ods a more promising strategy for pathway modeling from both
computational and biological point of view.

Bioinformatics approaches for biological
pathway modeling

Computational approaches for modeling biological pathways
can be developed using two types of modeling methods: net-
work-based analysis and mathematical modeling. Network-
based methods apply graph theory to discover relationships
among nodes in the pathways, where each node represents a
biological entity, such as gene or protein, and each edge repre-
sents the interaction type between node pairs. Such networks
can be represented as directed or undirected graphs.
Probabilistic graph model is a typical network-based approach
that uses methods such as Bayesian networks to learn cellular
networks from gene expression data.

Mathematical modeling learns and analyzes the underlying
network by transforming the reactions and entities into matrix
form. Several mathematical approaches have been developed to
study biological pathways, in terms of different types of bio-
chemical mechanism, and complexity of networks. Signaling
pathways can be mathematically formalized through Boolean
network [44] by representing large-scale networks. Ordinary dif-
ferential equations can provide quantitative models describing
the small-sized gene regulatory network [45]. Large-scale meta-
bolic pathways are usually modeled using stoichiometric

methods and flux balance analysis [46, 47]. Detailed review of
various mathematical modeling approaches and their applica-
tions in yeast pathways have been presented in [48, 49].

In this section, we mainly consider network-based bioinfor-
matics approaches for modeling pathways. We start with dis-
cussing data-driven approaches to infer biological associations
from different types of ‘omics’ data, followed by describing
knowledge-based methods that integrate prior knowledge with
‘omics’ data to improve the pathway modeling. Figure 2 repre-
sents the flowchart for pathway modeling using computational
approaches.

Data-driven analysis

With the rapid development of high-throughput techniques,
different types of ‘omics’ data become available for a deeper
understanding of systems biology in yeast. Different computa-
tional approaches were proposed to model the biological path-
ways through the data of transcriptomes, proteomics,
thermodynamics and metabolomics. In this section, we briefly
review several popular bioinformatics approaches, which were
developed to the biological networks in yeast from different
types of data.

Transcriptome study
Transcriptomic profiling experiments generated microarray
data or RNASeq data to represent the gene activity, by measur-
ing the change of expression levels within a cell under different
conditions. Many efficient algorithms were designed to infer the
interaction and relationship among the cellular entities from
gene expression data, by following the assumption: proteins
encoded by coexpressed genes are more likely to interact in the
same pathway and similar gene expression patterns tend to
share similar biological function [50, 51]. Similarity of expres-
sion profiles can be formalized by several measures, such as
Pearson correlation coefficient (PCC) and mutual information
[52]. Pearson correlation coefficient is a standard way to repre-
sent coexpression measurement, which calculates the degree of

Table 1. Public repositories for S. cerevisiae

Saccharomyces cerevisiae Databases

Database Protein
interaction

Biochemical
pathway

Network
dataset

Expression
dataset

Metabolomics
data (metabolite/
reaction)

Year of
publication

Lastest
update

Accessibility Reference

Biogrid 342 878 – – – – 2006 2015 Download/Query [33]
DIP 24 618 – – – – 2002 2014 Download [34]
MINT 62 621 – – – – 2002 2012 Download [35]
SGD 340 493 187 – 339 – 1998 2015 Download/Query [32]
YeastNet V3 362 421 – 72 – – 2004 2013 Download [36]
Yeast

Interactome
Database

– – 6 – – 2008 2008 Download/Query [37]

MetaCyc – 268 – – – 2001 2015 Download/Query [38]
KEGG – 109 – – – 1999 2015 Download/Query [2]
ExpressDB – – – 46 – 2000 2006 Download [39]
yStrex – – – 82 – 2013 2014 Download/Query [40]
YMDB – – – – 2027/916 2012 2012 Download/Query [41]
BIGG – – – – iMM904: 1226/1557 2010 2015 Query [42]

iND750: 1056/1266

Note. Twelve widely used databases are listed and the statistics of data in each database are presented. For example, SGD database provides 340 493 interaction records

for yeast protein pairs from different types of experiments and 187 biochemical pathways for S. cerevisiae. SGD also provides 339 expression datasets from experiments.

Besides the statistics, the website and related reference are also presented.
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linear relationship between the expression values of gene pairs
across the multiple conditions. Studies have emphasized on the
construction of gene coexpression networks to infer cellular
function from S. cerevisiae datasets [13, 16, 53–61].

R package GTOM [55] was developed to infer the coexpres-
sion networks from yeast cell cycle datasets, where a novel
measurement ‘topological overlap’ together with Pearson cor-
relation coefficients was designed for network analysis. PCC
was also applied on yeast expression data to confirm that gene
pairs with highly correlated expression profiles were regulated
by pair of interacting loci on chromosomes [56]. In the another
work, the PCC was applied in the first step as similarity meas-
urement to score each protein pair [57]; this proposed method
assessed and ranked the reliability of protein interactions to im-
prove the prediction accuracy.

To overcome the shortcoming of missing gene–gene relation-
ship information when transforming a pair of gene expression

data across all samples into correlation coefficients [59], identifica-
tion of gene expression patterns based on local similarity [58] has
been proposed. This method measures how significantly data fluc-
tuates across experimental samples and how the regulation pat-
tern represents each gene expression (up- or down-regulated).

Clustering algorithms have been successfully applied on
yeast gene expression data to discover similar patterns among
genes and identify coexpressed or coregulated genes involved
in the same biological processes [62, 63]. K-means clustering
and hierarchical clustering are two basic types of clustering al-
gorithms. K-means clustering is a widely used algorithm to par-
tition gene expression matrix into multiple subsets based on
squared error criterion, however, hierarchical clustering groups
genes with similar expression profiles to build a hierarchical
tree structure from gene expression data, a graphically visual-
ization of clusters through dendrogram [64]. Figure 3 represents
how the two types of methods are applied to form the clusters.

Figure 2. Flowchart for pathway modeling using computational approaches. The bioinformatics methods for pathway modeling starts with the hypothesis of pathway

construction which can be derived from experiments or theory. Then computational methods can be performed on the experiment data (e.g. Microarray data, RNASeq

data) and knowledge information (e.g. Pathway information, functional annotation) to model the biological pathways. The predicted pathways can be refined by evalu-

ating each model with experiments and hypothesis.(A colour version of this figure is available online at: http://bfg.oxfordjournals.org)

An overview of bioinformatics methods | 99

-
-
``
''
,
-
-
-
http://bfg.oxfordjournals.org


NetSearch [24] used K-means clustering to reconstruct the
yeast MAPK signaling pathways. K-means clustering was also
applied for protein function prediction by generating the coex-
pression groups from yeast gene expression data [65].

However, both the two clustering methods have disadvan-
tages, suffering from sensitive to outlier or limited to cluster
size. Other novel approaches with substantial improvements
have been developed to discover relationships among genes
using expression data based on similarity or prior knowledge.
Zhu et al. [66] proposed a network constrained clustering
method where the similarity between gene expression profiles
was measured by the shortest-path distance in a gene coexpres-
sion network. Learning the number of the clusters automatic-
ally without specifying it in the initial step [67] was also applied.
Detailed reviews of approaches to perform clustering analysis
on gene expression data have been presented in [68–70].

Coexpression analysis was used as starting point to explore
biological pathways. This analysis allows learning the similarity
of expression profiles and interactions between genes.
Applications of Gaussian graphical model (GGMs) and Bayesian
networks on gene expression data have shown robust perform-
ances in constructing biological pathways [29, 71], by expanding
the coexpression network into gene regulatory network [72, 73],
metabolic pathway [74] and signaling pathway [75]. In these
probabilistic models, regulation between each pair of genes de-
pended on their conditional independence given the expression
levels of the rest of genes.

The basic procedure of fitting a Gaussian graphical model
(GGM) follows several steps. For any gene expression data
X ¼ fxijji ¼ 1:::n; j ¼ 1:::mg, where n is the number of genes and m
is the number of conditions, under the assumption of multivari-
ate normal distribution, the variance matrix

P
for all gene pairs

is firstly calculated and inversely transformed into precision
matrix

P�1. The conditional independence network can be
inferred from the precision matrix where genes Xa and Xb are
connected in the graph if

P�1
ab 6¼ 0. The Gaussian graphical net-

work is inferred by the maximum likelihood estimation of the
precision matrix. Several GMM-based approaches have been
proposed to represent the yeast gene network. Authors [76]
applied partial correlation derived from standard correlation in
the precision matrix to discover regulatory genetic links
involved in yeast metabolic pathways among a small set of
genes. Also l1-regularized methods were integrated into
Gaussian graphical models to solve the singularity problem of
precision matrix in the case of high-dimension data by generat-
ing sparse covariance matrices. Gaussian graphical
models combined with Graphical lasso algorithm, constrained
l1-minimization and covariate-adjusted precision matrix esti-
mation method were recently applied to construct yeast mito-
gen-activated protein kinase signaling pathway [77–79].

Gaussian graphical models aim to construct undirected
graphs to represent coregulated gene networks while Bayesian
networks discover the causal relationship between gene pairs
and are represented as directed acyclic graph. The effectiveness

Figure 3. Clustering algorithms. We discussed two typical clustering algorithms applied in yeast pathway modeling. The clustering methods are classified into two cat-

egories: partition-based clustering (Top) and hierarchical-based clustering (Bottom). (A colour version of this figure is available online at: http://bfg.oxfordjournals.org)
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of Bayesian network methods using S. cerevisiae cell cycle data
has been discussed in [80, 81].

Proteome study
In the past decades, genome-scale protein interaction networks
have been experimentally or computationally generated for
S. cerevisiae [82, 83]. Interaction between proteins reflects the
function association within the cellular system and thus the
identification of protein–protein interactions is an important
step toward the reconstruction of biological pathways. A com-
prehensive list of computational methods for identifying pro-
tein–protein interaction has been presented in [8]. Several
methods have been developed to construct biological pathways
by integrating protein interactions with transcriptomics data
for S. cerevisiae. For example, the authors [84] curated an initial
pathway model by gathering the galactose-related genes from
existing knowledge and measured global cellular response by
perturbing each gene in pathway. The paths between perturbed
genes and regulated genes involved in the same metabolic
pathway were identified based on known physical interactions.
Steffen et al. [24] proposed a method to identify interaction sub-
networks in regulatory and signaling pathways from protein
interaction data and gene expression data across different con-
ditions. They ranked each subnetwork based on the significant
change in the expression profiles of the genes in the network.
Tornow et al. [85] explored function modules through protein
interaction networks based on the strength of correlation be-
tween gene pairs derived from expression data. They proposed
a framework to discover a group of genes that were biologically
correlated in genetic or cellular networks. Liu et al. [25] proposed
novel score functions for protein–protein interaction data and
gene expression data, and applied them on each subnetwork of
yeast MAPK pathways with different permutation of protein
sets. Scott et al. [86] improved the path searching algorithm by
integrating the color coding approach and used a probabilistic
approach to assign weights to each interaction of genes based
on logistic regression and searched the paths of given lengths
with the highest scores, where the score was defined as the
product of weights of the edges in path. They built a logistic
model from three random variables: (i) the number of times
each interaction was identified in multiple experiments, (ii) the
Pearson correlation between expression profiles for each pair of
genes, and (iii) small world clustering coefficients. They de-
veloped two algorithms for finding paths and pathway struc-
tures in several yeast signaling pathways with high accuracy.
This was further improved by heuristic search for pathway con-
struction from protein–protein interaction and gene expression
data [87]. To further address the edge orientation problems, in-
teger programming approaches and genetic algorithms were
proposed to search the optimal paths between sources and tar-
gets from global protein interactions for signaling pathway con-
struction [88–92]. All these methods followed similar modeling
framework in which path searching among the pool of inter-
actions combining with path scoring strategy or constraints-
based algorithms. Other network analyses for modeling biolo-
gical pathways on yeast, such as Boolean networks, have been
reviewed in [93].

These bioinformatics methods integrating proteomic data
with transcriptomic data provide an alternative approach to
understand biological pathways.

Metabolome/Fluxome study
As we have described, the transcriptomic data and proteomic
data represent a series of cellular functions in the top-bottom

biological process, traversing from signaling pathway to gene
regulatory network. Metabolites, as the end products of cellular
process, participate in the metabolic pathways connected by
biochemical reactions. Integrated analysis of gene, protein and
metabolites with biochemical reactions can facilitate the gen-
ome-scale network reconstruction within an organism.
Metabolomics data represent quantitative profiles of metabol-
ites over a series of metabolic processes under different condi-
tions, which can facilitate to understand the enzyme regulation
in the metabolism through the changes in the level of metabol-
ites. The metabolomics data of S. cerevisiae are provided in the
databases [41, 42], which were intensively applied to model the
metabolic pathways that were perturbed underlying different
conditions. Generally, metabolomics profiling data were applied
to infer the intracellular fluxes in yeast metabolic system,
which contributes to the fluxomics study to discover the intra-
cellular pathway activities [94, 95]. Due to the property of steady
state in the metabolic system, flux balance analysis [46, 47] has
been widely used for analyzing the fluxes space and studying
biochemical networks.

Knowledge-based analysis

A growing number of public databases, such as KEGG [2, 30, 31]
and Saccharomyces Genome Database (SGD) [32], have been cre-
ated to provide information about function annotation, protein
interactions and experimentally validated biological pathways
(Table 1). These databases serve as excellent resources to facili-
tate pathway predictions and models. Most researches have
focused on integrating function annotation and protein–protein
networks with expression data to improve the accuracy and
precision of pathway construction. In the last section, we have
reviewed computational approaches to construct biological
pathways based on different kind of ‘omics’ data. To improve
the accuracy of inferred pathways, data integration, which com-
bines proteomic data, validated pathways, functional annota-
tion and transcriptomic data, has been proposed. In this
section, we reviewed several key methods for biological path-
way modeling that utilize existing prior knowledge together
with ‘omics’ data.

Integration of biological pathway and ‘omic’ data
Protein–protein interaction networks play key role in under-
standing the biochemical processes and construct the biological
pathways within cells. However, protein–protein interaction
networks are almost undirected, which only indicate the pres-
ence of interactions between proteins. This shortcoming pre-
sents a substantial challenge for pathway modeling with high
accuracy since most biological pathways, such as signaling
pathways and metabolic pathways, contain different types of
directional interactions and reactions: (i) activation or inhib-
ition of the transcription of gene for a protein under specific
signal transductions response and (ii) gene regulation by
phosphorylation or dephosphorylation [96, 97]. In order to re-
produce biological processes with higher accuracy during the
construction of biological pathways, several approaches have
been proposed to extract prior biological knowledge from the
known pathways, provided by KEGG, SGD and MetaCyc, and
incorporate them into pathway modeling. Several statistical
approaches [98, 99] have utilized pathways information from
KEGG and combined them with microarray dataset to identify
genes and subnetworks in several KEGG transcriptional path-
ways associated with diseases, by applying hidden Markov-
random field model. Authors [100] applied regression analysis
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with network-constrained method where they added gene
pairs in the same pathway as penalty in the network-con-
strained regularization criterion for estimating the parameter
in the regression model. Qi et al. [73] utilized prior biological
knowledge of gene–gene interactions extracted from the KEGG
database and applied Bayesian probabilistic graphical model
to enlarge the metabolic pathway of yeast on the basis of ini-
tial pathways in KEGG database by sampling coexpressed
genes from gene clusters derived from gene expression data.
This integrated method improved the prediction accuracy
compared to pure data-driven methods [70, 101]. Motivated by
the successful applications of applying machine learning and
data mining approaches in bioinformatics problems, Li et al.
[102] developed a novel method to transform each metabolic
pathway into a list of number by representing the features of
graph property, chemical functional group and chemical
structure set. The author finally constructed the vector matrix
with 16 features for all pathways from yeast species, and
applied nearest neighbor algorithm to identify the metabolic
pathway.

Integration of functional annotation and ‘omics’ data
Functional similarity serves as the basis of coexpression net-
works and protein–protein interactions, and it is the key as-
sumption to model the biological pathways from the gene
expression data or protein interactions. Computational
approaches combining gene ontology or chemical functional
modules with gene expression data for modeling biological
pathway have become a promising research direction in recent
years. Gene ontology (GO) [103] represents the gene function
and relationships with hierarchical structure in terms of three
ontology categories: biological process, molecular function and
cellular components. Semantic similarity measures have been
applied to relate the genes in terms of GO terms and function
annotation to discover the interactions between genes [104,
105]. Integration of function annotation and mRNA expression
data on S. cerevisiae was proposed in [106] by applying Bayesian
network method on the multiple modules consisting of highly
correlated genes based on GO annotations and expression data.
In this work, significantly affected genes under given experi-
mental conditions were extracted initially and assigned a simi-
larity score for each pair of genes based on the similarity of GO
terms. Then different functional groups were generated based
on the degree of dependency between genes derived from gene
expression data. Modules were learned through Bayesian net-
work method and were combined to form final genetic inter-
action network. Authors [107] generated the functional
annotation relationship for proteins in the pathways from the
KEGG database (template) and proteins in protein–protein inter-
action networks (target), and built a functional template-target
mining strategy to search the signaling pathway segments from
protein interaction networks [108]. This method also improved
the accuracy and precision for yeast S. cerevisiae compared to
earlier methods and had the ability to recover some missing
links in the signaling pathway. To incorporate more biological
information, authors [109] integrated functional similarity with
pathways information, protein domain annotation and protein
domain interactions to construct a probabilistic structure prior
for Bayesian network inference. Independent of these methods,
several other functional annotation-based methods have been
proposed to infer biological pathway and obtain better insights
into the cellular functions and regulation machinery [60, 110,
111].

Discussion
Organism model for computational modeling
approaches

As we have described, genome of S. cerevisiae has been inten-
sively studied throughout cell levels with integrated analysis
(e.g., genome, proteome, interactome, transcriptome, metabo-
lome). In the past decades, substantial amount of omic data were
generated to elucidate the yeast biological system, including
gene expression data, protein–gene and protein–protein inter-
actions, protein levels, and fluxes measurements of metabolite
level [112]. The large-scale omics data provided a powerful test
ground for computational modeling approaches to construct the
biological pathways in yeast. Furthermore, due to the large part
of yeast genes sharing the similar functions with homolog in
other species, and the simplest cell structure in S. cerevisiae, we
think applying the computational approaches on pathway mod-
eling for S. cerevisiae is valuable and flexible because of several ad-
vantages. Firstly, large known biological data provided a
significant prior knowledgebase for most computational
approaches to learn the parameters and fit the models. And
relatively simpler network structure with substantial prior
knowledge may generate networks with high accuracy and
less false-positive interactions, which also provides better in-
terpretation of biological process in other species. More im-
portantly, most computational methods will experience the
limitation of network size. For example, in the Boolean net-
work and Bayesian network, the possible subnetworks is
super-exponential to the number of genes, which is most suit-
able to the small networks with no more than hundreds genes
[113]. In addition, the availability of time series gene expres-
sion data in yeast also made the differential equations suit-
able to analyze the flux changes and gene regulation over
time. Overall, yeast can be served as ideal organism model for
the evaluation of computational methods that are useful to
study other organisms.

From yeast to human: application of biological
pathways modeling

Yeast was widely considered as preferred organism model in
both experimental and computational research, not just be-
cause it is simplest unicellular eukaryote that is easy to ma-
nipulate, but also because of the similar characteristics in
cellular system between yeast and human cells. In other words,
the study of modeling biological pathways in yeast will facilitate
the understanding of biological processes in humans. Many im-
portant biological processes in human cell pathways can be
studied in yeast, such as lipid metabolism [4], and cell cycle [5].
Furthermore, compared to higher eukaryotes, genome of S. cere-
visiae has the relatively small number of genes (�6000) so that
yeast has been widely studied under different conditions (e.g.,
cell types, temperatures) and single-cell levels (e.g., genome,
proteome, transcriptome, metabolome). And the fact that a
large part of yeast genes have the human orthologues made re-
searchers easier to understand the biological activities in
human cells. Generally, the knowledge of biological pathways
modeling in yeast can be applied to human cells by the follow-
ing protocol. The candidate pathways can be reconstructed by
applying computational or experimental approaches on high-
throughput experimental data from yeast models, and the iden-
tified networks in yeast can be served as the basis for recon-
struction of human cell pathways. R. Usaite et al. [114] applied
subnetwork searching algorithms on the integrated omic data

102 | Hou et al.

etal
-
-
etal
``
''
-
-
Saccharomyces 
-
-
-
etal


to study the regulation of human AMP-activated kinases based
on the analysis of regulatory network of the yeast orthologue
Snf1 protein kinase. This work connected the similar function
between the yeast Snf1 and human orthologue for better under-
standing the protein function and gene regulation in human
cells. Recent study [115] detected potential cancer-related
human signaling network which is orthologous to the yeast
NaCI subnetwork detected by integer linear programming,

which provided insights for understanding the human disease
biology.

Integration of biological pathways

As discussed above, we mainly discussed about the computa-
tional modeling methods for three types of biological pathways,
by utilizing different kind of data. However, the availability of

Table 2. Web servers providing the analyses of biological pathways

Number Web server Objective Data Input URL Reference

1 GeneNetwork Inferring genetic network architec-
ture from microarray data

Gene expression data http://genenetwork.sbl.bc.sinica [122]

2 MetaReg Modeling and analysis of a biolo-
gical network from high
throughput data

Gene expression data http://acgt.cs.tau.ac.il/metareg
/application.html

[123]

3 WGCNA Identifying clusters (modules) of
highly correlated genes

Gene expression data http://labs.genetics.ucla.edu/
horvath/htdocs/Coexpression
Network/Rpackages/WGCNA/

[124]

4 YEASTRACT-
DISCOVERER

Identifying and visualizing tran-
scription regulatory networks
and associations between TF
and target genes

Gene expression data http://www.yeastract.com/ [125]

5 GeneNT Network constrained (NC)
clustering

Gene expression data http://crantastic.org/packages/
GeneNT

[122]

6 NetworkAnalyst Network analysis and visualization
by mining gene expression data

Gene expression data http://www.networkanalyst.ca
/NetworkAnalyst/

[126]

7 KEGGanim Visualize the gene expression data
in KEGG pathways

Gene expression data http://biit.cs.ut.ee/kegganim/ [127]

8 ASIAN Infer a framework of regulatory
networks from gene expression
data.

Gene expression data http://www.mrc-lmb.cam.ac.uk/
genomes/madanm/blang/meth
ods/AburataniS.ASIAN.aweb
server forinferringa.html

[128]

9 ArrayXPath Visualize gene-expression data in
integrated biological pathway

Gene expression data http://www.snubi.org/software/
ArrayXPath/

[129]

10 VisHiC Cluster and interpret gene expres-
sion microarray data

Gene expression data http://www.hsls.pitt.edu/obrc/
index.php?page¼gene_
expression_tools

[130]

11 PANA Integrate the functional annota-
tion with gene expression data
to discover functional relation-
ship among pathways

Functional annotation
data, Gene expression
data

http://cs.uns.edu.ar/�ip/PANA/ [60]

12 NetSearch Identifying signaling pathways
from microarray expression data
and protein interactions

Gene expression data,
Protein–protein
interaction

http://arep.med.harvard.edu/
NetSearch/runprog.html

[24]

13 Struct2net Protein–protein interaction detec-
tion based on structural infor-
mation with functional
annotation

Protein–protein inter-
action data, Protein
sequence

http://groups.csail.mit.edu/cb/
struct2net/webserver/

[131, 132]

14 GraphWeb Mine large biological networks for
smaller modules, discover novel
candidates and connections for
known pathways

Protein–protein inter-
action data, Directed
regulatory data

http://biit.cs.ut.ee/graphweb/ [133]

15 NeAT Analysis of biological networks/
pathway, including path finding,
network clustering, etc.

Functional annotation
data, Gene expression
data, protein inter-
action data

http://rsat.ulb.ac.be/rsat/
index_neat.html

[134]

16 KOBAS server Annotate protein sequences with
KEGG Orthology terms and iden-
tify significantly enriched
pathways

Protein sequence data http://kobas.cbi.pku.edu.cn/
home.do

[135]

17 PHT-Pathway
Hunter Tool

Perform shortest path analysis in
the metabolic pathway

Substrate and product
metabolite of a reac-
tion in the pathway

http://pht.tu-bs.de/ [136]
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methods considering all levels of biological pathways will also
largely facilitate the genome-scale network reconstruction.
Generally, each approach was designed to model the specific
type of biological network because of its unique features and
properties. For example, flux balance analysis (FBA) [47] is not
suitable for signaling pathway because signaling pathway acts
different functions responding to environmental changes,
which often fail to reach steady state for FBA to simulate.
However, graph-based approaches, such as Boolean network or
Bayesian network have been developed to model the signaling
pathways and gene regulatory network. Some efforts have been
put to propose the methods connecting two of the three path-
ways [116–119]. Gonçalves et al. [49] provides an overview on the
scope and limit of current methods for integrating multiple
pathways. Especially, for yeast model, Chandrasekaran et al.
[120] has proposed their method to build genome-scale inte-
grated model and showed the ability to integrate metabolic and
regulatory network model. Lee et al. [121] also proposed a strat-
egy by using the flux balance analysis to integrate signaling,
metabolic and regulatory processes. However, a more compre-
hensive analysis is still in need to understand the whole cellular
system and to better address the complexity of integrated sig-
naling-regulatory-metabolic networks at the genome scale;
more experimental data representing the interactions among
the three pathways can be also incorporated to model the
pathways.

Conclusion

We reviewed a number of bioinformatics approaches for yeast
pathway modeling based on data-driven methods as well as
knowledge-driven methods. Data-driven methods were de-
veloped to discover the biological pathways using solely the
gene expression data or protein–protein interactions data.
Knowledge-driven methods can integrate multiple source of in-
formation to effectively predict the biological networks. In par-
ticular, we focused on bioinformatics methods for modeling
biological pathways through ‘omics’ data and applying net-
work-based analysis to construct the pathways.

Clustering algorithms are applied to identify coexpression
groups for function prediction and biological network analysis.
Probabilistic graphical model provides a statistical means to
infer the network structures from gene expression data, where
edges represents regulation between gene pairs relying on the
conditional independence given the rest genes in network.
However, pathways inferred from solely ‘omics’ data do not
guarantee their biological interpretations. By utilizing informa-
tion stored in public databases, such as the knowledge of pro-
tein–protein interactions, pathway information and functional
annotation, integrated analyses can be performed to improve
biological interpretations of the inferred pathways. Physical
protein–protein interactions can be used to further refine the
constructed model and discover true cellular reactions. The dir-
ectionality information in the interactions and reactions in
curated pathways can help improve the prediction accuracy
and expand the biological pathways. Functional annotation pro-
vides a functional template to recognize the coregulation net-
work with the ability to recover links in the signaling pathways.
Table 2 listed several web servers providing the analysis of bio-
logical pathways in terms of different input data types and ob-
jectives. Both data-driven and knowledge-driven approaches
cover a wide range of the statistical regression models to net-
work-based probabilistic models, and even though modeling
biological pathways from different kinds of data information is

still challenging, computational methods with integrated know-
ledge are expected to improve the automation of the recon-
struction process for biological pathways.

Key Points

• Substantial bioinformatics approaches have been
applied to construct the biological pathways in yeast
from high throughput data and protein–protein
interactions.

• Coexpression analysis are mainly the starting point of
discovering protein–protein interactions and cofunc-
tional modules, which can further drive the study of
signaling pathway modeling, gene coregulation explor-
ation and construction of metabolic pathway.

• Data-driven methods, such as clustering approaches,
probabilistic graphical models and Bayesian network,
help discover the biological pathways using solely the
gene expression eta or protein–protein interactions
data.

• Knowledge-driven methods, by incorporating the pro-
tein–protein interactions, pathway information and
functional annotations provided by available public
database, can significantly improve the performance of
biological pathway modeling.
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49. Gonçalves E, Bucher J, Ryll A, et al. Bridging the layers: to-
wards integration of signal transduction, regulation and
metabolism into mathematical models. Mol BioSyst
2013;9:1576–83.

50. Holter NS, Mitra M, Maritan A, et al. Fundamental patterns
underlying gene expression profiles: simplicity from com-
plexity. Proc Natl Acad Sci 2000;97:8409–14.

51. Ruan J, Dean AK, Zhang W. A general co-expression net-
work-based approach to gene expression analysis: compari-
son and applications. BMC Syst Biol 2010;4:8.

52. Song L, Langfelder P, Horvath S. Comparison of co-
expression measures: mutual information, correlation, and
model based indices. BMC Bioinformatics 2012;13:328.

53. Markowetz F, Spang R. Inferring cellular networks–a review.
BMC Bioinformatics 2007;8:S5.

54. Penfold CA, Wild DL. How to infer gene networks from ex-
pression profiles, revisited. Interface Focus 2011;1:857–70.

An overview of bioinformatics methods | 105



55. Yip AM, Horvath S. Gene network interconnectedness and
the generalized topological overlap measure. BMC
Bioinformatics 2007;8:22.

56. Wang L, Zheng W, Zhao H, et al. Statistical analysis reveals
co-expression patterns of many pairs of genes in yeast are
jointly regulated by interacting loci. PLoS Genet
2013;9:e1003414.

57. Karagoz K, Arga KY. Assessment of high-confidence pro-
tein–protein interactome in yeast. Comput Biol chem
2013;45:1–8.

58. Roy S, Bhattacharyya DK, Kalita JK. Reconstruction of gene
co-expression network from microarray data using local ex-
pression patterns. BMC Bioinformatics 2014;15:S10.

59. Priness I, Maimon O, Ben-Gal I. Evaluation of gene-
expression clustering via mutual information distance
measure. BMC Bioinformatics 2007;8:111.

60. Ponzoni I, Nueda MJ, Tarazona S, et al. Pathway network in-
ference from gene expression data. BMC Syst Biol 2014;8:S7.

61. Zhu D, Hero III AO. Bayesian hierarchical model for large-
scale covariance matrix estimation. Journal of Computational
Biology 2007;14:1311–26.

62. Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad
Sci USA 1998;95:14863–8.

63. Allocco DJ, Kohane IS, Butte AJ. Quantifying the relationship
between co-expression, co-regulation and gene function.
BMC Bioinformatics 2004;5:18.

64. Jiang D, Tang C, Zhang A. Cluster analysis for gene
expression data: A survey. IEEE Trans Knowl Data Eng
2004;16:1370–86.

65. Tran LH, Tran LH. Hypergraph and protein function predic-
tion with gene expression data. J Automation and Control
Engineering 2015;3:164–70.

66. Zhu D, Hero AO, Cheng H, et al. Network constrained cluster-
ing for gene microarray data. Bioinformatics 2005;21:4014–20.

67. Al-Shboul B, Myaeng S. Initializing k-means using genetic
algorithms. World Academy of Science, Engineering and
Technology 2009;54:114–8.

68. Kerr G, Ruskin HJ, Crane M, et al. Techniques for clustering
gene expression data. Comput Biol Med 2008;38:283–93.
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