Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 15;89(24):11847–11851. doi: 10.1073/pnas.89.24.11847

Axon substitution in the reorganization of developing neural connections.

P G Bhide 1, D O Frost 1
PMCID: PMC50654  PMID: 1465409

Abstract

Insights into the mechanisms of normal and pathological neural development may be gained by studying the reorganization of developing neural connections, caused experimentally or by disease. Many reorganized connections are assumed to arise by the anomalous stabilization of transient connections that occur during normal development. We report that, although the retina projects transiently to the somatosensory system in normal developing hamsters, the permanent retinal projections to the somatosensory system that arise as a consequence of early brain lesions are not formed by the stabilization of the normally transient projection. Instead, the transient retinal axons are replaced by retinal axons that do not normally project to the somatosensory system. The distinction between anomalous stabilization and substitution is significant for determining the cellular mechanisms underlying the development of neural connectivity.

Full text

PDF
11847

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asanuma C., Stanfield B. B. Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice. Neuroscience. 1990;39(3):533–545. doi: 10.1016/0306-4522(90)90241-u. [DOI] [PubMed] [Google Scholar]
  2. Bhide P. G., Frost D. O. Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets. J Neurosci. 1991 Feb;11(2):485–504. doi: 10.1523/JNEUROSCI.11-02-00485.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Callaway E. M., Katz L. C. Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):745–749. doi: 10.1073/pnas.88.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chalupa L. M., Williams R. W. Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition. Hum Neurobiol. 1984;3(2):103–107. [PubMed] [Google Scholar]
  5. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  6. D'Amato C. J., Hicks S. P. Normal development and post-traumatic plasticity of corticospinal neurons in rats. Exp Neurol. 1978 Jul;60(3):557–569. doi: 10.1016/0014-4886(78)90010-9. [DOI] [PubMed] [Google Scholar]
  7. Erzurumlu R. S., Jhaveri S., Schneider G. E. Distribution of morphologically different retinal axon terminals in the hamster dorsal lateral geniculate nucleus. Brain Res. 1988 Sep 27;461(1):175–181. doi: 10.1016/0006-8993(88)90737-8. [DOI] [PubMed] [Google Scholar]
  8. Friedlander M. J., Martin K. A., Wassenhove-McCarthy D. Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat. J Neurosci. 1991 Oct;11(10):3268–3288. doi: 10.1523/JNEUROSCI.11-10-03268.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frost D. O. Axonal growth and target selection during development: retinal projections to the ventrobasal complex and other "nonvisual" structures in neonatal Syrian hamsters. J Comp Neurol. 1984 Dec 20;230(4):576–592. doi: 10.1002/cne.902300407. [DOI] [PubMed] [Google Scholar]
  10. Frost D. O. Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study. J Comp Neurol. 1986 Oct 1;252(1):95–105. doi: 10.1002/cne.902520106. [DOI] [PubMed] [Google Scholar]
  11. Frost D. O., Metin C. Induction of functional retinal projections to the somatosensory system. Nature. 1985 Sep 12;317(6033):162–164. doi: 10.1038/317162a0. [DOI] [PubMed] [Google Scholar]
  12. Frost D. O. Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster. J Comp Neurol. 1981 Dec 1;203(2):227–256. doi: 10.1002/cne.902030206. [DOI] [PubMed] [Google Scholar]
  13. Frost D. O., So K. F., Schneider G. E. Postnatal development of retinal projections in Syrian hamsters: a study using autoradiographic and anterograde degeneration techniques. Neuroscience. 1979;4(11):1649–1677. doi: 10.1016/0306-4522(79)90026-5. [DOI] [PubMed] [Google Scholar]
  14. Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  15. Hübener M., Schwarz C., Bolz J. Morphological types of projection neurons in layer 5 of cat visual cortex. J Comp Neurol. 1990 Nov 22;301(4):655–674. doi: 10.1002/cne.903010412. [DOI] [PubMed] [Google Scholar]
  16. Innocenti G. M., Caminiti R. Postnatal shaping of callosal connections from sensory areas. Exp Brain Res. 1980;38(4):381–394. doi: 10.1007/BF00237518. [DOI] [PubMed] [Google Scholar]
  17. Innocenti G. M., Clarke S. The organization of immature callosal connections. J Comp Neurol. 1984 Dec 1;230(2):287–309. doi: 10.1002/cne.902300212. [DOI] [PubMed] [Google Scholar]
  18. Innocenti G. M., Frost D. O. Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature. 1979 Jul 19;280(5719):231–234. doi: 10.1038/280231a0. [DOI] [PubMed] [Google Scholar]
  19. Insausti R., Blakemore C., Cowan W. M. Ganglion cell death during development of ipsilateral retino-collicular projection in golden hamster. Nature. 1984 Mar 22;308(5957):362–365. doi: 10.1038/308362a0. [DOI] [PubMed] [Google Scholar]
  20. Killackey H. P., Chalupa L. M. Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. J Comp Neurol. 1986 Feb 15;244(3):331–348. doi: 10.1002/cne.902440306. [DOI] [PubMed] [Google Scholar]
  21. Land P. W., Lund R. D. Development of the rat's uncrossed retinotectal pathway and its relation to plasticity studies. Science. 1979 Aug 17;205(4407):698–700. doi: 10.1126/science.462177. [DOI] [PubMed] [Google Scholar]
  22. Langdon R. B., Frost D. O. Transient retinal axon collaterals to visual and somatosensory thalamus in neonatal hamsters. J Comp Neurol. 1991 Aug 8;310(2):200–214. doi: 10.1002/cne.903100206. [DOI] [PubMed] [Google Scholar]
  23. Mooney R. D., Fish S. E., Figley B. A., Rhoades R. W. A transient projection from the trigeminal brainstem complex to the superficial layers of the hamster's superior colliculus. Exp Brain Res. 1991;86(2):367–372. doi: 10.1007/BF00228960. [DOI] [PubMed] [Google Scholar]
  24. Métin C., Frost D. O. Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus. Proc Natl Acad Sci U S A. 1989 Jan;86(1):357–361. doi: 10.1073/pnas.86.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rakic P. Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):245–260. doi: 10.1098/rstb.1977.0040. [DOI] [PubMed] [Google Scholar]
  26. Schneider G. E. Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol. 1973;8(1):73–109. doi: 10.1159/000124348. [DOI] [PubMed] [Google Scholar]
  27. Shatz C. J. Impulse activity and the patterning of connections during CNS development. Neuron. 1990 Dec;5(6):745–756. doi: 10.1016/0896-6273(90)90333-b. [DOI] [PubMed] [Google Scholar]
  28. Sretavan D. W., Shatz C. J. Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions. J Neurosci. 1986 Apr;6(4):990–1003. doi: 10.1523/JNEUROSCI.06-04-00990.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sretavan D., Shatz C. J. Prenatal development of individual retinogeniculate axons during the period of segregation. 1984 Apr 26-May 2Nature. 308(5962):845–848. doi: 10.1038/308845a0. [DOI] [PubMed] [Google Scholar]
  30. Stanfield B. B., Nahin B. R., O'Leary D. D. A transient postmamillary component of the rat fornix during development: implications for interspecific differences in mature axonal projections. J Neurosci. 1987 Oct;7(10):3350–3361. doi: 10.1523/JNEUROSCI.07-10-03350.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stanfield B. B., O'Leary D. D., Fricks C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature. 1982 Jul 22;298(5872):371–373. doi: 10.1038/298371a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES