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Abstract

Microwave irradiation was employed for spherical-shaped platinum nanoparticle (Pt NPs) preparation. Spherical Pt
NPs indexed with (111) facets were prepared using Pt(ll) precursor salt, glycerol as solvent and reducing agent, and

higher catalytic activity for ethanol redox reaction.

polyvinylpyrrolidone (PVP) as a shape directer under microwave irradiation for 3-5 min at 300 °C. Electron spin
resonance (ESR) peak at 336.000 mT (milli Tesla) confirmed the free radical formation from agqueous glycerol
solution which acted as reducing species under microwave. The 2-8-nm diameter of particles was obtained by
high-resolution transmission electron microscope. Dynamic light scattering was used to optimize the microwave
dose followed by 33 and 48 nm size and 51 and 67 mV zeta potential of Pt NPs, respectively. The PVP was
demonstrated as shape controlling agent investigated by Fourier transmission infrared spectroscopy (FTIR). The
electrocatalytic performance of as-prepared Pt colloids was investigated using cyclic voltammetry which showed a
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Background

Metallic nanostructures are widely applicable in various
applications due to their dimensional confinement and
active surface sites at nanoscale. The structurally engi-
neered and functionalized nanomaterials have extremely
unusual properties than bulk. Thereby, metallic, multi-
metallic, and metal oxide-based nanoscopic structures
have gained much attention in use of chemical, physical,
biological, and material science [1-7]. In novel metals,
platinum is one of the exceptional metals due to its po-
tential applications in electrocatalysis, organic synthesis,
photovoltaic, and fuel cells [8-10]. To structured uni-
formed catalytic captivities with controlled shape and
size at nanoscale, researchers have developed several
methods to synthesize monodisperse platinum nanopar-
ticles. Platinum is used as the most promising candidate
in energy storage and conversion devices, but the cost of
Pt is extremely high due to its rarity and higher demands
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as wider and safer nanocatalysts [11]. Therefore, devel-
oping of enhanced metallic electrocatalysts using less
toxic reagents with simplest and efficient method is still
a biggest challenge.

Presently, chemical reduction is one of the efficient
processes to synthesize the Pt NPs with tuneable morph-
ology [12-14]. Till date, several methods have been de-
veloped and reported for Pt NPs production with
modified surface structures [15—17]. However, two facile
and eco-friendly approaches were mentioned to generate
Pt NPs. The one is traditional solvothermal, and the sec-
ond is a microwave-assisted method. Hence, microwave-
assisted synthesis is a faster heating chemical way than
conventional heating to elongate chemical reactions ex-
tensively useful for nanomaterial preparation [18-20].
Thus, the short-time microwave irradiation, faster reac-
tion rate, and fine distribution of NPs are the superiori-
ties against conventional heating process [21, 22].
Furthermore, Grace et al. [23] prepared uniform and
stable polymer-protected Pt, Pd, Ag, and Ru nanoparti-
cles using microwave heating with polyol as solvent and
reducing agents, but they are not given any mechanism
related to free radical formation from polyol under
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microwave irradiation. Further, Komarneni [24] and
Yanagida [25] have developed microwave-assisted method
which is a longer time consuming and comparably com-
plicated for Pt and Ag formation. However, they have not
reported the free radical generation from the used solvent
contrary to our approach which have successfully devel-
oped the Pt NPs. Additionally, EI-Sayed et al. [26] have re-
ported the reduction of Pt electrocatalysts as polydisperse
Pt NPs with altered morphology in a hydrogen-reducing
way, using sodium polyacrylate as a capping agent. It was
also comparably long time process.

Hence, it would be useful to achieve the Pt NPs by a
systematic and mechanistic route such as in aqueous
glycerol under microwave heating followed by free rad-
ical formation. The electrocatalytic activity for ethanol
also investigated and inferred a prepared Pt colloidal
liquid. Thereby, the glycerol is considered as green
and economic reducing agent and solvent to generate
rapid Pt NPs via free radical generation. This method
needs hardly 3 to 5 min for complete synthesis with-
out using any complication. Therefore, our approach
could be an advance research over the existed redun-
dant ways as Pt NPs.

Experimental Section

Potassium tetrachloroplatinate(Il) (K,PtCly, 99.9 %, Pt
46.9977 %) was taken as precursor salt, and glycerol
(99.9 % Sigma Aldrich) was chosen as both solvent and
reducing agent. Poly(N-vinylpyrrolidone) (PVP; Avg.
Mw =40,000) was selected as capping agent in our ex-
periment for synthesis of Pt NPs by microwave-assisted
synthesis. The wt.% PVP of average Mw was first dis-
solved in water, and the glycerol was added drop wise in
it followed by sonication for 10 min. A 1 M of K,PtCl,
was added in aqueous glycerol with continuous sonic-
ation for 5 min. For the Pt(II) reduction, the as prepared
mixture was introduced into a microwave reactor
(Anton Paar, Synthos 3000) for irradiation at 280 W in a
pulse mode with pulse duration of 20 s (ON 15 s, OFF
5 s). Pressure and temperature profiles were recorded in
reactor during these two modes of irradiation (Additional
file 1: Figure S1). The detailed conditions associated with
preparation are summarized in Additional file 1: Table S1.
After completing the reaction, an irradiated mixture was
cooled at room temperature and then the Pt colloids were
taken for characterizations and electrocatalytic study. The
new and novel reduction mechanism for preparing the Pt
NPs using glycerol under microwave irradiation was de-
veloped. This method has successfully developed the free
radicals which were confirmed by ESR study (Fig. 5). The
free radicals have effectively reduced the platinum cations
to platinum NPs which were compared with the metallic
nanocomposite [27].
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Characterization Techniques

High-resolution transmission electron microscopy
(HRTEM) measurements were taken by JEOL JEM
2100F microscope operating at 200 kV. The samples
were prepared by placing a drop of Pt nanoparticles dis-
persed in ethanol onto a carbon-coated copper grid and
dried for whole night in RT (25 °C). EDX spectroscopy
was used to investigate elemental compositions, and the
EDX was equipped with HRTEM. FTIR spectra were re-
corded on a (FTIR, Perkin Elmer) spectra scanned from
400-4000 cm™* in FTIR range, spectrometer in the
transmission mode with a spectral resolution of 4 cm™
and 32 scans. Specimens for infrared measurements
were prepared by mixing several drops of ethanol/water
mixed solution containing Pt NPs with KBr plate
followed by baking with infrared light. UV-vis absorption
spectra of samples were measured on a (spectro 2060
plus spectrophotometer over 200-800 nm using 1 cm
path length cuvette-UV analysis) equipped with a 1-cm
path length quartz cuvette. The particle size distribution
and zeta potential were measured with a dynamic light
scattering (DLS) (Microtrac Zetatrac, U2771, DLS XE-
70, Park System equipment) at RT. The reaction solution
used for measured size distribution hence the liquid vis-
cosity was set to 1.5 cp and the liquid index of refraction
was 1.359. Electron spin resonance (ESR) spectra of free
radical formation during the irradiation were collected
at liquid N, environment. The samples were placed in a
4.5-mm diameter quartz Dewar tube. The spectra of
continuous-wave ESR (CW-EPR) at 9439.939 MHz,
MOD 100.00 KHz, microwave power 3 mW, and the
sweep time was 2 min.

Results and Discussion

UV-Vis Spectra Analysis

Figure 1 shows UV-vis spectra of K,PtCl, in aqueous
glycerol before and after microwave irradiations. It could
be seen that the UV-vis spectra exhibit an absorption
band around 275 nm with a weak at 370 nm before ir-
radiation. This absorption band is attributed due to a
charge transfer from CI~ ligand to Pt** ions [28]. Also,
the absorption band disappeared after irradiation at
280 W for short time duration (3 min). This band disap-
peared may be due to the complete reduction of plat-
inum metal ions into neutral Pt(0). Thus, there was no
further charge transfer possible from ligand to metal
ions [29]. Consequentially, by UV-vis analysis, it is
confirmed that the Pt(II) was converted into Pt(0)
under applied microwave irradiation at 3 min.

FTIR Spectra Analysis

Figure 2 shows FTIR spectra before and after microwave
irradiation of Pt(II) reaction solution. The Pt(II) aqueous
glycerol with PVP showed the similar FTIR spectra as



Inwati et al. Nanoscale Research Letters (2016) 11:458 Page 3 of 8

35k

= (Pt mixture before irradiation)
= (2 min irradiation)
= (3 min irradiation)

3.0 -

25

Absorbance

1.5

0.5 1 A 1 PR | . 1 . [ 1 " 1 A
250 300 350 400 450 500 550 600

Wavelength (nm)

Fig. 1 UV-vis spectra at before and after irradiation for 2 and 3 min

pure PVP at initial time means there is no significant were not appeared may be due to dissociation of N-C
change in C=0 and N-C stretching as is shown in Fig. 2. bond of N-C=0 and N-C-C in PVP structure. So, it is
After 3-min irradiation, the C=O vibrational band concluded that the PVP adsorbed with both O atoms
showed a red shift from 1647, 1645, and 1643 cm™* fre- and N atoms at 3-min microwave irradiation which pro-
quencies due to chemisorption of soft part of O atom of tect the Pt NPs surface growth.

PVP with Pt solid surface [30, 31]. Further, it is found

that the N—C (292 kJ/mol) have less bond energy than  Optimization of MW Reactions Using DLS

C-C (348 kJ/mol), C=0 (351 kJ/mol) and C-H (391 kJ/  Figure 3 shows the DLS results to demonstrate the sta-
mol) bonds [32]. Here, the N-C; , 3 vibration bands are  bility of Pt NPs capped by PVP molecules. For the inves-
found at 1276, 1295, and 1483 cm™ before irradiation  tigation of microwave heating effect on size and stability
but after 3-min irradiation, these vibrational frequencies of Pt NPS, the reaction solution was cooled at room
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Fig. 2 FTIR spectra of prepared mixture before and after irradiation at various times
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Fig. 3 DLS size distribution measurements at 3 and 5 min irradiation

temperature and then proceeds for DLS measurements.
The results reveal that the Pt colloids consist of 33.10 to
48.30 nm size and 51.85 to 67.26 mV zeta potential, re-
spectively, optimized by continuous flow of MW irradi-
ation at 3 min (Table 1). A larger zeta potential at 3 to
5 min irradiated Pt colloidal suggested a higher charge
density of an accumulated n- electron of C=O group of
soft PVP molecules on solid surface of Pt NPs [33-35].
Figure 3a, b depicts the size distribution with varying
size and zeta potential up to 5 min (Table 1). The result
suggested that the size and zeta potential vary with the
applied conditions for irradiations which help to fast
reduction as Pt NPs and simultaneous capping of
PVP [36, 37]. These results support an irradiated ef-
fect to form Pt NPs with varying size and higher sta-
bility due to the PVP adsorption as donor and Pt
surface as accepter.

HRTEM Analysis of Pt NPs

Figure 4 shows HRTEM images and size distribution of
platinum colloids synthesized by microwave irradiation.
We mounted one drop of Pt dispersion on carbon-
coated copper grid and kept it over night at room
temperature. HRTEM (JEOL JEM 2100F) at 200 kV was
used to investigate morphology of Pt NPs. Spherical-
shaped Pt NPs are encaged with the PVP monomers

Table 1 DLS based optimized parameters for microwave

irradiation

Parameters Optimized observations

MW power 180 W 180 W
Temperature 300 °C 300 °C
Reaction time 3 min 5 min

Size 33:10 nm 4830 nm
Zeta potential (+) 51:85 mV (+) 67:26 mV

appeared as faceted particles with 2—8-nm diameters
(Fig. 4a). The Pt domains showed a polydispersity in dis-
tributions of size may be due to the increasing reaction
time from 3-5 min, and the average size was 3.8 nm
(Fig. 4c). HRTEM studies displayed that these nanoparti-
cles have lattice fringes of 0.23 nm which can be indexed
as {111} of FCC Pt (Fig. 4b) [38]. The spherical fine par-
ticles are formed under uniformly rapid irradiation with
shorter time allowing simultaneous capping of enough
PVP monomers on particle exposed surface [39-42].
The crystalline phase was confirmed by SAED, and the
pattern (Fig. 4a) showed the higher crystalline particle
growth due to uniform irradiation at 300 °C. It is con-
cluded that the higher thermodynamic condition help to
generate active free radicals (Fig. 6) which increased fast
reaction rate to form Pt(0). Initially, the experiments in
microwave were conducted at 100, 200, and 300 °C. The
reaction at 300 °C supported breaking of glycerol bonds
for radical generation at 280 W under 380 psi pressure
in microwave. The 300 °C which is slightly higher than
boiling point of glycerol has facilitated bond disruption
process. Also, the reaction was conducted up to 400 W
of microwave dose and 300 °C (higher thermodynamic),
but these conditions aggregated the platinum NPs. So,
the 300 °C and 280 W microwave dose was found
optimum conditions for platinum NPs preparation.
Figure 5d shows elemental compositions identified using
HRTEM equipped with an EDS, Pt, and Cu was ob-
tained. However, the Cu shows a peak at 8 KeV due to
Cu and the Pt show at 2 and 9.5 KeV, respectively, con-
firmed the presence of Pt NPs [43].

ESR Study

Figure 5 shows the ESR spectra of free radical formation
during an irradiation. The data were collected at liquid
N, environment. The samples were placed in a 4.5-mm
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diameter quartz Dewar tube. The spectra of continuous-
wave ESR (CW-EPR) at 9439939 MHz, MOD
100.00 KHz, microwave power 3 mW, and the sweep time
was 2 min. An effect of applied microwave frequency was
studied at 300 °C for 3 min to produce free radicals
(Additional file 1: Figure S2). The 280-W frequencies
was enough to break C—H bond resulting free radical
which exist a high intense ESR peak at 336.000 mT
in ESR spectra. The free radical formation from glycerol
to glyceraldehyde explained in proposed mechanism
(Fig. 6). The ESR peak confirmed free radicals formation
from aqueous glycerol solution during the microwave ir-
radiation. Since the EPR is very sensitive towards free radi-
cals, so the EPR for K,PtCl, as precursor of Pt** plus
aqueous glycerol was recorded which did not produce any
specific signal. But after subjecting aqueous glycerol to
microwave at 300 °C which produced free radicals gave
specific ESR signal. It has proven that microwave is re-
sponsible for free radical formation.

Microwave-Assisted Optimizing Proposed Mechanism

MW -assisted irradiation method was performed by ap-
plying 280 W power at 300 °C temperature inside the
microwave chamber with max 280 psi. In this process,
firstly, the glycerol breaks down in their possible moi-
eties as radical, ions, or charge species followed by gly-
cerol conversion into glyceraldehyde initially (Additional
file 1: Figure S3). The K,PtCl, as Pt(Il) precursor has
large microwave absorption cross section relative to the
solvent. It has allowed a quick decomposition of the pre-
cursor. As a result, the active moieties (free radicals) of
reducing agent started to propagate the mechanism as is
shown in Fig. 6. Dissociation of K,PtCl, using MW ir-
radiation generates (PtCl,)*” and 2 K* ions and highly
activated radicals of CH3—CH,;—CHO reduced Pt(II) to
zerovalent Pt(0). The glycerol was converted into glycer-
aldehyde generating free radical investigated with ESR
analysis which acts as strong reducing agent for produ-
cing Pt neutral atoms. It is seen that glyceraldehyde and
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Fig. 5 ESR study at 180 W and 300 °C for free radical formation from glycerol

hydrogen free radicals were formed on subjecting the was directly used as working electrode and Ag/AgCl and
mixture to microwave at 300 °C and 280 W. Figure 6 de- Pt wire were used as reference and counter electrodes.
picts that the hydrogen free radicals reduced the Pt** to  The CV experiment was performed at room temperature,
Pt° NPs. The glyceraldehyde free radicals are involved in  and the cell was kept on a Faraday cage on top of the op-
forming a new product which remains soluble in mixture. tical table to avoid the electronic and acoustic noise. The
The glyceraldehyde (HO-CH,-CH-OH-C’=0) formed a  cyclic voltammetry measurements were performed to in-
dimer type glycerol molecules noted as under. It seems  vestigate the in situ grown Pt NPs under microwave ir-

that the glyceraldehyde acts as source of H' free radical. radiation. Here, we have reported uniformally irradiated

Pt NPs colloids directly as electrocatalyst for ethanol
Electrocatalytic Property as Synthesized Pt NPs redox response. In the CV study, Pt NPs have used as
for Ethanol Redox Reaction catalyst in range of 0 to 0.9 V in solution of 0.5 M H,SO,

The cyclic voltammetry measurement was performed and 0.5 M ethanol [44]. The CV study was employed at

using scanning electrochemical microscope (CHI920D). scan rates from 0.001 to 0.003 Vs

! (Fig. 7). The current-

The electrochemical cell was consisted with conventional  potential polarization curve of Pt colloids at 50 mV/s was
three electrode system, where the platinum suspension recorded in range of 0 to 0.9 V. The applied scan rates

3:33}1[1 H,a:o “ . ™
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Fig. 6 Proposed mechanism for free radical and Pt(0) formation under microwave irradiation
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were 0.001, 0.002, and 0.003 V, and the obtained current
densities were 0.0129, 0.0572, and 0.0846 mA at 0.44,
046, and 0.55 V, respectively. The CV graph displayed
higher current density (0.0846 mA) at 0.55 V which
showed the good electrocatalytic performance of used Pt
suspension. The CV curves expressed a catalytic response
of the in situ grown and directly used Pt NPs by observing
high current density. It is concluded that the developed
strategy as in situ growth of Pt NPs via free radical forma-
tion under microwave not only produced the controlled
Pt NPs but also exhibited a good electrocatalytic activity.
It could be explained due to (111) plan of spherical Pt
NPs having large numbers of active sites on surface [45].
So, we have focused on developing the new route for Pt
NPs synthesis and their direct in situ application for elec-
trocatalytic performance. To prepare Pt NPs through or-
dinary route is a difficult task, so these NPs have been
prepared using microwave method. It is also advisable that
the Pt salts used as precursors are expensive and highly
stable. Thereby, the ordinary methods require multistep
activities using their large amount with low yield. How-
ever, sol-gel method has been tried for developing stable
Pt NPs which is being pursued in the lab and soon could
be communicated on a comparative mode. The new route
for synthesis of novel metallic nanoparticles showed elec-
trocatalytic response. Broadly our platinum NPs were
found comparable with bimetallic or nanocomposite ma-
terials [27, 46]. However, the objective of our study was to
develop a reduction mechanism of platinum cations via
free radicals to synthesize platinum nanoparticles. So, the
investigation on comparison scale as are reported in litera-
tures differ our approach.

Conclusions

Platinum NPs have successfully synthesized under in situ
growth mechanism of free radicals. In the chosen
method, we had applied 280 W microwave frequencies

(300 °C and 280 psi) to produce free radicals from aque-
ous glycerol. Free radical formation was confirmed at
336.000 mT in ESR spectra. The UV-vis spectra have
shown a complete reduction of Pt(Il) to Pt(0), and FTIR
confirmed simultaneous capping of PVP on Pt surface
by C=0 and N-C stretching shifts. DLS measurements
have shown a good stability of Pt NPs with (+) 57 to (+)
67 mV zeta potentia. HRTEM analysis has confirmed
spherical nanoparticles under 3.8 nm average size and
elemental compositions. The CV studies have shown
better electrocatalytic performance for ethanol using as
prepared Pt NPs. The single-step method could also be
extended for other metallic or multimetallic nanoparticle
synthesis and their catalytic applications following this
method.

Additional file

Additional file 1: Figure S1. IR and P-Graph for the microwave reaction
system during the reaction. Table S1. Optimized conditions for MW
irradiation. Figure S2. ESR spectra of irradiated aqueous glycerol at 2 to 5
min. Figure S3. Schiff test for aldehyde formation under MW heating
reaction. Figure S4. HRTEM images of Pt NPs. (DOCX 266 mb)
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