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region in verbal trait disorders. Future studies will further 
refine the specific causal genetic factors in this locus on 
chromosome 13q that contribute to language traits.

Introduction

Verbal trait disorders are comorbid, developmentally asso-
ciated disorders and deficits in communication. These 
include clinical and subclinical disorders of speech, lan-
guage, reading, spelling, and writing (Shriberg et al. 2012). 
Speech sound disorders (i.e., excluding dysfluency) are the 
most prevalent verbal trait disorders at preschool age, with 
an estimated population prevalence of 16 % at age 4 years 
(Campbell et al. 2003), decreasing to 3.8 % at age 6 years 
(Shriberg et al. 1999) and 3.6 % at age 8 years (Wren et al. 
2012). Deficits in speech frequently co-occur with impair-
ments in multiple domains. For example, 11–15 % of chil-
dren with speech sound disorders at age 6 also have lan-
guage disorder (a neurodevelopmental disorder that can 
affect both spoken or written language; Shriberg et  al. 
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1999). Additionally, children with speech disorders are at 
higher risk for reading disability, with an estimated 18 % of 
children with speech disorders and 75 % of children with 
both speech and language disorders meeting criteria for 
reading disability at school age (Lewis et al. 2000).

Research in the genetics of verbal trait disorders was 
catalyzed by the seminal studies of the KE family, a large 
extended pedigree segregating verbal dyspraxia (also 
termed Childhood Apraxia of Speech; ASHA 2007; RCSLT 
2011), suggesting autosomal dominant inheritance of a sin-
gle gene mutation (Hurst et al. 1990). Genome-wide link-
age showed a signal peak on chromosome 7q31.1 (Fisher 
et al. 1998). Further fine mapping identified a point muta-
tion in FOXP2 that resulted in a truncated protein and loss 
of function in all affected individuals, but not observed in 
unaffected individuals (Lai et  al. 2001). FOXP2 loss of 
function as a causal factor for verbal dyspraxia was fur-
ther validated in unrelated individuals with severe speech 
impairments similar to those in the KE family (Lai et  al. 
2001; MacDermot et al. 2005) and has been cross-validated 
in a number of case studies (e.g., Rice et al. 2012; Shriberg 
et al. 2006). Although the KE family provided an example 
of a verbal trait disorder phenotype with a typical pattern of 
monogenic inheritance, their story is the exception rather 
than the norm. In fact, verbal trait disorders are generally 
multifactorial and associated with multiple genetic and 
environmental factors (Kang and Drayna 2011; Peterson 
and Pennington 2015).

Due to the behavioral and cognitive heterogeneity of 
verbal trait disorders, the use of endophenotypes—underly-
ing phenotypic factors that are associated with or contrib-
ute to the manifestation of the disorder of interest because 
of shared genetic factors—have been critical to the genetic 
study of verbal trait disorders. One endophenotype is non-
word repetition (NWR), which loads onto several cogni-
tive processes critical for language-related ability includ-
ing auditory processing, receptive language ability, and 
motor planning and programming (Dollaghan and Camp-
bell 1998). NWR tasks examine the ability to process and 
temporarily store a novel series of meaningless units of 
phonological information in short-term memory, and then 
verbally repeat the stimuli. Such measures, which are sen-
sitive to but not specific for any one disorder, may be more 
closely influenced by genetic variation than the verbal trait 
disorder itself.

NWR task performance has a strong genetic influence, 
with higher concordance among monozygotic twins com-
pared to dizygotic twins, and heritability ranging from 0.64 
to 1 (Bishop et  al. 1996, 2004). Furthermore, an oligo-
genic-trait segregation analysis of NWR in nuclear families 
ascertained for reading disability estimated approximately 
2.4 quantitative trait loci (Wijsman et al. 2000). A family-
based linkage analysis on individuals with a family history 

of specific language impairment (SLI) identified a linkage 
peak on chromosome 16q for poor performance on NWR 
(SLI Consortium 2002, 2004). Follow-up family-based 
and population-based association studies on NWR identi-
fied CMIP and ATP2C2 as candidates responsible for the 
linkage signal (Newbury et al. 2009). CNTNAP2 on chro-
mosome 7q35 was also associated with NWR in families 
enrolled in the SLI consortium study using a candidate 
gene approach after it was identified as a transcriptional 
binding target of FOXP2 by chromatin immunoprecipi-
tation (Vernes et  al. 2008). In addition, CNTNAP2 was 
identified by fine mapping a linkage analysis signal on 
7q35 conditioned on language delay in the Autism Genetic 
Resource Exchange sample (Alarcón et  al. 2002, 2005, 
2008). Taken together, NWR satisfies specific testable cri-
teria for the objective identification of endophenotypes, 
supporting NWR as a credible endophenotype for verbal 
trait disorders (Glahn et al. 2014; Lenzenweger 2013).

With the exception of the KE family, most families with 
a history of language impairment show a complex pattern 
of inheritance with subtle differences in clinical presenta-
tion within the family. In the present study, we examined 
an extended six-generation family with a complex pattern 
of inheritance for verbal trait disorders. We chose NWR 
in this analysis because (1) it is a robust endophenotype 
for verbal trait disorders (i.e., speech sound disorder, lan-
guage disorder, and developmental dyslexia); (2) is highly 
heritable; (3) has a Mendelian model of inheritance (in 
at least one study; Wijsman et al. 2000); and (4) is stable 
throughout an individual’s lifetime, even in those who are 
language recovered following impairment in childhood 
(Bishop et al. 1996; Shriberg et al. 2009). The latter attrib-
ute of NWR tasks is particularly important because sub-
jects within this family range in age from 3 to 95  years, 
requiring a phenotype that can be ascertained and com-
pared across all age groups. The present analysis provides 
strong support for chromosome 13q14–q21 as a locus that 
contributes to poor performance on NWR in this extended 
pedigree.

Methods and materials

Ascertainment

We studied 62 individuals from a six-generation 90-mem-
ber family of European ancestry with a history of verbal 
trait disorders. The family was ascertained with the assis-
tance of a family member. The 62 family members assessed 
included 35 females and 27 males ranging in age from 3 to 
95 years. There is no evidence of consanguinity based on 
genealogy or unexpected high kinship coefficients within 
the pedigree.
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Written informed consent was approved by the Uni-
versity of Wisconsin-Madison Institutional Review Board 
(IRB). All subjects were assessed by one of two experi-
enced examiners in the participants’ homes or hotel sites in 
five states within the continental US. All oral instructions 
and audio-recorded stimuli were presented at comfortable 
listening levels based on findings from a conventional hear-
ing screening. The assessment protocol included the fol-
lowing measures and instruments: Kaufman Brief Intelli-
gence Test-2 (Kaufman and Kaufman 2004; nonverbal and 
verbal IQ), Nonword Repetition Task (NRT; Dollaghan and 
Campbell 1998), Syllable Repetition Task (SRT; Shriberg 
et al. 2009), Goldman-Fristoe Test of Articulation-2 (Gold-
man and Fristoe 2000; speech), Clinical Evaluation of Lan-
guage Fundamentals-Preschool-2 (Wiig et  al. 2004; lan-
guage), Clinical Evaluation of Language Fundamentals-4 
Screening Test (Semel et al. 2004; language), Woodcock–
Johnson Tests of Achievement, 3rd edition (Woodcock 
et  al. 2001; reading, spelling, and writing), and question-
naires for parent-reporting or self-reporting medical and 
special educational histories and concerns. One individual 
had a composite IQ <75, but performance on the NWR 
tasks was unimpaired. To maximize genetic informative-
ness, this individual’s NWR scores were retained for the 
analysis. All other individuals had an IQ between 84 and 
126.

Phenotype

The NRT is a NWR task that consists of 16 nonwords. 
To reduce the articulatory burden, the NRT does not con-
tain the most phonetically complex consonants (the “late-
8” consonants; Shriberg 1993; Dollaghan and Campbell 
1998). Nonwords ranged in length from one to four sylla-
bles (four each) with the shortest nonwords presented first 
and the longest last. Each repeated consonant and vowel/
diphthong (totaling 20 different phonemes) was later tran-
scribed as correct or incorrect by two research speech 
pathologists. NRT scores were calculated by dividing the 
total phonemes correctly repeated by the total phoneme tar-
gets. Ratios were then converted to age–sex standardized 
scores for downstream analyses using a reference database 
of 200 typical speakers, ages 3–80 years (Potter et al. 2012; 
Scheer-Cohen et al. 2013) that included descriptive statis-
tics for NRT and SRT scores.

The SRT is another NWR task comprised of 18 non-
words that include only four of the “early-8” consonants 
(/b/,/d/,/m/, and/n/) and the vowel/ɑ/(Shriberg 1993). This 
NWR task was designed to accommodate individuals who 
have incomplete phonetic inventories and/or articulatory 
impairments. Items range in length from two to four syl-
lables with the shortest presented first and the longest last. 
The consonant responses to each recorded syllable were 

transcribed as correct or incorrect. The number of correctly 
repeated consonants was divided by the total number of tar-
get consonants. The ratio was then converted to a standard 
score using the reference database.

Studies of speech-language disorders using the NRT 
have supported its validity and reliability (e.g., Archibald 
and Gathercole 2006; Moore et al. 2010), including a ref-
erence sample of 95 children with typical speech and 63 
children with speech delay, described in a technical report 
on the NRT and SRT (Shriberg and Lohmeier 2008). Find-
ings from this reference sample include psychometric data 
supporting the distributional characteristics of scores for 
parametric statistical analyses, and analyses supporting the 
construct validity, concurrent validity, interjudge transcrip-
tion reliability, and internal reliabilities of both tasks.

In the present study, point-to-point percentage of agree-
ment estimates ranged from 75.6 to 88 % across nonword 
task and phoneme class; other validity and reliability esti-
mates were generally in the 0.70–0.85 range. The Pearson 
r coefficient between standardized scores on the two non-
word tasks in the present data was 0.66, consistent with 
the coefficient of 0.73 reported in Shriberg and Lohmeier 
(2008). Thus, consistent with discussion elsewhere, there 
is only moderate collinearity between the two measures of 
NWR (Shriberg et al. 2009).

Sensitivity and specificity for identifying speech and 
language disorders using the SRT were further supported 
by a second reference sample of 550 speakers, including 
speakers with typical speech and typical language, speech 
delay and typical language, language impairment and typi-
cal speech, and speech delay and language impairment 
(Lohmeier and Shriberg 2011). Additional construct valid-
ity support for the SRT was presented in Shriberg et  al. 
(2009), followed by a series describing SRT procedures 
to explicate encoding, memorial, and transcoding pro-
cesses underlying performance on nonword imitation tasks 
(Shriberg et al. 2012).

Because there is no battery of speech, language, reading, 
spelling, and writing tests appropriate for the lifespan ages 
of the present extended family, we used standardized scores 
from either the NRT or SRT to assign a categorical pheno-
type. Verbal trait impaired (Verbal Trait+) was defined as 
performing greater than one standard deviation below the 
mean on either the NRT or SRT. Preliminary studies indi-
cated that a cutoff below one standard deviation on either 
the NRT or the SRT was maximally sensitive and specific 
to subjects with only mild, subclinical difficulty in one or 
more of the five verbal traits based on parent- and self-
reported histories of children and adults. Of the 41.9 % of 
participants in the present study who met the nonword cri-
teria for a verbal trait disorder (see Table 1), 19.2 % met 
criteria on the NRT only, 23.1 % met criteria on the SRT 
only, and 57.7 % met criteria on both nonword tasks.
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Participants

Tables  1, 2 describe demographic and phenotype vari-
ables for participants meeting NWR task criteria for 
affected (Verbal Trait+; VT+) and not affected (Ver-
bal Trait−; VT−), including tests for significant differ-
ences between the proportions of each classification. 
The difference in the percentages of VT+ (41.9 %) com-
pared to VT− (58.1 %) participants was non-significant 
(Z = −1.82). Significantly fewer females met criteria for 
VT+ (31.4 %) than VT− (68.6 %; Z = −3.35), but the 
proportion of males who met criteria for VT+ (55.6 %) 
compared to the proportion who met criteria for VT− 
(44.4 %) was non-significant (Z = 0.82). Among the four 
age groups, the only age group within which affection 
status differed significantly was the school-aged partici-
pants, who had a significantly lower percentage of par-
ticipants who met criteria for VT+ (33.3  %) than VT− 
(66.7 %; Z = −2.29).

Last, Verbal Trait History for problems in verbal trait 
domains of speech, language, reading, spelling, and/or writ-
ing were determined by test scores in any of the relevant 

domains lower than one standard deviation below stand-
ardized means, or any self- or parent-reported difficulty in 
any of the five domains (Supplemental Table 1). Of the Ver-
bal Trait History variables in Table 1, only one verbal trait 
domain was associated with significant between group pro-
portions. A significantly greater percentage of participants 
with test scores, self-reported, or parental-reported histories 

Table 1   Percentagesa of affected (Verbal Trait+) and not affected (Verbal Trait−) participants in an extended family of 62 members and tests of 
two proportions results for each variable. Participant age was divided into four lifespan cohorts

a  The row-wise percentages use the Total n in the second column as the denominator. The denominators for each percentage in the last row are 
26 and 36, respectively
b  Minitab 17 Statistical Software (2010). [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com)
c   * p < 0.05

Variable Total n Verbal trait+ 
(VT+)

Verbal trait− 
(VT−)

Tests of two proportionsb

n % n % Z p Confidence interval Sig.c

Participants 62 26 41.9 36 58.1 −1.82 0.069 −0.335, 0.012

Gender

 Female 35 11 31.4 24 68.6 −3.35 0.001 −0.589, −0.154 *

 Male 27 15 55.6 12 44.4 0.82 0.411 −0.154, 0.376

Age

 Preschool (3–5) 3 1 33.3 2 66.7 −0.87 0.386 −1.000, 0.421

 School age (6–18) 21 7 33.3 14 66.7 −2.29 0.022 −0.618, −0.048 *

 Adult (19–64) 30 14 46.7 16 53.3 −0.52 0.605 −0.319, 0.186

 Senior (65–84) 8 4 50.0 4 50.0 0.00 1.000 −0.490, 0.490

Verbal trait history

 Speech 15 11 73.3 4 26.7 2.89 0.004 0.150, 0.783 *

 Language 17 8 47.1 9 52.9 −0.34 0.731 −0.394, 0.277

 Reading 24 13 54.2 11 45.8 0.58 0.562 −0.199, 0.365

 Spelling 18 10 55.6 8 44.4 0.67 0.502 −0.214, 0.436

 Writing 3 1 33.3 2 66.7 −0.87 0.386 −1.000, 0.421

 Participants scoring more than one 
SD below the mean in one or 
more verbal trait domains

37 19 73.1 18 50.0 1.92 0.055 −0.005, 0.469

Table 2   Descriptives for VT+ and VT− individuals in the family 
across the syllable repetition and nonword repetition tasks

Verbal trait+ (VT+) Verbal trait− (VT−)

SRT

 Mean (SD) −3.01 (3) 0.27 (0.7)

 Skewness −0.96 0.25

 Kurtosis −0.05 0.53

NRT

 Mean (SD) −2.07 (1.67) 0.42 (0.86)

 Skewness −0.22 0.04

 Kurtosis −0.16 −0.77

http://www.minitab.com
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of speech disorders met the nonword criterion for VT+ 
(73.3  %) compared to the percentage who met criterion 
for VT− (26.7  %; Z =  2.89). Using conventional criteria 
for statistical significance, the percentage of VT+ partici-
pants who had at least one test score or questionnaire entry 
indicating a concern with any one of the five verbal traits 
(73.1  %) was not significantly larger than the percentage 
of VT− participants with such histories (50.0 %; Z = 1.92; 
p = 0.055; CI −0.005, 0.469).

DNA collection and genotyping

DNA was extracted from whole blood using the Gentra 
Puregene Blood Kit (Qiagen) at the University of Nebraska 
Medical Center. Genotyping across 551,839 single nucle-
otide polymorphism (SNP) markers was performed using 
the Illumina Infinium HumanCoreExome-24-v.1 at the Yale 
Center for Genome Analysis (Orange, CT). Genotypes 
were called using Illumina GenomeStudio with a total of 
547,644 (99.24 %) passing quality control (QC). One indi-
vidual failed QC due to low genotyping call rate and was 
excluded from the analysis.

PBAP: marker sub‑selection, pedigree structure 
validation, and IBD computation for linkage analysis

Reference map files for the HumanCoreExome dense 
marker panel were obtained from the Rutgers maps (Mat-
ise et  al. 2007), with integrated linkage-physical maps in 
sex averaged Haldane genetic distances (cM). Reference 
genotype data for Europeans were extracted from the main 
European (EUR) population data from the 1000 genomes 
project (The 1000 Genomes Project Consortium 2010) to 
determine linkage disequilibrium (LD) and minor allele fre-
quencies (MAF) between markers for marker sub-selection.

We used the pedigree based analysis pipeline (PBAP) 
to sub-select genetic markers for pedigree quality con-
trol (QC) and for interfacing with MORGAN (Thompson 
2011) to calculate inheritance vectors (IV) used for link-
age analysis (Nato et al. 2015). Use of MORGAN allowed 
multipoint analysis on the complete pedigree. Generation 
of genome-wide SNP marker sub-panels from the dense 
marker panel was conducted to (1) reduce LD between 
markers and minimize type 1 error, (2) reduce computa-
tional time (while maximizing genotypic informativeness 
within the pedigree), and (3) perform QC on pedigree 
structure (i.e., parent–offspring swaps). PBAP marker sub-
selection and pedigree structure validation are described in 
detail elsewhere (Nato et al. 2015). Briefly, three non-over-
lapping marker sub-panels from the original dense marker 
panel (Illumina HumanCoreExome-24-v.1) were gener-
ated based on the following criteria: (1) maximum LD (r2) 
threshold equal to 0.04 in the EUR reference population; 

(2) MAF 0.2–0.5 in the EUR reference population; (3) 
non-monomorphic marker within the pedigree;( 4) mini-
mum intermarker distance of 0.5 cM; and (5) restricted to 
the 22 autosomes. A separate marker sub-panel was gener-
ated for pedigree structure validation using similar criteria 
as above except maximum LD threshold was equal to 0.25 
and MAF from 0.3 to 0.5 in the EUR reference population. 
For genome-wide linkage analysis (excluding sex chromo-
somes), a total of 5448, 5493, and 5498 markers for sub-
panels 1, 2, and 3, respectively, were created. A sub-panel 
of 5454 genome-wide markers was created for pedigree 
structure validation.

QC for appropriate parent–offspring relationships within 
the larger pedigree was assessed by comparing expected 
kinship coefficients (based on pedigree structure) and esti-
mated coefficients computed by maximizing the likeli-
hood from available genotype data across the 5454 marker 
sub-panel (Choi et  al. 2009). Individual relationship pairs 
were flagged if the estimated kinship coefficient fell out-
side a 99.5 % confidence interval from expected. No sam-
ple swaps or incorrect parent–offspring relationships were 
observed within the larger pedigree.

From each marker sub-panel created for linkage analy-
sis, PBAP prepared data files to generate IVs that described 
the flow of genetic information through a pedigree for an 
individual using gl_auto in the MORGAN suite of pro-
grams (Thompson 2011). The gl_auto program uses a 
combination of exact and Markov Chain Monte Carlo 
(MCMC) based estimations to sample IVs for each indi-
vidual. For the current analysis, IVs were sampled for each 
marker subpanel using the following parameters: 15,000 
MCMC burn-in iterations, sampling by scan and 100,000 
MCMC iterations with progress checked every 20,000 
iterations (L-Sampler = 0.2), saving 2000 realizations for 
IV sampling. Sampled IVs were then converted to Sequen-
tial Oligonucleotide Linkage Analysis Routines (SOLAR) 
(Almasy and Blangero 1998) compatible multipoint iden-
tity-by-descent (MIBD) matrices using custom scripts 
written by the Wijsman lab, and imported into SOLAR for 
downstream linkage analysis.

Statistical analysis

All statistical analyses were conducted using the SOLAR 
software package (version 7.3.9; Almasy and Blangero 
1998). SOLAR utilizes a maximum likelihood vari-
ance decomposition approach to estimate the influence of 
genetic and environmental effects on a phenotypic trait by 
modeling the covariance among family members relative to 
genetic kinship (identity by descent). A liability threshold 
model was used to handle discrete traits under the assump-
tion that the affection status of an individual was deter-
mined by their underlying genetic risk exceeding a certain 
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threshold for the phenotype (i.e., VT+; Duggirala et  al. 
1997). Using maximum likelihood techniques, initial mod-
els were screened for the covariate effects of age, age2, sex, 
age ×  sex, age2 ×  sex, and IQ. After covariate screening 
non-significant covariates (p > 0.1) were removed from the 
final model. In addition, a variance component for house-
hold random effects that further controlled for shared envi-
ronment among nuclear families within the larger pedigree 
was included. The final model representing the log likeli-
hood when the additive genetic variance was equal to 0 (no 
linkage elements) and covarying for household and age*sex 
effects, was used as the null model for hypothesis testing 
during linkage analysis.

Genome-wide multipoint variance component link-
age analyses were conducted to examine linkage between 
VT+ and MIBDs. Multipoint linkage analysis considers 
recombination along a chromosome to determine the prob-
ability that a trait locus is located within a genomic region. 
Maximum likelihood estimates for linkage were calculated 
at approximately 0.5 cM intervals across the 22 autosomes 
and compared against the null model (no linkage) using a 
likelihood ratio test (df = 1).

Empirical p values were computed using a simulation 
that generated a distribution of LOD scores under a null 
model of no linkage. 1,000,000 simulations were con-
ducted, each generating a random informative marker that 
was tested for linkage with VT+ status. This distribution 
of observed LOD scores in the simulation was then used 
to determine the empirical p value of the experimentally 
observed LOD scores.

Haplotypes were assigned using MERLIN (Abeca-
sis et  al. 2002). The large pedigree exceeded the bit limit 
MERLIN could handle, thus the family was split into six 
smaller subpedigrees for haplotype assignment and then 
manually reconfigured to confirm consistency of haplo-
types called across the lineages. Five of the six subpedi-
grees were assigned based on distinct sublineages that 
originated from Generation II, and included all individuals 
within the last four generations (Generations III–VI) of the 
family. The sixth subpedigree consisted of all individuals in 
the first two generations (Generations I and II) and select 
individuals in Generations III and IV to confirm the trans-
mission of the haplotypes observed in the aforementioned 
five subpedigrees.

Results

Genome-wide multipoint linkage analyses for VT+ revealed 
a peak LOD score of 4.35 (empirical p value <1 ×  10−6) 
between 52 and 55  cM on chromosome 13q14.2–q14.3 
(Fig. 1 and Supplemental Table 2) with marker subpanel 1. 
This region spans base pair positions 48–53.5 Mb across 5 

linkage (SNP) markers on chromosome 13, encoding a total 
of 41 genes (build GRCh37/hg19). To determine whether 
the linkage signal was due to an effect of pseudorandom 
marker sub sampling, multipoint analyses on chromosome 
13 were conducted again using non-overlapping marker 
subpanels 2 and 3, which were generated at the same time 
as marker subpanel 1 in PBAP. Findings were recapitulated 
with peak LOD scores of 4.24 and 3.96 using marker sub-
panels 2 and 3, respectively, again spanning the same region 
of chromosome 13q14.2–14.3 (Supplemental Table  3). Of 
the 41 genes within base pair positions 48–53.5  Mb, 26 
genes show moderate expression in the developing brain 
(BrainSpan 2011), but only 8 have known neurological or 
cognitive function (Carrozzo et al. 2007; de Bie et al. 2007; 
Dening et al. 1989; Elpeleg et al. 2005; Hilschmann et al. 
2002; Jaberi et  al. 2013; Kind et  al. 2014; La Piana et  al. 
2016; Maas et al. 2015; Morris et al. 2012; Ocklenburg et al. 
2015; Ostergaard et  al. 2007; Rice et  al. 2007; Spiechow-
icz et al. 2006; Vidal et al. 1999, 2000; Wei and Hemmings 
2005; Xu et  al. 2010; Yamagata et  al. 1999; Yasuda et  al. 
2007; Zhang et  al. 2006; Supplemental Table  4). When 
considering LOD scores greater than 3 (empirical p value 
<0.0002), the linkage signal expands to 46–61 cM across 22 
linkage markers spanning a 23.2 Mb region on chromosome 
13q14.11-21.32, encompassing approximately 77 genes.

Estimation of haplotypes in the extended family pro-
vides evidence of at least 3 distinct haplotypes on chro-
mosome 13 segregating with VT+ (Fig. 2). A recombina-
tion in Haplotype 1 (Haplotype 1-recombined) in affected 
individual 3 between SNPs rs7337528 and rs2981 defines 
the centromeric boundary of LOD  =  4.35 at 52  cM 
(Figs.  2, 3). This particular segment of Haplotype 1, 
defined by alleles shared IBD at rs2981, rs2812219, 
rs6561602, and rs997687 (52.92–55.06  cM), segregates 
with the phenotype in the lineage originated by a founder 
in the oldest generation. For the remaining information, 
data are presented without a conventional haplotype pedi-
gree graphic to preserve anonymity of the family. Haplo-
type 2 originates from a married-in founder in Generation 
II and segregates to two siblings in Generation III, four 
descendants in Generation IV and four descendants in 
Generation V. Seven of ten descendants with Haplotype 
2 are VT+. Last, Haplotype 3 originates from a married-
in founder in Generation III, segregates to two siblings in 
generation IV, and four descendants in Generation V. Six 
of seven pedigree members with Haplotype 3 are VT+. 
There are no recombinations within Haplotypes 2 or 3 
that would define the broader shoulders of the linkage 
signal from 45 to 62  cM (Fig.  3). Overall, the presence 
of at least three distinct haplotypes that cosegregate with 
VT+—including married-in Haplotypes 2 and 3—impli-
cate multiple contributing variants segregating through 
this family.
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Fig. 1   Multipoint linkage results conditioned on impaired NWR at chromosome 13. Genes and associated SNPs under the highest linkage peak 
of LOD = 4.35, between 52 and 55 cM spanning physical positions 48–53.5 Mb on reference genome assembly build GRCh37/hg19

Fig. 2   Haplotypes spanning 
genomic location 45–62 cM 
on chromosome 13 segregating 
with Verbal Trait+ (affected) 
status in the family. The centro-
meric and telomeric boundaries 
of Haplotype 1-Recombined 
are defined by a recombinato-
rial events within individual 3 
(Fig. 3). No recombinatorial 
events in the family offer clear 
centromeric and telomeric 
boundaries for Haplotypes 2 
and 3
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Other suggestive linkage signals (LOD >1.5; empirical p 
value <0.01) were observed on chromosome 2q37.1, 4q12–
13.2, 4q25, 7q22.3–31.2, 8q24.3, and 12p13.33 (Supple-
mental Table 2). Most notably, the linkage peak spanning 
7q22.3–q31.2 has a max LOD  =  2.06 and contains the 
gene FOXP2—a causal gene for Childhood Apraxia of 
Speech (Fisher et al. 1998; Lai et al. 2001).

Discussion

The present study identified a linkage signal spanning 
chromosome 13q14–q21 using a categorical phenotype 
(VT+ or VT−) derived from performance on NWR in an 
extended pedigree with a history of verbal trait disorders. 
This region encompasses SLI3 on chromosome 13q21, 

Fig. 3   Haplotype assignments spanning genomic location 45–62 cM 
on chromosome 13. The pedigree depicted is truncated to reflect the 
recombinatorial event observed in affected individual 3 that outlines 

the centromeric and telomeric border of the linkage signal spanning 
52–55 cM. Affected individuals are black diamonds, while unaffected 
individuals are gray diamonds
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a SLI locus previously identified by Bartlett et al. (2002), 
using a family-based linkage analysis in five Canadian 
families of Celtic ancestry with a history of specific lan-
guage impairment (SLI). Their analysis was conditioned on 
a categorical reading-IQ discrepancy phenotype (nonword 
reading score at least one standard deviation below perfor-
mance IQ), which they replicated in a larger independent 
US sample using the same phenotype (Bartlett et al. 2004). 
This region has also been implicated in autism spectrum 
disorder (ASD), a neurodevelopmental disorder with a core 
language component in combination with other core abnor-
malities in social and repetitive behaviors. A linkage signal 
at chromosome 13q21 was observed with a language delay 
phenotype in the Collaborative Linkage Study of Autism 
(CLSA; Bradford et  al. 2001). Furthermore, deletions at 
13q12 through 13q21 have been reported in three subjects 
with ASD and poor receptive and expressive vocabulary 
(but normal speech), and in a subject with ASD with audi-
tory processing deficits (Mitter et  al. 2011; Smith et  al. 
2002; Steele et al. 2001). These deleted segments partially 
overlap the linkage peak in our present study, where LOD 
>1.5 (Supplemental Tables  2 and 3). The convergence of 
these findings associated with 13q14–q21 with related lan-
guage phenotypes that underlie verbal trait disorders pro-
vides compelling support for this locus.

Within this pedigree, there are at least three distinct hap-
lotypes segregating with VT+, of which, only Haplotype 
1 originated with a founder in the oldest generation—the 
other two are more recently married into, consistent with 
assortative mating. Within the EUR reference population of 
1000 genomes project, Haplotype 1-Recombined (Fig. 2) is 
common with a frequency of 0.046. In a clinical context, 
verbal trait disorders such as developmental dyslexia and 
specific language impairment (SLI) have a high prevalence 
in the United States. The prevalence of developmental dys-
lexia is 7 % in the general population, and the prevalence of 
specific language impairment (SLI) is 5–8  % among pre-
school children (Peterson and Pennington 2015; Tomblin 
et  al. 1997). Different haplotypes segregating within the 
family could indicate a single gene with different causal 
variants segregating within the family. It is also possible 
that different genes at the same locus, or at different loci, 
are mediating NWR performance. Further fine mapping 
and sequencing of the region is necessary to disentangle 
these possibilities and elucidate the potential variants driv-
ing the signal observed in the present study.

Underneath the peak linkage signal spanning the 
52–55 cM region of chromosome 13 with LOD >4, there 
are interesting gene candidates with known function in 
neuropsychiatric disorders and neurodevelopment. ITM2B 
encodes a transmembrane protein that helps to inhibit the 
accumulation of beta-amyloid, but mutations have been 
implicated in Familial British Dementia and Familial 

Danish Dementia with similar pathology to Alzheimer 
disease (Vidal et  al. 1999, 2000). Setdb2, the zebrafish 
ortholog of SETDB2, is known to regulate left–right asym-
metry in the zebrafish central nervous system (Xu et  al. 
2010). Human epidemiological research has also associated 
SETDB2 with handedness (left versus right preference) 
with specific variants linked to reduction in laterality (Ock-
lenburg et  al. 2015). This provides an interesting parallel 
to previous evidence that suggests language and reading 
disability are linked to atypical cerebral laterality (asym-
metry) since language-related behavior is typically left 
lateralized (Leonard and Eckert 2008; Scerri et  al. 2011). 
However, it is important to note that SETDB2 has not yet 
been directly implicated in reading or language disability. 
ATP7B is a known gene associated with Wilson disease, 
which is a disorder characterized by the deposition of cop-
per in the liver, brain, and other tissues, leading to neuro-
logical and cognitive deterioration including memory loss, 
tremors, and emotional changes (de Bie et al. 2007; Den-
ing Tr 1989). PCDH8 is part of the protocadherin family 
of CNS-specific cell adhesion molecules that plays a role 
in the development of neural circuitry (Hilschmann et  al. 
2002; Yamagata et al. 1999). Interestingly, the rat ortholog 
of PCDH8, Arcadlin, has been implicated in synaptic func-
tion and is dynamically expressed upon activation of hip-
pocampal circuitry—a neural network necessary for learn-
ing and memory (Yasuda et al. 2007).

By examining the extended linkage peak spanning 
45–62  cM with LOD scores >3, we identified another 
three genes in the protocadherin family located telemetric 
to PCDH8—PCDH17, PCDH20, and PCDH—each of 
which encodes cell–cell adhesion molecules that are pri-
marily expressed in the brain (Kim et al. 2010). Variation in 
PCDH9 has been linked to ASD and SLI, while PCDH17 
is highly expressed in the prefrontal and anterior regions 
of the temporal cortex and subcortical structures such as 
the thalamus, ventral striatum, and anterior cingulate—an 
expression pattern highlighting an overlap with corticos-
triatothalamic circuitry critical for higher order cognitive 
function and language development (Abrahams et al. 2007; 
Marshall et al. 2008).

Our linkage findings on chromosome 13q do not corre-
spond to other genome-wide linkage scans conditioned on 
NWR. A family-based linkage analysis conducted by the 
SLI consortium localized to chromosome 16q with further 
fine mapping identifying CMIP and ATP2C2 as potential 
gene candidates mediating NWR in their sample (SLI Con-
sortium 2002, 2004; Newbury et  al. 2009). Another study 
performed by Brkanac et al. (2008), observed linkage sig-
nals on chromosomes 4p12, 12p, and 17q in families with 
a history of dyslexia. Discrepancies in genomic regions 
associated with NWR, in part, may be due to differences 
in the particular NWR test used to evaluate respective 
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subjects. Although the measures used in these studies do 
ostensibly assess NWR, there are differences in each that 
may more heavily tap into different combinations of under-
lying cognitive and/or behavioral abilities, such as phono-
logical working memory, long-term lexical knowledge, and 
articulatory difficulty with nonsense words (Estes et  al. 
2007; Gathercole 1995). Ascertainment differences and 
differences in age ranges between the present study and 
others could also contribute to the observed discrepancies. 
The SLI consortium used a family-based linkage analysis 
examining 186 nuclear families affected with SLI (SLI 
Consortium 2002, 2004). Brkanac et al. (2008), used a fam-
ily-based design examining 144 families with a history of 
dyslexia, whereas the present study examined one extended 
family with verbal trait disorder that could be derived from 
one or more rare variants. The small number of subjects in 
each of these studies would significantly limit the power 
to detect rare and uncommon variants. Ultimately, these 
findings may also reflect locus heterogeneity and highlight 
different molecular and biological mechanisms associated 
with NWR.

Due to the complex inheritance pattern of impaired 
NWR performance, a nonparametric analysis using vari-
ance components was used so that pre-specified values 
for parameters defining the genetic model would not be 
required (Bailey-Wilson 2004). This is in contrast to a 
parametric analysis that requires the specification of a 
genetic model, with the concern that a poorly specified 
model could lead to suboptimal results. An advantage to 
using a variance components approach is that it tends to 
be more powerful relative to other trait mapping meth-
ods (Kleensang et al. 2010). However, a limitation is that 
variance components provides poorer localization of the 
trait locus compared to a parametric analysis, and gener-
ally requires additional fine mapping to isolate the region 
(Amos and de Andrade 2001; Williams et  al. 1997). An 
additional limitation is that we used a composite vari-
able across two different NWR tests—performing more 
than one standard deviation below the age–sex standard-
ized mean on either the NRT or SRT—to derive VT+ 
or − status. Although both measures evaluate NWR, the 
individual test items differ. As described previously, the 
SRT focuses on the repetition of syllables that comprise 
only four “early-8” consonants and can be used to exam-
ine NWR ability in young children and speakers of any 
age with limited phonetic inventories or speech sound 
disorder (Shriberg et  al. 2009). In comparison, although 
the NRT was designed to exclude late developing English 
consonants (the ‘late-8’), younger children and speakers 
of any age with speech sound disorder can have articu-
lation errors repeating the 9 different vowels and diph-
thongs, and 11 different consonants in the nonsense 
words, thus confounding test performance and reducing 

transcription reliability (Shriberg et  al. 2009). Because 
individuals tested in the extended pedigree ranged in age 
from 3 to 95 years old, it would not be optimal to test all 
individuals on only the NRT or SRT, as they may differ 
in their sensitivity to persistent types and levels of NWR 
deficits across the lifespan.

In conclusion, we found a statistically significant 
genome-wide multipoint linkage signal on chromosome 
13q14–q21 using a NWR phenotype in an extended pedi-
gree with a family history of verbal trait disorder. We 
hypothesize that the region of 13q14–q21 is a susceptibility 
locus for verbal trait disorders, but additional work must be 
conducted to (1) identify the gene(s) in this region contrib-
uting to the linkage signals observed in the present study 
and others that have been identified this same region, and 
(2) elucidate the complex genetic and environmental inter-
actions that may increase susceptibility.
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