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Mutations in MBOAT7, Encoding Lysophosphatidylinositol
Acyltransferase I, Lead to Intellectual Disability
Accompanied by Epilepsy and Autistic Features

Anide Johansen,1,2 Rasim O. Rosti,1 Damir Musaev,1 Evan Sticca,3 Ricardo Harripaul,4 Maha Zaki,5

Ahmet Okay Ça�glayan,6 Matloob Azam,7 Tipu Sultan,8 Tawfiq Froukh,9 André Reis,10 Bernt Popp,10

Iltaf Ahmed,11 Peter John,11 Muhammad Ayub,12 Tawfeg Ben-Omran,13,14 John B. Vincent,4

Joseph G. Gleeson,1,3,15,* and Rami Abou Jamra10,16

The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a

cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous

inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently

accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachi-

donic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-contain-

ing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.
Intellectual disability (ID) is a common neurodevelopmen-

tal disorder affecting 1 in 100 children.1,2 The more severe

forms of ID or those with additional signs or symptoms are

less common and have a prevalence of roughly 1 in 200.3,4

Diagnosis of ID is based on the impairment of general

mental abilities and activities of daily living.2 In early

childhood, the diagnosis of ID is based on global develop-

mental delays affecting speech, motor, and cognitive

function in combination with an IQ below 70.2 It has

previously been reported that rare de novo or recessive mu-

tations play amajor role in severe ID.5,6 Interestingly, more

complex forms of inheritance are thought to be involved

in milder cases.2,7,8 Although ID has a strong genetic influ-

ence, the involvement of non-genetic factors, such as in-

fections, perinatal asphyxia, or environmental exposures,

might play a role in the development of other forms.9

To date, over 1,100 genes have been either confirmed or

suggested in ID etiology, yet half of ID cases still remain

undiagnosed.4,10–12

Many individuals with ID also present with other neuro-

logical conditions, such as epilepsy13 and autism spectrum

disorder (ASD),14 which also have a strong genetic influ-

ence. The prevalence of epilepsy is ten times higher in in-

dividuals with ID than in the general population.13 As in

ID, de novo, recessive, and dominant variants in ASD can

contribute to risk; however, a genetic diagnosis can be

determined only in a relatively small portion of individ-
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uals.15 ASD is characterized by repetitive behavior and

varying degrees of impairment of social interaction and

communication skills.16 Many ASD-affected individuals

show evidence of heritability.17 Genetic evidence suggests

the involvement of 200–1,000 genes, including both

autosomal-recessive (AR) and de novo variants, in ASD

susceptibility.18–20

In an effort to expand our understanding of the genetic

composition of neurodevelopmental disorders with AR in-

heritance, several centers in the US, Canada, andGermany,

in cooperation with colleagues from Egypt, Pakistan, and

Jordan, joined efforts to examine and recruit a large num-

ber of consanguineous families with affected children. An-

alyses were performed in accordance with the ethical stan-

dards of institutional review boards, and informed consent

was obtained for each individual participating in this

study. Exome sequencing of our database consisting of

>5,000 families with neurodevelopmental disease identi-

fied three families affected by biallelic, possibly pathogenic

variants in membrane-bound O-acyltransferase family

member 7 (MBOAT7 [MIM: 606048]). These three families

presented with overlapping clinical signs, including ID

frequently acting with epilepsy (7/8 subjects) and autistic

features (7/8 subjects). On the basis of exome findings,

three additional families were identified from parallel in-

ternational sequencing efforts through the sharing of

gene names among collaborators.
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Figure 1. Consanguineous Families with Variants in MBOAT7, Encoding LPIAT1
(A) Pedigrees of families 1 to 6 show consanguineous marriages (double bars) with a total of 16 affected children. Probands are indicated
with ‘‘P.’’
(B) Brain MRI for one affected individual from each of families 1–3 and 6. White arrows show cortical atrophy, and red arrows show
possible polymicrogyria.
All 16 subjects were born to consanguineous parents

(Figure 1A, Table S1, and Supplemental Note). The

emerging clinical picture is one of moderate to severe ID

given that the majority of subjects are not able to build

sentences (14/16) and are non-verbal with delayed motor

milestones (9/16). A few of the children (3/16) have never

achieved the ability to walk, and the remaining 13 started

to walk between the ages of 2 and 7 years. In 6/16 individ-

uals, these clinical signs co-occur with infant-onset epi-

lepsy (mostly focal and multifocal) that has been respon-

sive to antiepileptic drugs. A further two individuals have

seizures that began at 1.5 and 2.5 years, whereas another

two have febrile seizures. Neurological examination

showed that all children have truncal hypotonia and

appendicular hypertonia. All subjects have a below-

average head size, which is �2 to �3 SDs below the

mean in 3/16 affected children, suggesting that micro-

cephaly is not a consistent feature of MBOAT7 variants.

ASD was documented in only 7/16 children according to

the Childhood Autism Rating Scale, and a further three

showed clinical autistic features. Brain imaging was within

normal limits, except in two subjects, in whom cortical

atrophy was present (Figure 1B). There was some evidence

of mild polymicrogyria.
The Americ
Whole-exome sequencing identified a total of five

distinct variants in MBOAT7 (GenBank: NM_024298.3)

from six families (Table S2). All variants were prioritized

by allele frequency, conservation, blocks of homozy-

gosity, and predicted effect on protein function. All

variants were confirmed by Sanger sequencing and segre-

gated with the disease as predicted for a fully penetrant

recessive trait within all six families. Family 1, from Egypt,

carries a homozygous frameshift deletion (c.126_145del

[p.Leu43Hisfs*69]) in exon 3. Families 2 and 3, from

Pakistan, harbor an in-frame deletion in exon 6

(c.758_778del [p.Gln253_Ala259del]). Using actual and in-

ferred sequence data, we estimated the coalescence time of

the shared founder mutation for families 2 and 3 to be

9.185 generations (SD 5 4.45 generations), or ~230 years

with a generation time of 25 years. Sequencing data from

family 4, from Jordan, revealed a homozygous deletion

(c.423delG [p.Leu142Cysfs*8]) in exon 5. Family 5, from

Iraq, carries a biallelic substitution (c.854þ1G>C [p.?])

occurring at the canonical splice donor of exon 6. Family

6, from Pakistan, carries a 7 bp frameshift deletion

(c.820_826del [p.Gly274Profs*47]) in exon 6. These vari-

ants were not found in dbSNP, the Greater Middle East

(GME) Variome, the Exome Aggregation Consortium
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Figure 2. Location of Variants and Domains in MBOAT7, Encoding LPIAT1
(A) Genetic structure ofMBOAT7. Mutations are indicated by red arrows (exons and numbers as in GenBank: NM_024298.3). In-solution
exome capture was performed with the SureSelect Human All Exome 50 Mb Kit (Agilent Technologies) with 125 bp paired-end read se-
quences generated on a HiSeq2000 or HiSeq2500 (Illumina). Scale bar represents 2 kb.
(B) Structure of LPIAT1, which harbors five transmembrane domains and one catalytic acyltransferase domain. Variants are indicated
with red lines. Amino acid numbers are provided above.
(ExAC) Browser, or 1000 Genomes and were also not pre-

sent in our in-house whole-exome database (>5,000 sub-

jects with neurodevelopmental conditions). The ExAC

Browser includes over 8,000 South Asian control individ-

uals, almost all Pakistani, from the Pakistan Risk of

Myocardial Infarction study. Thus, these disease-related

alleles are very rare even in ethnically similar control

individuals.

MBOAT7 encodes lysophosphatidylinositol acyltransfer-

ase 1 (LPIAT1), which is a member of the MBOAT family

of acyltransferases and originates from yeast Ale1p

(Figure S1A).21 The human MBOAT family has five mem-

bers, each of which has a preference toward specific acyl

donors and acceptors (Figure S1B).21 LPIAT1 is the only

family member that is known to primarily transfer arachi-

donic acid (AA) from arachidonoyl-CoA to lysophosphati-

dylinositol (Figure S1C),22 suggesting an essential func-

tion. MBOAT7 contains eight exons, resulting in four

protein-coding transcripts, and three LPIAT1 isoforms.

The five variants described in this study affect all protein-

coding transcripts (Figure 2A), interfering with either

transmembrane or catalytic domains of the protein

(Figure 2B). Balanced translocation in MBOAT1 in one

subject has been linked to brachydactyly-syndactyly syn-

drome.23 None of the other MBOAT genes have had ge-

netic loss-of-function variants linked to human disease.

LPIAT1 contributes to the regulation of free AA in the

cell through the remodeling of phospholipids.24,25 Free
914 The American Journal of Human Genetics 99, 912–916, October
cellular AA is under tight regulation, given that its pro-in-

flammatory metabolites could be harmful to cellular

physiology.26 Enzymes such as lipoxygenase (LOX) and cy-

clooxygenases (COX) metabolize AA into the pro-inflam-

matory eicosanoid lipids. The COX enzymes (1 and 2)

are known targets of existing non-steroidal anti-inflamma-

tory drugs, such as ibuprofen and aspirin.27 There is

compelling evidence linking pro-inflammatory processes

to ASD, for instance, the activation of microglia and astro-

cytes and the overexpression of immune processes in the

brains of individuals with ASD.28–31

A common variant in TMC4 (rs641738), a gene adjacent

to MBOAT7, is associated with a 20% increased risk of

nonalcoholic fatty-liver disease in individuals of European

descent. The variant is predicted to cause a substitution

(p.Gly17Glu) early in TMC4.32 Interestingly, this variant

is just a few hundred base pairs downstream of the 30 end
of MBOAT7. Carriers of this allele who underwent liver bi-

opsy were found to share reducedMBOAT7 expression and

altered phosphatidylinositol levels. None of our affected

children or their parents showed evidence of clinically rele-

vant liver disease, but no specific tests were performed.

Despite a 49% carrier frequency for the minor allele in

the GME Variome, none of our subjects are carriers. There-

fore, the connection between this variant and the condi-

tion we describe remains uncertain.

In mice, Mboat7 and its encoded protein, LPIAT1, are

required for cortical lamination.33 Mboat7 knockout mice
6, 2016



are significantly smaller than their littermate controls and

show reduced postnatal survival. In a recent study, histolog-

ical analysisof embryonicday18.5Mboat7�/�brains showed

a smaller cerebral cortex and hippocampus, abnormal

cortical lamination, an increased number of apoptotic cells

in the cortex, and dispersed MAP2þ subplate neurons.33

The cerebral cortex showed evidence of gyral structures,

whereasnormally gyri are absent in themurine cortex, remi-

niscent of the polymicrogyria we observed in some subjects.

It is recognized that AA-containing phosphatidylinositol

is a major lipid in themammalian brain. It has been shown

thatMboat7 is required for cortical lamination is mice.33 In

this study, we have linked recessive mutations in MBOAT7

with human neurodevelopmental disease, suggesting a

critical role for AA-containing phosphatidylinositol in

the developing human brain.
Supplemental Data

Supplemental Data include a Supplemental Note, one figure, and

two tables and can be found with this article online at http://dx.

doi.org/10.1016/j.ajhg.2016.07.019.
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