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De Novo Mutations in CHD4, an ATP-Dependent
Chromatin Remodeler Gene, Cause an Intellectual
Disability Syndrome with Distinctive Dysmorphisms

Karin Weiss,1,15 Paulien A. Terhal,2,15 Lior Cohen,3,4,15 Michael Bruccoleri,5 Melita Irving,6

Ariel F. Martinez,1 Jill A. Rosenfeld,7 Keren Machol,7 Yaping Yang,7 Pengfei Liu,7

Magdalena Walkiewicz,7 Joke Beuten,7 Natalia Gomez-Ospina,8 Katrina Haude,9 Chin-To Fong,9

Gregory M. Enns,8 Jonathan A. Bernstein,8 Judith Fan,10 Garrett Gotway,10 Mohammad Ghorbani,5

DDD Study, Koen van Gassen,2 Glen R. Monroe,2,11 Gijs van Haaften,2,11 Lina Basel-Vanagaite,3,4,12,13

Xiang-Jiao Yang,5 Philippe M. Campeau,14,* and Maximilian Muenke1,*

Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of

gene transcription, DNA repair, and cell cycle progression. Also known as Mi2b, CHD4 is an integral subunit of a well-characterized

histone deacetylase complex. Here we report five individuals with de novo missense substitutions in CHD4 identified through whole-

exome sequencing and web-based gene matching. These individuals have overlapping phenotypes including developmental delay,

intellectual disability, hearing loss, macrocephaly, distinct facial dysmorphisms, palatal abnormalities, ventriculomegaly, and hypogo-

nadism as well as additional findings such as bone fusions. The variants, c.3380G>A (p.Arg1127Gln), c.3443G>T (p.Trp1148Leu),

c.3518G>T (p.Arg1173Leu), and c.3008G>A, (p.Gly1003Asp) (GenBank: NM_001273.3), affect evolutionarily highly conserved residues

and are predicted to be deleterious. Previous studies in yeast showed the equivalent Arg1127 and Trp1148 residues to be crucial for SNF2

function. Furthermore, mutations in the same positions were reported in malignant tumors, and a de novo missense substitution in an

equivalent arginine residue in the C-terminal helicase domain of SMARCA4 is associated with Coffin Siris syndrome. Cell-based studies

of the p.Arg1127Gln and p.Arg1173Leu mutants demonstrate normal localization to the nucleus and HDAC1 interaction. Based on

these findings, the mutations potentially alter the complex activity but not its formation. This report provides evidence for the

role of CHD4 in human development and expands an increasingly recognized group of Mendelian disorders involving chromatin

remodeling and modification.
In the past decade, we have witnessed a dramatic increase

in gene discovery of numerous Mendelian disorders associ-

ated with intellectual disability. These efforts have shed

light on multiple developmental pathways, including the

importance of the epigenetic machinery in neuronal

development and homeostasis.1–3 Chromatin remodeling

is an epigenetic mechanism that controls DNA accessi-

bility to transcription, replication, and repair machineries.

It is driven by nucleosome remodeling complexes that

contain ATP-dependent enzymes able to mobilize nu-

cleosomes and modify DNA packaging.4 One of these

ATPases is the chromodomain-helicase-DNA-binding pro-

tein 4 (CHD4) also known as Mi2-b.5–7 CHD4 is a core

component of the nucleosome remodeling and deacety-

lase (NuRD) complex, which possesses both chromatin

remodeling and histone deacetylation activities.8–11 Both

CHD4 and NuRD have been studied extensively for their
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role in stem cell differentiation, embryonic development,

and oncogenesis.9,12 For instance, depletion of CHD4

from certain mammalian embryonic tissues resulted in

altered development13–17 and somatic mutations in

CHD4 (MIM: 603277) were reported in serous endometrial

carcinoma.18,19 Here we report five individuals with a form

of syndromic intellectual disability that carry de novo

missense variants in CHD4.

The subjects underwent whole-exome sequencing at

four different institutions. They were clinically assessed

by experienced clinical geneticists prior to testing and

did not have a diagnosis of a known genetic syndrome.

Institutional review board-approved consents for whole-

exome sequencing were obtained for all subjects. Subject

1 participated in a research project for undiagnosed devel-

opmental disorders at the National Human Genome

Research Institute (NIH/NHGRI). Subject 2 underwent
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Figure 1. Facial Dysmorphism in Subjects
Harboring CHD4 Mutations
From left to right: pictures of subjects 1, 2,
and 5 at the age of 10 years, 12 months,
and 18 years (top) and 1 year (bottom),
respectively. There are similar subtle dys-
morphic features that include macroce-
phaly, wide-spaced eyes, fullness of eyelids,
a squared face, and low-set, small, or cup-
shaped ears.
clinical exome sequencing at the University Medical Cen-

ter Utrecht, the Netherlands,20 and subject 3 participated

in the Deciphering Developmental Disorders (DDD) proj-

ect in the UK.21 A de novo missense variant in the C-termi-

nal helicase domain of CHD4 was independently selected

as the leading candidate variant in these three index

subjects based on the gene function, sequence conserva-

tion, in silico predictions of deleteriousness, and the

absence from the Exome Aggregation Consortium (ExAC)

database of 60,700 exomes. The three index subjects

were matched using GeneMatcher22 and the Decipher

website. We then carefully compared their clinical history

and physical exams and verified that all individuals had a

similar phenotype. Subsequently, we identified subjects 4

and 5 who previously underwent clinical exome

sequencing at the Baylor-Miraca Genetics Laboratories

(Baylor College of Medicine [BCM]). For each subject, in-

formation on additional candidate variants and previous

genetic testing is detailed in the Supplemental Data.

For subject 1, whole-exome sequencing was performed

at the NIH Intramural Sequencing Center (NISC) using

the SeqCap EZ Exome v.3.0 capture kit (Roche NimbleGen)

and the Illumina HiSeq2500 platform. Sequencing data

were aligned to the human reference genome using Novoa-

lign (Novocraft Technologies). Variants were called using

the in-house MPG genotype caller. Detected variants

were annotated and filtered using VarSifter.23 Average

coverage attained was 653 with on average 95% of tar-

geted bases covered at 103. For subject 2, exomes were

enriched using the SureSelect XT Human All Exon V5 kit

(Agilent Technologies) and sequenced in rapid run mode

on the HiSeq2500 sequencing system at a mean target

depth of 1003 and an average 95% of targeted bases

covered at 103. Reads were aligned to hg19 using BWA
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(BWA-MEM v.0.7.5a) and variants

were called using the GATK haplotype

caller (v.2.7-2). Detected variants were

annotated, filtered, and prioritized

using the Bench lab NGS v.3.1.2

platform (Cartagenia). For subject 3

the methods are described in Firth

et al.24 For subjects 4 and 5, whole-

exome sequencing and analysis was

performed according to the protocol

described in Yang et al.25 In summary,

exomes were captured with the Roche
NimbleGen VCRome reagent and sequenced using Illu-

mina technology. Reads were aligned using the Mercury

pipeline and annotated using the Cassandra software.

Average coverage attained was 1233 for individual 4 and

1603 for individual 5, with on average 97.9% and 98.4%

of targeted bases covered at 203, respectively. The variants

we detected were c.3380G>A (p.Arg1127Gln) (seen in sub-

jects 1 and 3), c.3443G>T (p.Trp1148Leu), c.3518G>T

(p.Arg1173Leu), andc.3008G>A(p.Gly1003Asp) (GenBank:

NM_001273.3). All variants were confirmed as de novo

by Sanger sequencing using standard methods and are

available upon request.

Frequent findings included a history of developmental

delay (5/5), hypotonia (4/5), mild to moderate intellectual

disability (4/5), and hearing loss (4/5). The brain MRI

demonstrated mild to moderate enlargement of the lateral

ventricles in all subjects. Physical exam was significant for

macrocephaly (4/5), palatal abnormalities (4/5), and

similar facial dysmorphisms (5/5) (e.g., wide-spaced eyes,

a square-shaped face, and external ear anomalies)

(Figure 1). In addition, the three male subjects had hypo-

gonadotrophic hypogonadism. In subjects 3 and 4, there

was a history of short stature, and subject 3 was treated

for growth hormone deficiency. Additional congenital

anomalies that were seen in two subjects include cervical

vertebrae fusions, tarsal coalitions, and heart defects.

A summary of the clinical findings is shown in Table 1

and detailed case descriptions are in the Supplemental

Data. Overall there were similar facial features and clinical

histories, but each of the shared clinical finding were rela-

tively non-specific, making it difficult to make a diagnosis

without genotypic data. Furthermore, a few subjects had

unusual clinical findings not seen in the others, e.g.,

congenital stroke and moyamoya disease in subject 1,
enetics 99, 934–941, October 6, 2016 935



Table 1. Clinical Findings in Five Subjects with De Novo Missense Variants in CHD4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

CHD4 variant c.3380G>A (p.Arg1127Gln) c.3518G>T (p.Arg1173Leu) c.3380G>A (p.Arg1127Gln) c.3443G>T (p.Trp1148Leu) c.3008G>A (p.Gly1003Asp)

Gender, age at last exam male, 10 years female, 16 years male, 10 years female, 5 years male, 18 years

Birth weight, OFC 4 kg, 38 cm 2.8 kg, ND 3.7 kg, 37cm 2.99 kg, 35 cm 3.06 kg, ND

Height, OFC at last exama 143 cm (75th), 56 cm (>98th) 161 cm (40th), 62 cm (>98th) 140 cmb (50th), 56 cm (>98th) 89.5 cm (<3rd; Z score �5),
49 cm (20th)

167.5 cm (10th), 52.5 cm
at 4 years (90th)

Developmental delay þ þ þ þ (severe) þ

Intellectual disability þ þ þ (mild) þ þ (mild)

Hearing lossc þ þ þ � þ

Undescended testis,
micropenis

þ, þ NA þ, þ NA �, þ

Macrocephalyd þ þ þ relative to length þe

Widely spaced eyesf þ þ þ þ þ

Dysmorphic earsg þ þ þ þ þ

Palatal anomalies þh � þi þi þi

Hypogonadotropic
hypogonadism

þ � þ NT þ

Skeletal survey advanced bone age
by 2–3 years

tarsal coalition, cervical
vertebrae fusion

falx calcification scoliosis, platybasia, fusion of
C2-C3, bilateral coxa valga, fusion of
the cuboid and the 3rd cuneiforms
bilaterally, brachymesophalangia

diffusely osteopenic bones

Brain MRI enlarged lateral ventricles,
congenital stroke with
moyamoya disease

enlarged lateral ventricles,
chiari 1 malformation

enlarged lateral ventricles enlarged ventricles (mild), basilar,
invagination and narrow foramen
mangum

enlarged lateral and third ventricles

Heart – – – congenital heart defect (PDA s/p
ligation, PFO, ASD, and VSD)

ASD, PDA s/p repair, VSD,
bicuspid aortic valve, mild
dilatation of aortic root

Abbreviations are as follows: ASD, atrial septal defect; NT, not tested; NA, not applicable; OFC, occipital frontal circumference; PDA, patent ductus arteriosus; VSD, ventricular septal defect.
aData in parentheses are percentiles.
bOn growth hormone therapy.
cConductive and/or sensorineural hearing loss.
dHead circumference >97th percentile for age and sex.
eCurrent OFC unavailable, 90th percentile at the age of 4 years.
fInner canthal distance >97th for age 50.
gSee a description of ear anomalies in Figure 1.
hBifid uvula.
iHypernasal speech and or velopharyngeal insufficiency/submucosal cleft palate.
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Figure 2. CHD4 Variants and Amino Acid Sequence Conservation
(A) CHD4 protein domains and location of amino acid substitutions. Abbreviation: PHD, plant homeodomain zinc fingers.
(B) Protein alignment of CHD4 orthologs across several vertebrate species and yeast. We also aligned with the ATP-dependent helicase
SMARCA2 and SMARCA4. The Arg1127, Trp1148, and Arg1173 positions are conserved down to yeast. The p.Arg1127Gln and
p.Trp1148Leu variants are located at the helicase motifs V and Vb, respectively.6,28
severe developmental and growth delay in subject 4, and

eye abnormalities in subject 5. Increased phenotypic

heterogeneity has been reported before in Mendelian dis-

orders of the epigenetic machinery and may be the result

of genetic variation in downstream targets.1

CHD4 belongs to the CHD subfamily II. Similarly to

CHD3 and CHD5, CHD4 contains two N-terminal plant

homeodomain (PHD) zinc fingers and tandem chromodo-

mains in addition to centrally located ATPase/helicase

domains.7 The helicase domains provide the energy neces-

sary for nucleosome remodeling and resemble SNF2, the

catalytic subunit of the chromatin remodeling SWI/SNF

complex in yeast. The PHD and chromodomains are

thought to direct CHD4 to its substrates and regulate the

remodeling activity.26,27 The three variants detected in

subjects 1–4 were in the C-terminal helicase domain and

subject 5’s variant was between helicase domains

(Figure 2A). The involved amino acids are highly

conserved across species and other ATP-dependent chro-

matin remodelers, as shown in Figure 2B. Of note, SNF2
The Americ
contains conserved motifs that were previously shown

to be critical for ATP binding and nucleosome remodel-

ing.28,29 Specifically, p.Arg1127Gln and p.Trp1148Leu are

within motif V and Vb, respectively, and involve residues

shown to be crucial for nucleosome remodeling activity

in yeast.28 The Combined Annotation Dependent Deple-

tion (CADD) phred score30 was above 26 for all the variants

and they were predicted damaging by Provean and

SIFT.31,32 Furthermore, Samocha et al. list CHD4 as one of

the top 1,000 genes with excessive constraint to both

missense and loss-of-function (LOF) variants.33

Among the CHD4 paralogs, CHD7 (MIM: 608892),

CHD2 (MIM: 615369), and CHD8 (MIM: 610528) have

been associated with neurodevelopmental disorders.34–36

Interestingly, there are several similarities between the

CHD4-associated phenotype and CHARGE syndrome

(MIM: 214800), which results from haploinsufficiency of

CHD7. Those include developmental delay, hearing loss,

external ear anomalies, palatal abnormalities, a square-

shaped face, and pituitary deficiencies. This correlation
an Journal of Human Genetics 99, 934–941, October 6, 2016 937



Figure 3. Comparison of Wild-Type and
Mutant CHD4 Proteins by Cell-Based
Assays
(A) The two mutations do not change
HDAC1 interaction. Wild-type CHD4 and
the two mutants were transiently ex-
pressed in HEK293 cells as FLAG-tagged
proteins with or without GFP-HDAC1. Sol-
uble extracts were prepared ~36 hr after
transfection for immunoprecipitation (IP)
on anti-FLAG antibody conjugated to
agarose, and bound proteins were eluted
with FLAG peptide for immunoblotting
with an anti-FLAG monoclonal antibody.
After extensive washing, bound proteins
were eluted with FLAG peptide for im-
munoblotting with anti-FLAG and -GFP
antibodies as indicated. HDAC1 is known
to be efficiently sumoylated.49

(B) Mutations do not affect CHD4 nuclear
localization.Wild-type CHD4 and twomu-
tants were expressed in HEK293 cells as
FLAG-tagged proteins along with a green
fluorescent protein (GFP)-HDAC1 fusion
protein. Cells were fixed for indirect immu-
nofluorescence microscopy with the anti-
FLAG antibody and a Cy5-conjugated
secondary antibody to detect CHD4 and
its mutants. Green fluorescence was used
an indicator of HDAC1 levels and nuclear
DNA was detected with DAPI staining.
The merged images are shown at the right
column. HEK293 cell transfection, indirect
immunofluorescence microscopy, and
immunoprecipitation were carried out as
described.50

Note: The residual heavy chain on lane 13
is due to some anti-FLAG agarose beads
that were incidentally collected when the
eluate was transferred out by pipetting.
may suggest common downstream epigenetic targets, such

as TP53, which is downregulated by both CHD7 and

CHD4.37,38 In addition to the CHD protein family, there

are other proteins with similar ATP-dependent chromatin

remodeling activity, such as the ATP-dependent helicase

SMARCA2, SMARCA4, and ATRX, which are associated

with neurodevelopmental syndromes.39–42 The SMARCA4

(MIM: 603254) missense substitution c.3469C>G

(p.Arg1157Gln) (GenBank: NM_003072.3) equivalent to

p.Arg1127Gln in CHD4 has been previously reported in a

person with Coffin-Siris syndrome39 (MIM: 614609),

providing additional support for the pathogenicity of sub-

stitutions in this amino acid residue.

As described above, three of the substitutions are local-

ized to the C-terminal helicase domain of CHD4

(Figure 2A).10 Co-immunoprecipitation and western blot

analysis revealed that the c.3380G>A (p.Arg1127Gln)

and c.3518G>T (p.Arg1173Leu) substitutions did not
938 The American Journal of Human Genetics 99, 934–941, October 6, 2016
affect interaction with HDAC1

(Figure 3A), and immunofluorescence

staining showed that similar to the

wild-type protein, these mutants
localized properly to the nucleus along with HDAC1

(Figure 3B). Based on their results, we do not expect these

substitutions to directly affect CHD4 complex formation

with HDAC1 and HDAC2. Consistent with this, the substi-

tutions are located within the helicase domain (Figure 2A),

away from the PHD fingers that are known to mediate

HDAC1/2 binding.10 The substitutions may disrupt the

ATPase activity of CHD4, and further experiments will be

needed to determine this possibility.

According to the Mouse Gene Expression Database,

Chd4 is broadly expressed in themouse embryo and highly

expressed in the head (brain, ear, and eye), the central

nervous system in general, and the genitourinary system.

O’Shaughnessy-Kirwan et al. demonstrated that null

Chd4 mouse embryos cannot complete the first lineage

step at the blastocyst stage.43 In the developing central

nervous system of mice, the lack of Chd4 resulted in

loss of inhibition of astroglial differentiation and impaired



synaptic connectivity.13,17 Furthermore, the International

Mouse Phenotyping Consortium (IMPC) provides pheno-

typic information on a Chd4 knock-out mouse model

resulting from a deletion of the critical exons 11 and 12

in the chromodomains region. Mice homozygous for the

targeted deletion are embryonic lethal prior to organogen-

esis. The heterozygous mice are viable and exhibit several

abnormalities that overlap with the phenotype seen in hu-

mans. There was decreased hearing with abnormal brain-

stem auditory evoked potentials at 24 kHz, and abnormal

locomotor activation with decreased whole arena average

speed that may be secondary to developmental delay. In

addition, in some of the mutant mice, there was a signifi-

cant decrease in the lean body mass and body length,

abnormal left ventricle morphology, and abnormal lens

morphology. Of note, these results are based on the evalu-

ation of 16 mutants (8 females and 8 males). Although QC

was completed and p values were significant, further

studies are needed to support these findings.

The phenotype seen in the heterozygous knock-outmice

might indicate that the phenotype seen inhumans resulted

fromcompleteCHD4 loss of function or partial loss of func-

tion of the helicase domain. On the other hand, we are not

aware of case reports of small microdeletions that include

CHD4 or individuals with truncating mutations. Interest-

ingly, mainly nonsynonymous substitutions in the ATP-

dependent helicases SMARCA4 and SMARCA2 (MIM:

600014) cause Coffin Siris syndrome and Nicolaides-

Baraitser syndrome (MIM: 601358), respectively. The pro-

posed mechanism in those cases is a dominant-negative

effect of the abnormal protein on the activity of the SWI/

SNF complex.3,44 If that is the case in the CHD4-related

syndrome, we expect to see a different or less severe pheno-

type in individuals with CHD4 deletions or truncating

mutations. Of note, the ExAC database includes six LOF

variants in CHD4. These could be explained by sequ-

encing/alignment errors (5/6 are indels) or a mild under-

recognized phenotype. As mentioned before, there is

significant intolerance to LOF variation relative to the

gene’s size, but at this time it is not clear whether carriers

of truncating mutations will be similarly affected.

CHD4 and NuRD actmainly but not exclusively through

transcriptional repression.45 Several studies have shown

that CHD4 has a role in DNA damage response and cell cy-

cle progression either independently or as part of the

NuRD complex, and it may also function as an oncogene,

a tumor suppressor, or both.37,46 Le Gallo et al. reported so-

matic mutations in CHD4 in 17% of endometrial tumors.18

Most of the mutations detected resulted in nonsynony-

mous substitutions, and roughly half of them clustered

in the ATPase/C-terminal helicase domain. Interestingly,

when they performed alignments with SMARCAL1 (MIM:

606622), SMARCA4, and SMARCA2, they found that in

2/3 of the cases, the same residues were reported to

undergo germline de novo changes causing Schimke

immune-osseous dysplasia (MIM: 242900), Coffin-Siris

syndrome, or Nicolaides-Baraitser syndrome. This observa-
The Americ
tion led them to speculate that somatic mutations in the

C-terminal helicase domain of CHD4 are molecular drivers

of endometrial cancer progression. Additionally, Zhao

et al.19 reported an increase in the frequency of somatic

CHD4 mutations in endometrial tumors. Interestingly,

one of the variants (p.Arg1127Gly) affects the same argi-

nine residue seen in two of our subjects. According to the

Cosmic database of genetic variations in tumors, the

p.Arg1127Gln variant was identified in gastric tumors

and an p.Arg1173Trp mutant was reported in hematologic

tumors. The subjects in this study do not have a history of

cancer, but we cannot discard the possibility that they will

develop malignant tumors later in life. Further reports of

individuals with germline mutations in CHD4 are required

to determine the risk of cancer in these individuals. Of

note, somatic mutations in SMARCA2 and SMRACA4 are

seen in different types of cancer.47 An increased risk for

malignancy in individuals with Coffin-Siris and Nico-

laides-Baraitser syndrome has been debated but has not

yet been clinically proven.48

In summary, we introduce an intellectual disability

syndrome associated with macrocephaly, facial dysmor-

phisms, hearing loss, ventriculomegaly, hypogonadism,

and various congenital anomalies including heart defects

and bone fusions. This report provides insight on the

role of CHD4 during human development and expands

the increasingly recognized group of Mendelian disorders

of chromatin remodeling. This is intriguing because

CHD4 is not only a chromatin remodeler but also a critical

subunit of a multiprotein histone deacetylase complex,

suggesting that alteration in chromatin modeling and

histone acetylation may be the culprit. Future descriptions

of individuals with this condition will be needed to better

understand the phenotypic variability and establish

genotype-phenotype correlations. In this study we success-

fully applied the recently available tool of web-based gene

matching and the mouse phenotyping consortium. It

provides yet another example of the utility of data sharing

in facilitating gene discovery in rare syndromes.
Supplemental Data

Supplemental Data include case reports and one table and can be

found with this article online at http://dx.doi.org/10.1016/j.ajhg.

2016.08.001.
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