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GWIS: Genome-Wide Inferred Statistics
for Functions of Multiple Phenotypes

Harold A. Nieuwboer,1 René Pool,1 Conor V. Dolan,1 Dorret I. Boomsma,1 and Michel G. Nivard1,*

Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association

study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic

means, and covariances are available. A GWIS can be performed regardless of sample overlap between the GWAS of the phenotypes

on which the function depends. Because a GWIS provides association estimates and their standard errors for each SNP, a GWIS

can form the basis for polygenic risk scoring, LD score regression, Mendelian randomization studies, biological annotation, and

other analyses. GWISs can also be used to boost power of a GWAS meta-analysis where cohorts have not measured all constituent

phenotypes in the function. We demonstrate the accuracy of a BMI GWIS by performing power simulations and type I error

simulations under varying circumstances, and we apply a GWIS by reconstructing a body mass index (BMI) GWAS based on a

weight GWAS and a height GWAS. Furthermore, we apply a GWIS to further our understanding of the underlying genetic structure

of bipolar disorder and schizophrenia and their relation to educational attainment. Our analyses suggest that the previously reported

genetic correlation between schizophrenia and educational attainment is probably induced by the observed genetic correlation be-

tween schizophrenia and bipolar disorder and the previously reported genetic correlation between bipolar disorder and educational

attainment.
Genome-wide association studies (GWASs) play a

major role in quantifying and understanding the genetic

effects on a given human phenotype. GWASs are

typically meta-analyzed across multiple cohorts. When

the phenotype of interest is defined in terms of several

other phenotypes, this requires all of these phenotypes

to be measured in all cohorts (and participants) that

participate in the meta-analysis. We propose a method

of genome-wide inferred study (GWIS), which allows

one to approximate GWAS summary statistics for a

phenotype that is a function of other phenotypes.

This approximation is based on a linearization of

the function in question and GWAS summary statis-

tics for the phenotypes on which the function depends.

We replicate a body mass index (BMI) GWAS using a

GWIS based on a height (MIM: 606255) GWAS and a

weight GWAS. This GWIS is shown to be accurate

when compared to the original GWAS. We proceed to

use a GWIS to show that the observed genetic correlation

between schizophrenia (MIM: 181500) and educatio-

nal attainment is probably caused by the observed

genetic correlation between schizophrenia and bipolar

disorder (MIM: 125480) and the observed genetic

correlation between bipolar disorder and educational

attainment.

We start by providing a rigorous derivation of the

GWIS. Let V ¼ f(P1,..., Pk) be a function of the k pheno-

types P1,..., Pk. Let S ~ bin(n ¼ 2, q) be a binomially

distributed variable corresponding to the number of

effect alleles (EA) of a biallelic SNP, where q denotes the

effect allele frequency. Let N denote the sample size.
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We assume we have a multivariate linear regression
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(Equation 1)

which we write as

P ¼ Sbþ e: (Equation 2)

P is a N3 kmatrix, S is a N3 2matrix, b is a 23 kmatrix,

and e is a N 3 k matrix. We assume that each row of e fol-

lows a multivariate normal distribution with zero mean

vector and covariance matrix S and that the rows of e

are pairwise independent. Now assume that only an esti-

mate for the matrix b (denoted by bb) is known, along

with the standard errors of each of the cb1j , the covariance

matrix between the phenotypes P1,..., Pk , and the mean of

each phenotype. This is equivalent to having the summary

statistics of the GWASs of each of the k phenotypes and

their phenotypic covariances.

The goal is to estimate l0; l1 in

f ðP1i;.;PkiÞ ¼: Vi ¼ l0 þ l1Si þ ei (Equation 3)

with ei normally distributed with zero mean. This is equiv-

alent to performing a GWAS of V. To do this, we use a first-

order Taylor approximation of V around the point

EðsÞ :¼ ðE½P1i j Si ¼ s�;.; E½Pki j Si ¼ s�Þ
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for s¼ 0,1,2. The point EðsÞ corresponds to themean of the

phenotypes of the individuals who have s effect alleles on

this SNP. Thefirst-order Taylor approximation is of the form

Li :¼ f ðEðsÞÞ þ
Xk
l¼1

vf ðEðsÞÞ
vPl

ðPli � E½Pli j Si ¼ s�Þ;

where vf ðEðsÞÞ=vPl denotes the partial derivative of f with

respect to Pl, evaluated in the point EðsÞ. Then, it follows

that

E½Li j Si ¼ s� ¼ E½f ðEðsÞÞ j Si ¼ s� ¼ f ðEðsÞÞ; (Equation 4)

since for each l in 1,..., k,

E½Pli � E½Pli j Si ¼ s� j Si ¼ s� ¼ 0

by the linearity of the expectation operator. Equation 4

shows that the mean of the linear approximation is equal

to the function evaluated in the phenotypic mean of indi-

viduals that have s effect alleles. The error incurred in the

linearization process takes the form

1

2

Xk
j¼1

Xk
l¼1

v2f
�
~E�

vPjvPl

�
Pji � E

�
Pji j Si ¼ s

��ðPli � E½Pli j Si ¼ s�Þ

for some ~E in between the two points (P1i,..., Pki) and EðsÞ.
Note that the linearization is possible only if f satisfies

certain regularity conditions on the relevant space of

phenotype values. Notably, division by 0 is not allowed.

This can be avoided by linear transformation of the

observed phenotypes, and the parameters in the b matrix.

We now derive a linear model for our approximate

expression for E½Vi j Si ¼ s�. We write

E½Li j Si ¼ s� ¼ l0 þ l1s

and note that if s is 0, we have a direct approximation

for l0:

cl0 ¼ E½Li j Si ¼ 0�:
However, as we have shown, E½Li j Si ¼ s� ¼ f ðEðsÞÞ, so our

approximation for l0 becomes

cl0 ¼ f ðEð0ÞÞ

¼ f ðb01; b02;.; b0kÞ;

i.e., the function f evaluated at the intercepts of our

linear regression model. We can also estimate l1 ¼
ðE½Li j Si ¼ s� � l0Þ=s by evaluating this expression for s ¼
1,2 and weighing the results by their (estimated) relative

population frequencies. The expression for cl1 is given by

cl1 ¼ 2qð1� qÞ
2qð1� qÞ þ q2

�
f ðEð1ÞÞ �cl0	

þ q2

2qð1� qÞ þ q2
f ðEð2ÞÞ �cl0

2
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2qð1� qÞ � c	
¼
2qð1� qÞ þ q2

f ðb01 þ b11; b02 þ b12;.; b0k þ b1kÞ � l0

þ q2

2qð1� qÞ þ q2
f ðb01 þ 2b11; b02 þ 2b12;.; b0k þ 2b1kÞ�cl0

2
:

To test our estimates for l0 and l1, we require their stan-

dard errors. Because we do not have the covariance matrix

of bb, we must first estimate the covariance between each of

the cbij . With the theory of multivariate linear regression,

we know that the least-squares estimator of b in the model

P ¼ Sbþ e is given by

bb ¼ �STS��1
STP

with corresponding variance-covariance matrix

Var

bb� ¼ �STS��1

5S; (Equation 5)

assuming that columns of e have zero mean and the rows

of e are pairwise uncorrelated.1 The matrix S is a k 3 k

matrix with the elements Sjl ¼ Covðej; elÞ, the covariance

between the errors in the linear regressions of the pheno-

types Pj and Pl on S. This is under the assumption of

complete sample overlap. However, this specific solution

requires one to analyze all phenotypes at the same

time, which is not the case here. Because we are interested

in VarðbbÞ but (STS)�1 and S are unknown, we must find

a suitable approximation of these. We assume that

the effect of each of the individual SNPs is small, so

VarðejÞzVarðPjÞ and Covðej; elÞzCovðPj;PlÞ. Expanding ST

S gives

STS ¼
"

N
X

SiX
Si

X�
S2i
� #

with inverse

�
STS
��1 ¼ 1

N
P�

S2i
�� ðP SiÞ2

"X
ðSiÞ2 �

X
Si

�
X

Si N

#
:

From this, we can infer

Cov

�cb1j ;cb1l

	
¼ NCov

�
Pj;Pl

�
N
P�

S2i
�� ðP SiÞ2

¼ Cov
�
Pj;Pl

�
NVarSi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
Pj

�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NVarSi

p Cor
�
Pj;Pl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðPlÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NVarSi

p

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
ej
�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NVarSi

p Cor
�
Pj;Pl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðelÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NVarSi

p
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¼ SEj,Cor
�
Pj;Pl

�
,SEl:
In case there is only partial sample overlap, Covðcb1j ; cb1lÞ
may also be approximated as

SEj,Cor
�
Pj; Pl

� NXj;lffiffiffiffiffiffiffiffiffiffi
NjNl

p ,SEl: (Equation 6)

Here, NXj;l is the number of individuals that is present

in both the GWAS of Pj and the GWAS of Pl, Nj is the num-

ber of individuals in the GWAS for Pj, and Nl is the number

of individuals in the GWAS for Pl. If one cannot deter-

mine Cor(Pj, Pl) directly or the sample overlap between

the GWASs is unknown, it is possible to use LD score

regression based2 on the summary statistics to estimate

CorðPj;PlÞðNXj;l=
ffiffiffiffiffiffiffiffiffiffi
NjNl

p Þ. Note that in the absence of sam-

ple overlap, NXj;l is zero and thus Covðcb1j ; cb1lÞ is zero.
Havingobtained thecovariancematrix for bb,wecanapply

the Delta-method3 to find the standard errors ofcl0 andcl1 .
The derivation above is based on linear regression assuming

a continuous response variable. However, a link function

may be used to apply this to other response variables.

Body mass index (BMI) is a well-known example of a var-

iable that is a (non-linear) function ofmultiple phenotypes,

defined as weight over height squared. Here we apply a

GWIS to BMI. Let mw, mh denote the means of weight and

height, respectively, and let bw0; bh0; bw1; bh1 denote the in-

tercepts ofweight andheight and the regression coefficients

in the regression of weight and height on the SNP, respec-

tively. We assume all of these parameters are known. As

shown above, themeanof our approximatedBMI is equal to

mw

m2
h

; (Equation 7)

i.e., BMI calculated for the mean weight and mean height.

In our case, the GWAS summary statistics pertained to stan-

dardized weight and height but were destandardized before

computing theGWIS. Thedestandardization is basedon in-

formation on population averages and standard deviations

obtained from the Netherlands Twin Register (NTR).4 The

destandardization involves multiplying the effect sizes by

the standard deviation and using the population mean as

a substitute for the intercept. The mean of the approxima-

tion is in general going to be equal to the function evaluated

in the means of the phenotypes. The linear regression of

BMI on the number of effect alleles of a given SNP is

BMIi ¼ bBMI0 þ bBMI1,Si þ di; (Equation 8)

where bBMI0 is the intercept of the linear regression, bBMI1 is

the regression coefficient, and di is the residual of the linear

regression for the ith subject.

Then, the derived values for the intercept and the regres-

sion coefficient become

bBMI0 ¼
bw0

b2
h0

(Equation 9)

and
The Americ
bBMI1 ¼ 2qð1� qÞ
2qð1� qÞ þ q2

 
bw0 þ bw1

ðbh0 þ bh1Þ2
� bBMI0

!

þ1

2
,

q2

2qð1� qÞ þ q2

 
bw0 þ 2bw1

ðbh0 þ 2bh1Þ2
� bBMI0

! ;

(Equation 10)

where q is the effect allele frequency of the SNP.

We demonstrate the accuracy of the GWIS for BMI by

performing type I error rate and power simulations, both

for the case where all required parameters are given and

for the case where the parameters are mildly misspecified.

There was no observed increase in type I error rate for

GWIS, relative to a traditional BMI GWAS, with a GWIS

having power comparable to a GWAS when all parameters

were known; larger misspecification of the population

parameters did not influence either the power or the type

I error rate. However, when there is no sample overlap be-

tween the constituent height and weight GWASs, there is

an approximate 15%–20% loss of power but no increase

in type I error rate (see Table 1). It should be noted that

the scale of the GWIS effect sizes and standard errors

with misspecified population parameters may not be the

same as that of the original GWAS. However, as shown

by our simulations, inference based on the GWIS does

not appear to suffer from misspecified population parame-

ters. We have used a linear approximation to perform the

GWIS. In Appendix A we outline the second-order approx-

imation of BMI, which should be used in conjunction with

a second-order Delta-rule. As can be seen in Table 1, the

second-order approximation of BMI does provide an in-

crease in power relative to the first-order approximation.

We apply GWIS by reconstructing a BMI GWAS based on

publicly available height and weight GWAS summary sta-

tistics5 (see Web Resources). For each SNP included in the

height and weight GWAS with a minor allele frequency

(MAF) larger than 0.05 (as obtained from the HapMap

Consortium6), we infer estimates and standard errors of

these estimates for the association between the SNP and

BMI. In a GWAS, BMI must be ascertained for all partici-

pants, whereas in a GWIS, we rely on parameter estimates

that reflect the genetic effects on height and weight. Note

that the original GWASs of height and weight do not have

to be performed in a common set of individuals.

Based on the summary statistics of GWASs of standard-

ized male height and weight,5 our GWIS replicated 310

out of 356 genome-wide hits (a 87.1% replication rate)

and produced three false-positive results (see Table S1)

when compared to a true BMI GWAS performed in the

same sample. Todemonstrate themethodwhen the constit-

uent phenotypes (i.e., weight and height) are measured

independently, we substituted the male height GWAS re-

sults for the female height results. Here we assumed that

themale and female genetic architecture forheight inmales

and females are identical, i.e., the true effect sizes of each

SNP on height is the same for males and females.7 The
an Journal of Human Genetics 99, 917–927, October 6, 2016 919



Table 1. Type I Error Rates and Power for GWAS and Several GWIS Scenarios

Simulated Effect Sample R2 GWAS GWIS
GWIS No
Intercept

GWIS 50%
Sample Overlap

GWIS 10%
Sample Overlap

GWIS 0%
Sample Overlap

GWIS
Destandardized

GWIS Misspecified
Height Mean

GWIS Second
Order

Type I Error

0.00000 10,000 0.051 0.0509 0.0497 0.0523 0.0466 0.0461 0.0524 0.0512 0.0456

Power

0.5477 1,000 0.00192 0.166 0.162 0.182 0.141 0.12 0.099 0.165 0.148 0.185

0.5477 2,000 0.00128 0.251 0.251 0.278 0.219 0.196 0.167 0.278 0.283 0.276

0.5477 3,000 0.00128 0.394 0.398 0.392 0.289 0.228 0.252 0.359 0.391 0.382

0.5477 4,000 0.00116 0.475 0.474 0.484 0.39 0.311 0.317 0.473 0.496 0.464

0.5477 5,000 0.00114 0.573 0.578 0.548 0.441 0.39 0.392 0.577 0.599 0.583

0.5477 6,000 0.00110 0.671 0.677 0.625 0.497 0.465 0.445 0.658 0.647 0.642

0.5477 7,000 0.00105 0.702 0.712 0.691 0.611 0.482 0.496 0.698 0.717 0.714

0.5477 8,000 0.00099 0.764 0.764 0.759 0.648 0.568 0.538 0.776 0.804 0.761

0.5477 9,000 0.00103 0.806 0.81 0.832 0.709 0.632 0.633 0.826 0.811 0.819

0.5477 10,000 0.00101 0.862 0.872 0.851 0.746 0.642 0.661 0.842 0.868 0.86

0.5477 11,000 0.00100 0.898 0.901 0.899 0.79 0.7 0.682 0.883 0.899 0.898

0.5477 12,000 0.00098 0.901 0.904 0.91 0.81 0.75 0.75 0.925 0.91 0.922

0.5477 13,000 0.00096 0.934 0.932 0.942 0.853 0.789 0.767 0.934 0.951 0.923

0.5477 14,000 0.00096 0.936 0.936 0.942 0.852 0.798 0.79 0.955 0.951 0.953

0.5477 15,000 0.00098 0.968 0.968 0.952 0.921 0.853 0.807 0.962 0.96 0.961

0.5477 17,000 0.00099 0.986 0.987 0.979 0.928 0.881 0.859 0.968 0.979 0.971

0.5477 19,000 0.00094 0.988 0.987 0.988 0.943 0.909 0.903 0.984 0.983 0.981

The table reports power estimates and type I error for simulated body mass index (BMI) genome-wide inferred statistics (GWIS) for several sample sizes and effect sizes, under several different circumstances. GWAS refers to a
linear regression of BMI on the simulated genetic variant, GWIS is an approximation of the same linear regression based on the technique outlined in the paper. We reduce sample overlap between the height and weight
sample that are used in GWIS andwe explore the effect of substituting the regression intercept with the populationmean and standardization of height and weight and subsequent destandardization in the GWIS. These results
indicate that GWIS provides similar power to genome-wide association study (GWAS) when the intercepts and scaling of the original GWASs are known. In case the original samples have little to no overlap, the GWIS suffers
from approximately 15%–20% power loss for moderate effect and sample sizes. On the other hand, a second-order approximation of BMI gives a similar or higher power to a GWAS of the original BMI GWAS.
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Figure 1. Manhattan Plot of BMI GWAS and GWIS
Manhattan plots of �log p values for the (A) BMI GWAS as per-
formed by Randall et al.5, (B) BMI GWIS using male height data,
and (C) BMI GWIS using female height data. The location on
the x axis corresponds to the genomic location of the SNP. In
each figure, the blue line corresponds to p ¼ 1 3 10�5 and the
red line corresponds to p ¼ 5 3 10�8.

Figure 2. Comparison of BMI GWAS and BMI GWIS Summary
Statistics Based on Male Height Data
Scatterplots of BMI GWAS effect sizes versus GWIS (male height)
(A) effect sizes, (B) standard errors, and (C) Z scores. The top left
corner for each figure reports the squared correlation.
GWIS based on independent height and weight samples

replicated 135 out of 356 genome-wide significant signals

(a 37.9% replication rate) and yieldedno false-positive asso-

ciations. The corresponding Manhattan plots are shown in

Figure 1. We constrain the set of SNPs to those SNPs for

which at least 58,000 individuals were genotyped for either

height orweight, andweplot theGWISeffect size versus the

GWAS effect size, theGWIS standard error versus theGWAS

standard error, and the GWIS Z score versus the GWAS Z

score (see Figure 2 for the GWIS based on male height and

Figure 3 for theGWISbasedon femaleheight). Even though

theManhattan plots and the replication rate reveal a loss of

power, both forms of GWIS and the original BMI GWAS

implicate associations in the same genomic regions. The

fact that the GWIS based on female height has less power

than the GWIS based on male height is consistent with
The Americ
the power simulations. Furthermore, we have also simu-

lated a scenario (under the null hypothesis of no SNP effect)

where the sample size of the original weight GWAS and

heightGWASdiffer byup to twoorders ofmagnitude. These

simulations showed that therewas no inflation in the type I

error rate, even when one of the two SNPs was measured in

100,000 individuals and the other was measured in 1,000

individuals.

Using LD score regression,2 we computed the genetic

correlations between BMI based on the GWAS summary
an Journal of Human Genetics 99, 917–927, October 6, 2016 921



Figure 3. Comparison of BMI GWAS and BMI GWIS Summary
Statistics Based on Female Height Data
Scatterplots of BMI GWAS effect sizes versus GWIS (female height)
(A) effect sizes, (B) standard errors, and (C) Z scores. The top left
corner for each figure reports the squared correlation.
statistics, the GWIS using male height data, and the GWIS

using female height data. Because LD score regression re-

quires information on the number of participants available

per SNP, we assume the sample size for the BMI GWIS to be

the lowest per-SNP sample size of either the height or

weight GWAS used. As expected, the genetic correlation

between BMI as measured in GWAS, BMI as approximated

in GWIS using male height data, and BMI as approximated

in GWIS using female height data is close to unity (see

Table 2). Next, we estimated genetic correlations between

BMI based on the GWAS, BMI based on GWIS using male
922 The American Journal of Human Genetics 99, 917–927, October
height data, BMI based on GWIS using female height

data and educational attainment,8 LDL cholesterol,9 age

at menarche,10 rheumatoid arthritis11 (MIM: 180300),

and coronary artery disease12 (MIM: 607339). Inference

made on the genetic correlates of BMI based on GWIS

closely mirror the inference made based on BMI GWAS

summary statistics.

Ruderfer et al.13 performed GWASs of bipolar disorder

(BIP), schizophrenia (SCZ), the pooled bipolar and schizo-

phrenia case subjects versus the pooled control subjects

(BIPþ SCZ), and a GWAS in which the bipolar case subjects

featured as control subjects and the schizophrenia case

subjects as case subjects (SCZ � BIP) (see Web Resources).

The latter two studies can be reproduced with a GWIS.

The primary interest of these studies is to identify overlap

and contrast between SCZ and BIP. SCZ and BIP are two

psychiatric disorders with substantially correlated genetic

underlying liabilities.14 This correlation prohibits the

investigation of genetic variants that are specifically linked

to either SCZ or BIP, as well as the investigation of genetic

overlap between tertiary traits and SCZ or BIP. As a more

exotic application of GWIS, we determine whether the ge-

netic correlation between SCZ or BIP and a third trait is

specific to either SCZ or BIP. To this end, we defined a func-

tion that decomposes the genetic SCZ liability into a part

shared with the genetic liability of BIP and a residual,

referred to as unique genetic SCZ liability (unique SCZ).

In a similar manner, we defined a function that decom-

poses the genetic BIP liability into a part shared with the

genetic liability of SCZ and a residual, referred to as unique

genetic BIP liability (unique BIP). These functions are

given by

Unique SCZ :¼ ð1þ cÞSCZ� ð1� cÞBIP

Unique BIP :¼ ð1þ dÞBIP� ð1� dÞSCZ

where

c ¼ h2
BIP � CohðBIP; SCZÞ

h2
BIP þ CohðBIP; SCZÞ d ¼ h2

SCZ � CohðBIP; SCZÞ
h2
SCZ þ CohðBIP; SCZÞ:

Here, Coh(BIP,SCZ) denotes the coheritability between

BIP and SCZ (i.e., hSCZ,rBIP;SCZ,hBIP with rBIP;SCZ the latent

phenotypic correlation between bipolar disorder and

schizophrenia) and h2
BIP;h

2
SCZ denote the heritabilities of

BIP and SCZ, respectively. Note that we cannot measure

unique SCZ or unique BIP in individuals. Furthermore,

the functions themselves depend on estimated heritabil-

ity and coheritabilities, which leads to less accurate esti-

mates of genetic effects on unique SCZ and unique BIP.

This definition of unique BIP and unique SCZ is similar

but not equivalent to a conditional analysis of BIP cor-

rected for SCZ and SCZ corrected for BIP. In a conditional

regression analysis of BIP corrected for SCZ, BIP is first re-

gressed on SCZ. The residuals of this regression are then

regressed on the SNP. However, the decomposition of

BIP into unique BIP and a genetic component shared
6, 2016



Table 2. Estimated Genetic Correlations

BMI GWIS (Female
Height) BMI GWAS

Rheumatoid
Arthritis Age at Menarche LDL

Educational
Attainment

Coronary Artery
Disease

BMI GWIS
(male height)

0.967 (0.012) 1.007 (0.002) 0.029 (0.045) �0.338 (0.035) 0.019 (0.058) �0.145 (0.053) 0.153 (0.063)

BMI GWIS
(female height)

– 0.974 (0.013) 0.018 (0.053) �0.371 (0.041) �0.003 (0.061) �0.157 (0.062) 0.150 (0.071)

BMI GWAS – – 0.039 (0.042) �0.332 (0.032) 0.013 (0.050) �0.160 (0.047) 0.173 (0.061)

Genetic correlation and standard errors between a BMI GWAS, two BMI GWISs (for male and female height), and multiple related traits. Correlations are estimated
using LD score regression.
with SCZ is equivalent to regression BIP on the genetic

component of SCZ, and then regressing the residuals on

the SNP. It should be noted that a conditional analysis

can be performed only in a fully phenotyped sample,

which is difficult or even impossible for mutually exclu-

sive dichotomous traits such as BIP and SCZ.15 Because

effect sizes for SCZ and BIP are reported in terms of

odds ratios, we take their logarithms to obtain effect sizes

on the liabilities. Even though the genetic effects on the

latent variables is unknown, for small effect sizes, the ef-

fects on the latent variables are approximately a constant

multiple of the log(odds ratios) obtained from logit

regression. We verified this by simulating a bivariate

threshold model with moderately high genetic correla-

tion and performing GWASs of both the latent variable

and dichotomous variables. Then, we perform GWISs of

the latent GWAS effect sizes and the dichotomous

GWAS effect sizes. Table 3 shows that the latent and

dichotomous GWASs and latent and dichotomous GWISs

differ only by a constant multiple (for reasonably small

effect sizes).

These functions are derived as follows. Given two phe-

notypes A and B, we can use our method to define a new

trait as

X :¼ ð1þ cÞA� ð1� cÞB (Equation 11)

for a specific constant c. In our case, this constant is chosen

such that the genetic correlation betweenX and B becomes

zero. However, onemay also choose the constant such that

the environmental or phenotypic correlation between

X and B becomes zero.

In terms of linear regression, this can be seen as

ð1þ cÞA ¼ ð1� cÞBþ X

so that X is the residual of the linear regression (with fixed
coefficients) of (1 þ c)A on (1 � c)B.

Note that zero correlation does not imply that X and B

are independent; rather, they have only become linearly

independent. The expression for c is

c :¼ VarB� CovðA;BÞ
VarBþ CovðA;BÞ (Equation 12)

where Cov and Var denote the covariances and variances
that are specific to the type of correlation that is consid-
The Americ
ered. For example, in our case of genetic correlation, Cov

denotes the coheritability and Var denotes the heritability

of the traits.

We derive c by solving Cov(X,B) ¼ 0, so

CovðX;BÞ ¼ 0

ð1þ cÞCovðA;BÞ � ð1� cÞCovðB;BÞ ¼ 0

ðCovðA;BÞ þ CovðB;BÞÞc ¼ CovðB;BÞ � CovðA;BÞ

c ¼ VarðBÞ � CovðA;BÞ
VarðBÞ þ CovðA;BÞ;

which is well-defined if and only if VarðBÞs� CovðA;BÞ,
that is, B is not equal to �A.

An equivalent expression for c is

c ¼ 1� CorðA;BÞ sA
sB

1þ CorðA;BÞ sA
sB

:

The term CorðA;BÞðsA=sBÞ corresponds to the slope of

the linear regression of B on A. Thus, X is actually the dis-

tance between the data points in a 2-dimensional plane

and their projection onto the linear regression line of

A on B, rather than the vertical distance between the

predicted value of A and the data point. This allows for

error in the assessment of both A and B, rather than only

measurement error in A. This is important because X is

analyzed in a GWIS and the estimates for the association

between both A and B and a SNP have a certain standard

error.

We performed a GWIS of unique SCZ and a GWIS of

unique BIP. For our analysis of unique SCZ and unique

BIP in a GWIS, we included SNPs with information values

between 0.9 and 1.1 as reported by Ruderfer et al. and mi-

nor allele frequencies larger than 0.05 (as obtained from

the HapMap Consortium6). Both inclusion criteria reflect

common practice in GWASs.16 We used LD score regres-

sion2 to estimate genetic correlations between unique

SCZ, unique BIP, and educational attainment. We checked

that the genetic correlations were zero between unique BIP

and SCZ and between unique SCZ and BIP by applying

LD score regression. Further investigation suggests that
an Journal of Human Genetics 99, 917–927, October 6, 2016 923



Table 3. Accuracy of GWIS Based on GWAS of Dichotomous Traits

R-squared SNP effect Latent GWAS Dichotomous GWAS Ratio 1 Latent GWIS Dichotomous GWIS Ratio 2

0.0001 0.0050 0.0048 0.0089 1.8383 0.0059 0.0101 1.7147

0.0001 0.0100 0.0109 0.0167 1.5263 0.0125 0.0179 1.4290

0.0002 0.0150 0.0167 0.0279 1.6740 0.0179 0.0300 1.6766

0.0002 0.0200 0.0198 0.0346 1.7509 0.0234 0.0421 1.8034

0.0003 0.0250 0.0241 0.0430 1.7855 0.0281 0.0514 1.8283

0.0004 0.0300 0.0285 0.0511 1.7951 0.0324 0.0590 1.8210

0.0006 0.0350 0.0350 0.0638 1.8226 0.0410 0.0741 1.8089

0.0007 0.0400 0.0393 0.0706 1.7971 0.0460 0.0834 1.8122

0.0009 0.0450 0.0452 0.0814 1.8027 0.0514 0.0933 1.8152

0.0010 0.0500 0.0494 0.0881 1.7848 0.0562 0.1002 1.7830

0.0013 0.0550 0.0559 0.1013 1.8104 0.0646 0.1178 1.8237

0.0014 0.0600 0.0588 0.1058 1.7995 0.0682 0.1224 1.7950

0.0017 0.0650 0.0660 0.1193 1.8073 0.0751 0.1367 1.8197

0.0019 0.0700 0.0699 0.1249 1.7853 0.0806 0.1443 1.7914

0.0023 0.0750 0.0760 0.1337 1.7594 0.0862 0.1529 1.7742

0.0025 0.0800 0.0797 0.1402 1.7597 0.0915 0.1609 1.7591

0.0028 0.0850 0.0851 0.1533 1.8022 0.0970 0.1743 1.7969

0.0032 0.0900 0.0907 0.1633 1.8000 0.1028 0.1844 1.7935

0.0035 0.0950 0.0949 0.1691 1.7812 0.1093 0.1935 1.7709

0.0038 0.1000 0.0986 0.1763 1.7884 0.1137 0.2032 1.7874

0.0085 0.1500 0.1495 0.2671 1.7861 0.1707 0.3039 1.7806

0.0149 0.2000 0.1969 0.3506 1.7804 0.2259 0.4018 1.7790

0.0232 0.2500 0.2453 0.4375 1.7833 0.2829 0.5030 1.7777

0.0325 0.3000 0.2890 0.5188 1.7950 0.3356 0.6014 1.7920

0.0442 0.3500 0.3356 0.6060 1.8059 0.3914 0.7064 1.8046

0.0565 0.4000 0.3765 0.6917 1.8370 0.4416 0.8115 1.8377

0.0707 0.4500 0.4184 0.7725 1.8464 0.4936 0.9118 1.8474

0.0862 0.5000 0.4581 0.8589 1.8749 0.5431 1.0204 1.8787

Results obtained from simulatedGWASon adichotomousoutcome and simulatedGWIS performed on the continuous latent variable produces effect sizes that differ
approximately by a constantmultiple, relative to the dichotomous GWAS and dichotomous GWIS. The reported values here aremeans over 500 runs, each contain-
ingN¼10,000 individuals. Ratio 1 reflects the ratio of themeaneffect size from the dichotomousGWASdivided by themeaneffect size of the latentGWAS, and ratio
2 reflects the mean effect of the dichotomous GWIS divided by the mean effect of the latent GWIS. Given small effects, the results are approximately equal up to a
multiplicative constant. For very large SNP effect sizes, much larger than is usual for polygenic traits, these ratios no longer appear to be constant.
unique BIP is, but unique SCZ is not, genetically correlated

with educational attainment (Table 4). This suggests that

the observed genetic correlation between schizophrenia li-

ability and educational attainment is fully explained by its

genetic correlation with bipolar disorder liability.We verify

the correctness of our analysis by simulating a bivariate

threshold model containing both genetic and environ-

mental effects, where we show that substituting the loga-

rithm of the odds-ratio is approximately correct for small

SNP effect sizes. We also show that the unique traits are

genetically uncorrelated.

As shown by the replication of the BMI GWAS, GWIS

provides an accurate approximation of GWAS summary
924 The American Journal of Human Genetics 99, 917–927, October
statistics. GWIS can yield significant insight in the genetic

architecture of phenotypes that can be expressed as (non-

linear) function of phenotypes. This is demonstrated by

the application of a GWIS to a function of bipolar disorder

and schizophrenia, which decomposes these traits into a

part that is shared between the two and a part that is

unique to each of the traits. We have used this decomposi-

tion to show that it is likely that the genetic correlation

between schizophrenia and educational attainment origi-

nates in the substantial genetic overlap between bipolar

disorder and schizophrenia and the genetic correlation be-

tween bipolar disorder and educational attainment. How-

ever, GWISs have a more general domain of application.
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Table 4. Genetic Correlations between GWISs of Unique
Schizophrenia, Unique Bipolar Disorder, and GWASs for Bipolar
Disorder, Schizophrenia, and Educational Attainment

Unique SCZ Unique BIP SCZ BIP

Educational
attainment

0.041 (0.082) 0.218 (0.102) 0.148 (0.050) 0.273 (0.067)

BIP 0.106 (0.110) 0.816 (0.031) 0.572 (0.063) –

SCZ 0.882 (0.026) �0.016 (0.101) – –

Genetic correlations along with their standard errors between schizophrenia,
bipolar disorder, unique schizophrenia, unique bipolar disorder, and educa-
tional attainment. These correlations are obtained with LD score regression.

Figure 4. A Schematic Representation of the Role of GWISs in
Relation to Traditional GWASs
A GWIS provides a connection between several GWASs of pheno-
types and a GWAS of a function of these phenotypes, without
requiring access to the actual phenotypical data.
A GWIS can, for example, be performed for equations

describing the steady-state kinetics of (bio-)chemical reac-

tions involving metabolites of which the concentrations

have been analyzed in a GWAS or for equations describing

(active) membrane transport of proteins or metabolites

given that GWAS summary statistics are available for their

concentrations on both sides of the barrier. Another appli-

cation of GWISs is increasing the effective sample size for

the GWAS of a complex function. If not all constituent

phenotypes have been measured in genotyped cohorts,

these cohorts are excluded from the GWAS but can still

contribute to a GWIS.

Successful application of a GWIS depends on the avail-

ability of sufficiently accurate GWAS summary statistics,

the number of phenotypes involved in the function, as

well as the degree of approximation. The accuracy of

the summary statistics of each of the individual GWASs

affects the accuracy of the GWIS results. Furthermore,

the error of the GWIS statistics is likely to increase as

more phenotypes are included, due to accumulation of

the error in the GWAS results of each of these pheno-

types. The degree of approximation used also affects the

GWIS results, as the quadratic approximation of a func-

tion generally fits better than a linear approximation

(see Appendix A for a quadratic approximation of BMI).

As the number of GWASs increases, GWISs become appli-

cable to a broader domain of functions. Increases in

sample size allows GWISs to yield more accurate results.

We note that our type I error analyses were based on

BMI. We assume that these results will generalize to

similar functions, but may require verification given

more complex functions.

We recommend removing SNPs with low allele fre-

quencies or poor imputation quality and SNPs available

in a limited number of participants in the original GWASs

(for height and weight) before performing GWIS.

Although GWIS requires knowledge of the intercept of

each linear regression of the original phenotypes on the

SNP, substituting the population mean works reasonably

well. Our simulations show that in the best case scenario,

GWISs can be as powerful as GWASs. On the other hand,

the empirical results for BMI show that GWIS remains

a correct approximation of a GWAS, even when a very

limited amount of information on the population param-
The Americ
eters is available. A heuristic technique for performing a

GWIS is available in the Web Resources.

With these caveats in mind, however, our method pro-

vides a means of obtaining the GWAS summary statistics

of a variable that is a function of phenotypes when

GWAS summary statistics for these phenotypes are avail-

able in (not necessarily overlapping) samples, as outlined

in Figure 4. This remains possible even when this variable

is difficult or impossible to measure in individual partici-

pants. This shows that GWIS can yield significant insight

in the genetic architecture of a large domain of

phenotypes.
Appendix A. A Second-Order Approximation of BMI

The second-order Taylor approximation of BMI is given by

Qi ¼ E½Wi j Si ¼ s�
E½Hi j Si ¼ s�2 þ

Wi � E½Wi j Si ¼ s�
E½Hi j Si ¼ s�2

þ�2E½Wi j Si ¼ s�ðHi � E½Hi j Si ¼ s�Þ
E½Hi j Si ¼ s�3

þ1

2

 
0þ�4ðWi � E½Wi j Si ¼ s�ÞðHi � E½Hi j Si ¼ s�Þ

E½Hi j Si ¼ s�3

þ 6E½Wi j Si ¼ s�ðHi � E½Hi j Si ¼ s�Þ2
E½Hi j Si ¼ s�4

!

so that

E½Qi j Si ¼ s�

¼ E½Wi j Si ¼ s�
E½Hi j Si ¼ s�2 �

2CovðWi;Hi j Si ¼ sÞ
E½Hi j Si ¼ s�3

þ 3E½Wi j Si ¼ s�VarðHi j Si ¼ sÞ
E½Hi j Si ¼ s�4 :

Then, using this for our linear regression

E½Qi j Si ¼ s� ¼ l0 þ l1s

together with s ¼ 0 gives

cl0 ¼ bw0

b2
h0

� 2CovðW;HÞ
b3
h0

þ 3bw0VarðHÞ
b4
h0
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under the assumption that CovðWi;Hi j Si ¼ sÞ ¼
CovðW;HÞ and a similar assumption for the variance of

height. Then,
cl1 ¼ 2qð1� qÞ
2qð1� qÞ þ q2

 
bw0 þ bw1

ðbh0 þ bh1Þ2
� 2CovðW;HÞ

ðbh0 þ bh1Þ3
þ 3ðbw0 þ bw1ÞVarðHÞ

ðbh0 þ bh1Þ4
�
 
bw0

b2
h0

� 2CovðW;HÞ
b3
h0

þ 3bw0VarðHÞ
b4
h0

!!

þ1

2
,

q2

2qð1� qÞ þ q2

 
bw0 þ 2bw1

ðbh0 þ 2bh1Þ2
� 2CovðW;HÞ
ðbh0 þ 2bh1Þ3

þ 3ðbw0 þ 2bw1ÞVarðHÞ
ðbh0 þ 2bh1Þ4

�
 
bw0

b2
h0

� 2CovðW;HÞ
b3
h0

þ 3bw0VarðHÞ
b4
h0

!!
To demonstrate the usefulness of a second-order

approximation, we perform type I error rate and power

simulations for a GWIS based on the second-order

approximation of BMI. The results in Table 1 indicate

that a second-order approximation causes a significant

increase in power for moderate samples sizes and moder-

ate effect sizes, while not showing an increase in type I

error rate.
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Web Resources

GIANT Consortium Data Files, http://portals.broadinstitute.

org/collaboration/giant/index.php/GIANT_consortium_data_

files

GWIS, https://sites.google.com/site/mgnivard/gwis

PGC summary statistics, https://www.med.unc.edu/pgc/results-

and-downloads

SSGAC (Rietveld et al. data), http://www.thessgac.org/data
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