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Abstract

Fusion transcripts (i.e. chimeric RNAs) resulting from gene fusions have been used successfully 

for cancer diagnosis, prognosis, and therapeutic applications. In addition, many fusion transcripts 

are found in normal human cell lines and tissues, with some data supporting their role in normal 

physiology. Besides chromosomal rearrangement, intergenic splicing can generate them. Global 

identification of fusion transcripts becomes possible with the help of Next Generation Sequencing 

(NGS) technology like RNA-Seq. In the past decade, major advancements have been made for 

chimeric RNA discovery due to the development of advanced sequencing platform and software 

packages. However, current software tools behave differently in terms of specificity, sensitivity, 

time, and computational memory usage. Recent benchmarking studies showed that none of the 

tools are inclusive. The development of high performance (accurate and fast), and user-friendly 

fusion detection tool/pipeline is still an open quest. In this article, we review the existing software 

packages for fusion detection. We explain the methods of the tools, and discuss various factors that 

affect fusion detection. We summarize conclusions drawn from several comparative studies, and 

then discuss some of the pitfalls of these studies. We also describe the limitations of current tools, 

and suggest directions for future development.

INTRODUCTION

Fusion transcript describes a phenomenon in which a hybrid RNA is composed of transcripts 

of two separate genes. Traditionally, such chimeric RNAs were known to be the result of 

gene fusions and are associated with cancer. BCR-ABL1 resulted from t(9;22) in chronic 

myelogenous leukemia (CML) is the classic example [1]. Gene fusions like BCR-ABL are 

found in many tumors, including hematological cancers [2,3] and in solid tumors such as 

prostate cancer [4], lung cancer [5], glioblastoma [6], fibrolamellar hepatocellular carcinoma 

[7], breast cancer [8], skin cancer [9], lymphoid cancers [10], and sarcoma samples [11]. 
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Further Reading
In this review, we focused on the fusion transcripts detection tools, mechanism, factors alter fusion detection, methodology, several 
efforts made by the researchers to compare the tools and pitfalls of these studied. In addition to this, readers can also go through the 
comparative studies to gain more insight on the performance of individual tools [22,55,56,75] and other latest review covering 
discovery and understanding of oncogenic gene fusions [76].
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These fusions are good targets for cancer diagnosis, prognosis, and therapeutic applications 

[2,12]. Several classic fusions, such as: BCR-ABL, PML-RAR, and EML4-ALK, are the 

poster children for successful targeted cancer therapy [13,14].

Even though chimeric RNAs are mostly known to be the products of chromosomal 

rearrangement at the DNA level (Figure 1(a)), fusion transcripts can also be produced by 

trans-splicing (Figure 1(b)) [15,16] and cis-splicing between neighboring genes (Figure 

1(b)) [17,18]. Such “intergenically” produced fusion transcripts can be detected in normal 

human cell lines [18] and tissues [19–22]. Some of them were shown to have functional 

relevance [16].

With the advancement of Next Generation Sequencing (NGS), fusions can be detected either 

in genomic DNA sequencing datasets [23,24], or transcriptome sequencing (RNA-Seq) 

datasets [9,25]. They can be detected from both single-end reads [26] and paired-end reads 

[27] of various lengths. The main advantage of paired-end reads is that the connectivity 

information between the sequenced ends is available. In 2009, two studies shows the initial 

efforts in detecting fusion transcripts from paired RNA-Seq data [27,28]. In these studies, no 

specific fusion detection tool was used. In 2010, first dedicated tool for the fusion detection 

(i.e. FusionSeq) was published [29]. Since 2010, around 33 computational tools have been 

developed for detecting fusion transcripts using RNA-Seq data (see a comprehensive list of 

33 methods in Table 1). However, there are various challenges associated with these tools. 

These tools have been trained and tested on different types of datasets. Their behavior 

changes with datasets. A large amount of time and computational memory is often required. 

In addition to missing true fusion events, these tools can also produce false positives [22]. 

Practical knowledge of these tools in terms of time consumption, computational memory 

usage, sensitivity, and specificity is urgently needed. This review discusses the common 

features, methodology, requirements, and other important issues regarding all of the fusion 

detection tools available to the scientific community. A summery of the benchmarking 

studies of fusion detection tools, and several pitfalls associated with such studies are listed in 

this review. Several limitations of current tools and some future directions are provided here.

FUSION DETECTION TOOLS

Most of the fusion detection tools have been developed in the last six years. Table 1 includes 

most if not all of the popular ones. We can classify the fusion detection tools on the basis of 

the input reads format, type of input reads, and the reference used to align the reads (Table 

2). Other features of fusion detection tools, and default detection and filtering parameters are 

listed In Table 3.

FUSION FORMATION MECHANISM

As discussed above in the introduction section, chimeric RNAs can be generated at both 

DNA level (through chromosomal rearrangements) (Figure 1(a)) and RNA level (through 

cis- or trans-splicing) (Figure 1(b)). Mechanism of generating identical fusion transcripts 

may differ in cancer and normal cases. The fusions JAZF1-JJAZ1 and PAX3-FOXO1 are the 

two such examples of fusion transcripts generated by chromosomal translocation (i.e. DNA 
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level) in cancer cells but by trans-splicing (i.e. RNA level) in normal cells [30,31]. Although 

all the fusion detection tools provide the information about the fusion type (i.e. 

‘interchromosomal’ and ‘intrachromosomal’ etc.), the prediction of detail mechanism of the 

fusions (translocation, deletion, trans-splicing, cis-spicing between neighboring genes, etc.) 

is impossible with RNA-Seq data alone. Therefore, popular fusion detection tools such as 

SOAPfuse, EricScript, deFuse, Chimerascan, which use only RNA-Seq reads will not 

predict fusion-generating mechanism reliably. Some tools such as Comrad, CRAC, 

FusionMap, IPD-fusion and nFuse use both RNA-Seq reads and WGS reads to predict the 

mechanism of fusions. Those tools can be used to differentiate fusion events that occur at 

DNA level or only at RNA level.

FACTORS AFFECTING FUSION DETECTION

The detection of fusions from NGS data relies on the type of sequencing data and the 

computational strategies utilized to process that data.

WGS and RNA-Seq for the fusion detection

Although Whole Genome Sequencing (WGS) has been used to detect several important gene 

fusion events [32–34], this technique requires a great amount of sequencing, and exhaustive 

computational analysis. The cost of WGS of human samples is generally higher when 

compared to RNA-Seq. In addition, WGS will only detect fusion events that occur at the 

DNA level. This is a limitation, as WGS will miss all of the fusion events that occur at the 

RNA splicing level. However, this feature could be desirable in cases where researchers only 

want to find subset of fusions that are generated by chromosomal rearrangement.

RNA-Seq sequencing only sequences a small part (~2%) of the genome that is transcribed 

and spliced into mature mRNA [29]. In addition to the traditional gene fusions, RNA-Seq 

will detect ‘intergenically’ spliced fusions that only occur at the RNA level. RNA-Seq also 

allows for the detection of multiple alternative splice variants resulting from fusions. Low 

cost and quick turnaround time make RNA-Seq very popular in fusion transcript studies. 

However, the limitations of RNA-Seq are: 1) it can not detect fusion events involving non-

transcribed events [35]; 2) detecting fusion events not occurring at the DNA level is a 

double-edged sword; 3) tissue-specificity and the broad dynamic range of expression in the 

human transcriptome are two factors that complicate RNA-Seq data analysis [36].

Even with these limitations, RNA-Seq is often the method of choice for fusion detection due 

to its previously mentioned advantages over WGS, and investigators’ interest in transcribed 

genes. As shown in the Table 2, all these tools can utilize paired-end RNA-Seq reads as 

input. In addition to the RNA-Seq reads, some of the tools, such as: Comrad [37], CRAC 

[38], FusionMap [39], IDP-fusion [40], and nFuse [41], also consider Whole Genome 

Sequencing (WGS) reads as input. IDP-fusion and JAFFA [42] are the recently developed 

tools, which can also consider the long input reads (i.e. >1000 bp) generated by Single 

molecule real time sequencing (SMRT) sequencing technologies.
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Effect of Reference sequences

Most of the fusion detection tools require both genome and transcriptome sequences as 

references (Table 2). Some tools, such as: Bellerophontes [43], CRAC, Dissect [44], 

MapSplice [45], and TRUP [46], require only the genome sequences as reference, whereas 

EricScript and JAFFA consider only transcriptome reference sequences. As a general 

limitation of using any particular reference, a tool may miss fusions involving novel 

sequences that are not represented in that reference. For instance, fusions with novel exons 

cannot be detected by using transcriptome as a reference as in the case of EricScript and 

JAFFA. Some tools include the assembly software packages to construct new reference 

sequences. FusionQ [47], BreakFusion, FusionCatcher, and JAFFA use Cufflinks [48], 

TIGRA-SV [49], Velvet [50], and Oases [51] respectively. As a trade off, these tools tend to 

require more computational time and memory.

Effect of single-end versus paired-end reads

WGS and RNA-Seq experiments can be performed in two formats: single-end, or paired-

end. Initially, some studies detect fusions by using single-end reads [26]. Sequencing of both 

ends of a set of longer DNA/cDNA fragments produced paired short reads, i.e. paired-end 

reads. A read that harbors a fusion junction is called a ‘split read’ or ‘encompassing read’ 

(Figure 2(a)). These ‘split reads’ do not directly align with the reference sequence. 

Analyzing the alignment of ‘split reads’ can thus identify fusion events. If the reads from the 

ends match two different reference entities, but the fusion junction is not included in either 

read (Figure 2(a)), these two reads are called ‘spanning reads’, or a ‘spanning pair’. The 

discordant mappings are a characteristic of fusion events. Using both ‘spanning reads’ and 

‘split reads’, Maher et al. [27] and Ha et al. [52], achieved improved sensitivity of fusion 

detection with paired-end data. However, if only ‘split reads’ are used to identify fusions, 

data shows that the single-end reads have the ability to detect fusions as well [35,39].

Assembly and mapping of reads

Most of the fusion detection tools first align the reads to reference DNA/RNA sequence, and 

then find fusion breakpoints from the resulting alignment patterns [11]. This approach is the 

‘mapping first’ approach (Figure 2(a)). Another approach, the ‘assembly first’, involves 

assembling the input reads, and then aligning the assembled contigs to reference DNA/RNA 

(Figure 2(b)). This approach was used for discovery of several important fusions transcripts 

in case of acute myeloid leukemia (AML) [53]. Of the above two approaches, the ‘mapping 

first’ approach is faster and dominant in the field of NGS-based detection of fusions. The 

main disadvantage of the ‘assembly first’ approach is that the assembly of short reads is time 

consuming and error prone. BreakFusion [54] and JAFFA [42] use a combination of both 

approaches.

Other important issues

Other important issues regarding fusion detection include: sequencing coverage, insert 

length, read length, and quality of reads. Carrara et al. noticed a positive correlation between 

read length and false positive rates with FusionMap and defuse [22]. They also found a 

correlation between quality score and false fusion detection with MapSplice. In 2015, Liu et 
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al. discussed the effects of coverage, insert length, read length, and quality of reads on fusion 

detection [55]. An increase in sequencing coverage led to an increase in the sensitivity of 

fusion detection of nearly all of the tools they reviewed in their study.

Recently, our research group also discussed the effects of quality and length of RNA-Seq 

reads. We found that both read length and the quality of RNA-Seq reads affect the false 

positive fusion predictions [56].

FUSION DETECTION METHODOLOGY

In this section, we focus on to the methodology used by the fusion detection tools. The flow 

of fusion detection can be divided into three steps: (1) reads mapping and filtering, (2) 

fusion junction detection, and (3) fusion assembly and selection.

Reads mapping and filtering

Most of the fusion detection tools utilize mapping as their initial step in analysis (Figure 

3(i)). After mapping, the alignment of each read (pair) is evaluated, and the reads that are 

irrelevant to fusions are removed. Some tools based primarily on ‘split reads’, such as 

FusionMap and TopHat-Fusion, to filter out all of the mapped reads. Methods, which use 

‘spanning reads’, such as SnowShoes-FTD, preserve all discordantly mapped pairs of reads. 

In addition to this, these methods also keep unmapped reads (potential ‘split reads’) in order 

to assist in the selection of fusion candidates [29,57–59] (Figure 3(ii)). Most of the methods 

have the filtering techniques to further discard the reads that are less likely to harbor fusions 

(Table 3). For example, FusionSeq [29], has more than ten filters to eliminate spurious 

fusions. One important filter is related to the conformation of intrachromosomal fusions. 

Two neighboring genes on the same chromosome can produce a read-through transcript. 

Developers of some tools have decided to eliminate this type of fusion, using a threshold 

value of distance between the fusion partners, as in the case of FusionMap, FusionHunter 

[60], ShortFuse [59], SnowShoes-FTD, and TopHat-Fusion.

Fusion junction detection

The identification of fusion junctions through ‘split read’ mapping is the second step of the 

procedure [11,35,39,60]. The unmapped reads from the previous step are broken into several 

pieces, and the first and last segment of each ‘split read’ are then independently aligned to 

the reference sequences (Figure 3(ii)). Once the alignment pattern is found, adjusting the 

boundaries of the original fragments, and performing realignment can accurately find the 

location of the fusion junction (Figure 3(ii)). The length of the partitioned segments 

influences the ‘split read’ mapping. Short length segments increase the sensitivity for fusion 

candidates, but also increase the false positive prediction rate. To balance the sensitivity and 

false positive prediction rates, these methods either break the read into two segments 

[60,61], or use a fixed length of end segments.

Another approach to identify fusion junctions is to infer fusion breakpoints from ‘spanning 

reads’, and then extract the candidates that are confirmed by ‘split reads’ [29,57–59]. 

Discordant alignments are first collected into clusters, each having a maximal set of reads 

that share the same pair of breakpoints. After this, the boundary region of each candidate 
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fusion junction is identified from its cluster. Next, fusion junction loci are assumed, and 

putative fusion transcripts are predicted. In the final step, unmapped reads are aligned to the 

predicted fusion transcripts. The predictions, to which the highest numbers of unmapped 

reads are aligned, are proposed as candidate fusions.

Fusion assembly and selection

After the identification of fusion junctions, joining the two partner genes together can 

generate the fusion sequences (Figure 3(iii)). Previously unmapped reads are then aligned to 

the candidate fusions. Reads mapped in this step (supporting reads) provide an additional 

layer of confidence to the fusion candidates. Like ‘split reads’, ‘spanning reads’ can also 

provide supporting evidence, as they comprise fusion junctions in their insert sequences. 

More supporting reads can eliminate a large number of false candidates; however, in doing 

this, the risk of discarding true fusions expressed at low transcription levels increases. To 

overcome this problem, some tools have scoring functions to rank fusion candidates 

[11,29,35,39,59]. These scoring functions are mainly based on features including read depth, 

mapping quality, and number of supporting reads. The scores are either generated 

analytically and empirically (e.g. FusionSeq [29]), or learned from known data using 

machine learning techniques (e.g. deFuse [11]).

COMPARATIVE ASSESSMENT OF FUSIONS DETECTION TOOLS

To process RNA-Seq data, fusion transcript detection tools require large amounts of time 

and computational memory, (i.e. RAM). The behavior of these tools also changes with the 

datasets. As mentioned in the introduction, software tools can not only miss the true fusions 

events, but also produce false fusions [22]. Therefore, there is a need for practical knowledge 

of these software packages, or pipelines, in terms of computational time and memory usage, 

sensitivity, and specificity. In 2013, Carrara et al. compared the performance of six fusion 

detection tools: FusionHunter, FusionMap, FusionFinder, MapSplice, deFuse, and TopHat-

Fusion in terms of sensitivity (on positive dataset) and false fusion detection (on negative 

dataset) [22]. In this study, they prepared the negative datasets of different read lengths and 

quality scores, which allows for detecting dependency of the tools on both of these features. 

Computation time and memory of fusion detection tools were not done in this study. On the 

basis of their analysis, Carrara et al. [22] concluded that; 1) almost all tools (except 

FusionHunter) were error prone, with high variability among the tools, identifying some 

fusions not present in the synthetic dataset, 2) FusionMap has the best balance between 

specificity and sensitivity, and 3) the sensitivity of the tools does not seem to be sufficient in 

providing consistent results.

Recently, our research group evaluated the performance of 12 of the best tools available for 

fusion detection [56]. We evaluated the sensitivity, false discovery rate, computing time, and 

memory usage of these tools with four different datasets (positive, negative, mixed, and test), 

and ranked these tools on the basis of TOPSIS analysis. On the basis of this study, we 

conclude that, 1) EricScript had a high positive predictive value (PPV) (100% on the mix 

dataset (positive + negative dataset)), and reasonable sensitivity (78%, on the positive 

dataset), 2) it also requires the least amount of time and memory utilization, 3) JAFFA and 
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SOAPfuse have features that appear to give them the advantage over the older tools, but 

these tools consumed more time and computational memory on all of the datasets, and 4) 

read length, quality score of reads, and coverage affect fusion detection.

While our manuscript was undergoing revision review, Liu et al. reported the comparative 

evaluation of 15 fusion transcript detection tools on the synthetic data sets of different 

coverage, read length, and background noises [55]. They also checked the performance of 

these tools on three real data sets with experimental validations [55]. In this study, fusion 

detection tools were also compared in terms of the amount of time consumed to analyze 

different datasets. Based on this study, they conclude that, 1) no tool performed dominantly 

best with all synthetic and real data sets, 2) the performance of SOAPfuse was consistently 

better for both synthetic and real data sets, followed by FusionCatcher, JAFFA, and PRADA, 

3) EricScript and ChimeraScan performed well on synthetic data, but poorly on the three 

real data sets, and 4) the performance of each tool appeared to be data-dependent, and not 

always consistent between synthetic and real data. In terms of time, SOAPfuse was one of 

the most costly software packages.

These comparative studies are useful as they provide guidance for end users to choose 

proper tools based on their needs. When performing the benchmark study and comparing 

our analyses with others, we realize some common limitations and biases that influenced 

some conclusions. They are listed here for future researches to consider.

Firstly, the number of reads in the simulated positive datasets is low (i.e. < 1 million) in all 

three studies, including ours. So, these datasets do not mimic real RNA-Seq data analyses, 

which have usually above 50 million reads, for fusion detection. We, as well as Liu et al. 

[55] tried to address this issue by mixing the positive dataset with a simulated negative 

dataset, generating a dataset of 70 million reads. Ideally, a bigger simulated positive dataset 

should be used for the positive dataset.

Secondly, some studies included “negative” datasets with normal human tissue RNA-Seq 

runs with the assumption that the fusion transcripts should be only present in tumor samples. 

However, this assumption is unjustified, as numerous studies have shows that the fusion 

transcripts are also present in normal cell lines and tissues samples [16,18,19,22,62]. So, by 

using the normal tissues or cell lines as negative datasets, some fusion detection tools were 

punished for detecting fusions, and deemed to have low specificity. In this regard, we believe 

that a simulated negative dataset is still ideal to compare false fusion discovery rates.

Lastly, previously published experimental datasets were often included to demonstrate that 

the fusion detection tools can pick up known fusions. This is important. However, in some 

comparative studies, fusions detected in addition to the known fusions were considered false 

positives [55]. We have to keep in mind that known fusions identified through real 

experimental studies were found using the particular software tool chosen in that particular 

study. Using these datasets to evaluate precision and recall rates is not justified, because it is 

based on the assumption that only the known fusions in these datasets are real fusions. 

Again, some tools were deemed to have high false positive rates based on this assumption. 

We believe that real experimental datasets can be used as an additional test for sensitivity, 
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but should not be used to compare specificity, as no one knows all the fusions that truly exist 

in a real experimental dataset.

LIMITATIONS OF CURRENT SEQUENCING TECHNOLOGY

Small overlaps between different tools

In the past, researchers found a very little overlap among the results of different fusion 

detection algorithms [43,63]. In the recent studies of Liu et al. [55], and our own [56], 

fusions detected by different software tools have small overlaps. We both concluded that 

none of the tools are inclusive. This could be due, partially, to the different reference 

sequences these different tools use (some use only transcriptome, whereas some use both 

transcriptome and genome), as well as the false positives and false negatives different tools 

detect.

Read-through fusions

Read-through fusions are considered differently than other fusions. In some software, such 

fusions are filtered off, as in the situations of TopHat-Fusion and ChimeraScan. In other 

software tools, they are listed as a separate group, such as in EricScript (read-through) and 

SOAPfuse (INTRACHR-SS-OGO-0GAP). How does one prove that a read-through is a 

fusion between two genes, or an alternative splicing of the same gene? The situation 

becomes more complicated when dealing with overlapping genes. We have noted that some 

of the fusion detection tools discard overlapping genes. ChimeraScan nominates the 

chimeras on the basis of the alignment of the discordant reads to the reference genome/

transcriptome. Reads aligned to overlapping transcripts are not considered as discordant. 

FusionCatcher removes the overlapping genes on the same strand according to publically 

known databases, such as Ensembl, UCSC, or RefSeq. SOAPfuse filters out reads from 

overlapping gene regions. However, two genes overlapping, does not nullify the possibility 

of a fusion transcript. Ultimately, we need experimental evidence to prove that the 

overlapping genes are truly two separate genes, and not a multi-exonic gene that is 

historically mistaken as two genes. In addition, different gene annotation databases can give 

different results in terms of overlapping genes. For instance, RTFDC1 and FAM209A are 

overlapping genes transcribing on the same strand according to Ensembl, but not 

overlapping according to RefSeq.

Highly similar sequences

Most of the tools use filters to remove highly similar sequences, such as paralogous genes, in 

order to eliminate false positives due to template switching during library preparation. For 

instance, EricScript filters out discordant alignments between paralogous genes, and does 

not consider them for the downstream analysis. It is a reasonable strategy to improve 

specificity. However, true positives might also be eliminated. Trans-splicing could produce 

such fusions, as the transcripts from paralogous genes may be processed via the same 

transcription machinery. To prove whether or not a fusion exists between two genes with 

highly similar sequences, experimental evidence is ultimately needed.
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Conclusion

Though a total of ~33 tools for fusion detection are available for the scientific community, 

the computational study of fusion genes/transcripts is at preliminary stage. Based on the 

limitations and performances of current software tools, a better tool with high sensitivity, 

high specificity, and efficient time and computational memory consumption is needed. 

Future tools should keep the needs of end users in mind. They should incorporate user-

friendly features, such as fusion flanking sequences to guide RT-PCR primer design, fusion 

junction relative to the exon position, and potential effects on the protein-coding frame. Ideal 

pipelines should also cross check existing fusion database, such as the Mitelman Database of 

Chromosome Aberrations and Gene Fusions in Cancer, and ChiTaRS. For users who wish to 

select the subset of fusions that occur at DNA level, or desire more predictions of fusion 

mechanism, such pipelines should be able to compare results from WGS and RNA-Seq. For 

users who wish to identify pathological fusions, the tools should also be able to extract 

fusions that are not present under normal physiology. This can be done through filtering off 

fusions detected in normal matched samples, as well as cross checking with existing 

databases composed of known fusions in normal tissues and cells. These features will help 

to prioritize fusions, and guide functional study. In addition, single cell sequencing will be 

advantageous to study the heterogeneity feature of both physiologically normal tissue and 

tumor samples. Future tools should be compatible with the long input reads (i.e. >1000 bp) 

generated by Single Molecule Real Time (SMRT) sequencing technologies. Deeper reads 

and longer read lengths will also certainly help. Other technologies such as PacBio, which 

can sequence through a transcript, may also make fusion detection more reliable.

As of now, our recommendations to detect fusion events are to: 1) use paired-end format; 2) 

perform RNA-Seq if interested in fusion transcripts not limited to chromosomal 

rearrangement; 3) achieve reasonable reads length (>70bp); 4) achieve reasonable reads 

depth (>50 million); and 5) select appropriate software based on needs.
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Figure 1. Mechanism of fusion formation
(a) Fusions formed at DNA level (i.e. chromosomal rearrangements). At DNA level, gene 

fusion may originate through ‘balanced’ and ‘unbalanced’ chromosome rearrangements. 

‘Balanced’ changes comprise translocations, insertion and inversion, whereas ‘unbalanced’ 

change that leads to fusion genes can be a deletion of an interstitial chromosomal segment. 

(b) RNA level fusions may occur through trans-splicing or cis-splicing between neighboring 

genes. Black blocks represent introns. In the “cis-splicing” mechanism, the red block 

represents intergenic region. The sizes of exon, intron and intergenic regions are not drawn 

to scale.
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Figure 2. Two approaches for the initial steps of fusion detection
(a) ‘Mapping first’ approach of fusion detection. Paired-end RNA-Seq reads are first aligned 

to detect the fusion breakpoint through the alignment of ‘spanning reads’ and ‘split reads’ to 

the reference sequences. (b) ‘Assembly first’ approach of fusion detection. In this approach, 

paired-end RNA-Seq reads are first assembled into the contigs (i.e. de novo transcriptome 

contigs) and then the contigs, having fusion junction, are aligned to reference sequences.
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Figure 3. Fusion detection-using split reads and spanning reads
(i) Paired-end reads are mapped to reference sequences and discordantly mapped reads 

(spanning reads) are directly aligned to the target fusion genes. (ii) For paired-end reads with 

one or both ends unaligned (potential split reads), the unmapped mate is cut into several 

pieces to be aligned to estimated fusion boundaries. Here, the two pieces of same read are 

connected by dashed line. (iii) Fusion candidate sequences are assembled. (iv) Assembled 

fusion sequences with highest probability to be selected as real fusion. Vertical dotted line 

represents the fusion junction.
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