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Most mammalian tissues contain resident macrophage populations. In addition to their role 

in host defense, macrophages may also provide important trophic signals necessary for 

homeostasis, and are critical effector cells in tissue repair, remodeling, and regeneration1. 

The adult mammalian myocardium contains a relatively small population of macrophages2; 

in adult mice, resident cardiac macrophages represent less than 10% of non-

cardiomyocytes3. Macrophages may be inconspicuous in the healthy heart, but take center 

stage following myocardial injury. In the infarcted myocardium, induction of CC 

chemokines recruits abundant pro-inflammatory monocytes4,5 that differentiate into 

macrophages6 and exert phagocytotic actions. Clearance of the wound from dead cells and 

matrix debris triggers anti-inflammatory cascades, inhibiting leukocyte recruitment7; at this 

stage, local proliferation in response to growth factor stimulation contributes to renewal of 

the macrophage population in the healing infarct8,9. Infarct macrophages exhibit remarkable 

phenotypic and functional heterogeneity and may regulate cellular processes critical to 

cardiac repair. Depletion of macrophages following infarction in mice increased mortality, 

disrupted wound debridement, and impaired cardiac repair10,11. The protective effects of the 

macrophages in infarct healing may be due to their critical phagocytotic actions, but may 

also involve downmodulation of injurious pro-inflammatory signaling, secretion of 

cytoprotective mediators, activation of reparative fibroblasts and angiogenic cells, and (in 

some cases) stimulation of a regenerative program12,13,14.

Maturation of the infarct is associated with resolution of the leukocyte infiltrate and with 

formation of a collagen-based scar. As the scar matures, the ventricle remodels. After a large 

myocardial infarction, viable myocardial segments exhibit a range of molecular changes that 

lead to fibrosis, cardiomyocyte hypertrophy, and regional dysfunction, and contribute to the 

pathogenesis of chronic heart failure. Increased macrophage density has been observed in 

the remote remodeling myocardium following infarction15; however, the origin of these cells 

and their role in heart failure progression remain poorly understood.
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In the current issue of the journal, Sager and co-workers16 provide the first systematic 

analysis on the origin, fate and function of macrophages in the remodeling failing 

myocardium. The authors demonstrated a marked expansion of the macrophage population 

in the remote non-infarcted myocardium that increased progressively 4–8 weeks after 

coronary occlusion. Fate mapping studies and parabiosis experiments suggested that 

expansion of local macrophages results from both new recruitment of monocytes and local 

proliferation of macrophages. Recruitment of monocytes was dependent on activation of the 

CCL2/CCR2 axis; in vitro experiments suggested that macrophage proliferation was 

activated by mechanical strain through mitogen activated protein kinase (MAPK)-dependent 

pathways. These macrophages exhibited a distinct phenotype, expressing high amounts of 

Interleukin (IL)-1β, Ym-1 and Vascular Endothelial Growth Factor (VEGF) mRNA, but low 

levels of matrix metalloproteinase (MMP)9, when compared with normal cardiac 

macrophages. Late silencing of five adhesion molecules implicated in leukocyte recruitment, 

in order to selectively inhibit monocyte infiltration in the non-infarcted segments, 

significantly attenuated adverse remodeling and dysfunction.

The study provides for the first time a systematic analysis of the origin and phenotype of 

macrophages in the failing infarcted myocardium, and suggests that macrophages in non-

infarcted segments may play a critical role in heart failure progression following myocardial 

infarction. The findings not only contribute to our understanding of the role of macrophages 

in cardiac remodeling, but also open new directions by raising several important new 

questions.

What is the basis for the temporally distinct “waves” of macrophage 

expansion in infarcted and viable segments?

Although it is not surprising that early recruitment and activation of macrophages, triggered 

by cardiomyocyte necrosis17, primarily involves the infarcted region, the basis for the 

selective late expansion of the macrophage population in non-infarcted segments is unclear. 

8 weeks after the acute event, and while the macrophage infiltrate has resolved in the mature 

scar, the viable non-infarcted myocardium harbors an active and expanding macrophage 

population (Figure 1). The authors attribute the proliferative activity of macrophages in 

viable segments to increased wall stress that activates a proliferative program in 

macrophages, in part through MAPK-dependent actions. However, left ventricular wall 

stress is inversely proportionate to wall thickness18 and would be expected to be higher in 

thinner infarcted segments. The spatial selectivity of the macrophage response may be 

explained by the microenvironmental differences between the structurally preserved non-

infarcted myocardium and the collagen-rich mature scar. In the viable myocardium, the rich 

microvascular capillary network permits activation of endothelial adhesion cascades that 

trigger leukocyte extravasation. In contrast, the mature scar is characterized by a low 

capillary density and a relative abundance of mature neovessels coated with mural cells19, 

hampering leukocyte extravasation. Moreover, the cross-linked extracellular matrix in the 

mature scar may prevent monocyte migration and may deactivate macrophages, thus 

attenuating macrophage expansion. Due to its low cellular content, the mature scar may not 

be able to generate gradients of chemotactic mediators, necessary for monocyte recruitment.
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Do macrophages in non-infarcted segments contribute to progression of 

chronic heart failure?

In experimental studies, macrophage depletion, or genetic manipulations altering the 

composition or phenotype of infarct macrophages have profound effects on cardiac repair 

and on chronic remodeling of the heart following infarction10,11,4. Because these 

interventions cannot selectively target macrophages in infarcted vs. non-infarcted segments, 

dissection of the potential role for macrophage populations in viable remodeling 

myocardium is challenging. In order to investigate the effects of these cells, the authors 

attempted to selectively inhibit macrophage expansion in non-infarcted segments through 

late silencing of adhesion molecules, at a timepoint that would not be expected to affect 

monocyte recruitment in the infarcted area. Although the marked preservation of function 

and geometry in infarcted hearts after adhesion molecule knockdown is consistent with a 

potential role of macrophages in viable segments, alternative interpretations are possible. 

Adhesion molecule knockdown does not specifically reduce monocyte infiltration, but may 

affect recruitment of other leukocyte subpopulations. Moreover, endothelial adhesion 

molecules have been implicated in angiogenic responses and may have broader effects on 

endothelial cell function and gene expression in both infarcted and non-infarcted areas20.

Which macrophage-derived signals promote progression of heart failure in 

viable segments?

Although, in human patients, macrophage infiltration has been associated with segmental 

contractile dysfunction21, the basis for the deleterious effects of macrophages is unclear. 

Macrophages in remote remodeling myocardium synthesize large amounts of IL-1β and 

tumor necrosis factor (TNF)–α, pro-inflammatory cytokines that suppress myocardial 

contractile function22, and activate matrix-degrading proteases, thus contributing to adverse 

remodeling following myocardial infarction23. A systematic analysis of the gene expression 

profile of these cells may suggest additional candidate mediators.

Should we target macrophages in chronic heart failure?

Although the protective effects of attenuated monocyte recruitment in chronic heart failure 

reported in the current study are impressive, a word of caution is in order when suggesting 

translational implications. First, the model of infarctive heart failure used in the study does 

not recapitulate the pathophysiologic heterogeneity of the human disease. Second, we know 

very little about the phenotype and function of macrophages in healthy and diseased human 

hearts. Understanding the characteristics of human cardiac macrophages and the effects of 

myocardial diseases on their gene expression profile and functional properties is important 

in order to translate the growing body of evidence derived from mouse models into human 

pathologic conditions.
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Figure 1. 
Distinct temporal patterns of macrophage expansion in infarcted and viable myocardial 

segments following myocardial infarction. The dramatic early increase in macrophage 

density in the infarcted region is triggered by chemokine-mediated recruitment of 

monocytes. At a later stage, as chemokine expression is reduced, renewal of macrophages in 

the infarct is dependent on proliferation. Infarct macrophages exhibit remarkable 

heterogeneity, acquiring regulatory, fibrogenic, or angiogenic phenotypes and regulating 

cellular responses critical to cardiac repair. In the viable failing myocardium, late expansion 
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of the macrophage population is driven by CCL2/CCR2-mediated monocyte recruitment, 

and by stimulation of MAPK signaling in resident macrophages, triggered by increased wall 

stress. Activated macrophages in the viable non-infarcted myocardium may contribute to 

heart failure progression by secreting pro-inflammatory cytokines, such as IL-1β and TNF-α 
(Mo, monocyte; Ma, macrophage; F, fibroblast; MV, microvessel; d, days; w, weeks).
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