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Abstract

Background—Growing evidence points to a key role for somatostatin (SST) in schizophrenia 

(SZ) and bipolar disorder (BD). In the amygdala, neurons expressing SST play an important role 

in the regulation of anxiety, often comorbid in these disorders. We tested the hypothesis that SST-

immunoreactive (IR) neurons are decreased in the amygdala of subjects with SZ and BD. 

Evidence for circadian SST expression in the amygdala and disrupted circadian rhythms and 

rhythmic peaks of anxiety in BD suggest a disruption of rhythmic expression of SST in this 

disorder.

Methods—Amygdala sections from 12 SZ, 15 BD, and 15 control subjects were processed for 

immunocytochemistry for SST and neuropeptide Y (NPY), a neuropeptide partially co-expressed 

in SST-IR neurons. Total numbers (Nt) of IR neurons were measured. Time of death (TOD) was 

used to test associations with circadian rhythms.

Results—SST-IR neurons were decreased in the lateral amygdala nucleus in BD (Nt, p= 0.003) 

and SZ (Nt, p=0.02). In normal controls, Nt of SST-IR neurons varied according to TOD. This 

pattern was altered in BD, characterized by decreases of SST-IR neurons selectively in subjects 

with TOD corresponding to the day (06:00–17:59). Numbers of NPY-IR neurons were not 

affected.

Conclusions—Decreased SST-IR neurons in the amygdala of SZ and BD, interpreted here as 

decreased SST expression, may disrupt responses to fear and anxiety regulation in these subjects. 

In BD, our findings raise the possibility that morning peaks of anxiety depend on a disruption of 

circadian regulation of SST expression in the amygdala.
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Introduction

Growing evidence indicates expression of somatostatin (SST) and neuropeptide-Y (NPY) in 

amygdala neurons plays key roles in fear and stress responses, and in modulation of anxiety 

(1–6). Intraventricular, and intra-amygdala infusions of SST in rodents result in anxiolytic 

and antidepressant effects (1, 7). Mice lacking SST display increased anxiety-like behaviors 

(2), and neuroendocrine and molecular abnormalities reported in subjects with anxiety and 

depression (8). NPY infusion counteracts the effects of corticotropin releasing factor (CRF) 

(4, 5, 9), a molecule essential for stress response (10, 11). In the amygdala, NPY levels 

decrease following restraint stress (12). Together, these observations point to marked 

anxiolytic effects of SST and NPY, with prominent involvement of amygdalar circuitry.

Severe anxiety is often comorbid in schizophrenia (SZ) and bipolar disorder (BD) (13–15). 

Approximately 38% of subjects with SZ and 50% with BD meet criteria for anxiety (16, 17). 

In both disorders, anxiety is associated with more severe symptoms and/or poorer treatment 

responses (16, 17). Findings from postmortem and genetic studies suggest abnormal SST 

and NPY signaling in SZ and BD (18–23). A somatostatin receptor SSTR5 genetic 

polymorphism has been associated with BD (24). Decreased SST and NPY mRNA was 

reported in the prefrontal cortex in SZ (18–20). In two of these studies, SST showed the 

largest decrease with respect to all other interneuron markers examined in SZ (19, 20). 

Furthermore, decreased SST mRNA was observed in the orbitofrontal cortex (21), and 

decreased SST mRNA and SST-IR neurons were observed in the hippocampus in both SZ 

and BD (22, 23). In a quantitative meta-analysis of gene expression studies in BD, SST was 

identified as one of the most consistently decreased genes (25). Surprisingly, the hypothesis 

that amygdala neurons expressing SST and NPY are impacted in SZ and BD has not been 

tested thus far.

Although anxiety represents a shared phenotype in SZ and BD, some differences are 

notable. For instance, SZ is commonly associated with social phobias, followed by post-

traumatic stress disorder and obsessive compulsive disorder (16), while panic disorders and 

generalized anxiety disorder are common in BD (17). Furthermore, anxiety in BD may be 

linked more distinctly to disease states, such as depression and, notably, circadian rhythm 

dysfunction (26–33). In BD, the most severe anxiety and depression symptoms commonly 

occur in the morning (34–37) (“morning-worse“), with a less common peak in the evening 

(“evening-worse”) (34–36), suggesting a circadian component to severity. Consistent with 

these observations, mounting evidence supports a role for circadian rhythm abnormalities in 

BD (27–32). Sleep and biological rhythms are implicated in this disorder, and genetic 

polymorphisms for clock-associated genes are associated with BD and lithium 

responsiveness (32, 38–44). Notably, the most effective treatments, lithium and valproic 

acid, lengthen circadian period and modulate the expression of clock genes (45–49). A link 

between SST and circadian rhythms in BD is suggested by evidence that SST is decreased in 
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cerebrospinal fluid (CSF) sampled in the morning, but not in samples taken in the evening, 

from the same subjects (50).

Together, these considerations support the hypothesis that SST and NPY expression is 

decreased in the amygdala of SZ and BD subjects. In BD, altered amygdalar SST expression 

may be associated with circadian dysfunction (34–37). The observation that SST and NPY 

expression in the rodent amygdala varies in a circadian manner (2) supports this possibility. 

The present studies tested the hypothesis that SST- and NPY- immunoreactive (IR) neurons 

are reduced in the amygdala of subjects with SZ or BD, and that reductions in BD are 

pronounced in the morning, coinciding with reported increased severity of anxiety and 

depression at this time (34–37).

Methods and Materials

Human Subjects

Tissue blocks containing the whole amygdala from 12 SZ, 15 BD and 15 normal control 

donors were obtained from the Harvard Brain Tissue Resource Center, McLean Hospital, 

Belmont, MA (Tables 1 and S3). Diagnoses were made by two psychiatrists on the basis of 

retrospective review of medical records and extensive questionnaires concerning social and 

medical history provided by family members. A neuropathologist examined several regions 

from each brain for a neuropathology report. The cohort for this study did not include 

subjects with evidence for gross and/or macroscopic brain changes, or clinical history 

consistent with cerebrovascular accident or other neurological disorders. Subjects with 

Braak & Braak stages III or higher were not included. Subjects had no significant history of 

substance dependence, other than nicotine and alcohol, within 10 years from death.

Tissue Processing (see Supplemental Materials)

Immunocytochemistry—Free-floating tissue sections were carried through antigen 

retrieval in citric acid buffer (0.1 M citric acid, 0.2 M Na2HPO4) heated to 80 degrees °C for 

30 minutes, and incubated in primary antibody monoclonal rat anti-SST (1:500, Millipore, 

MAB354, lot# NG1934075) raised against synthetic SST peptide corresponding to amino 

acids 1–14; rabbit anti-NPY (1:1000, Chemicon, AB1915, lot#0604027825), raised against 

synthetic porcine neuropeptide tyrosine) and subsequently in biotinylated secondary 

antibody (SST, goat anti-rat IgG; 1:500; Vector Labs, Inc. Burlingame, CA; NPY, goat anti-

rabbit IgG (1:500; Vector Labs, Inc. Burlingame, CA), followed by streptavidin conjugated 

with horse-radish peroxidase for two hours (1:5000 μl, Zymed, San Francisco, CA), and, 

finally, in nickel-enhanced diaminobenzidine/ peroxidase reaction (0.02% diaminobenzidine, 

Sigma-Aldrich, 0.08% nickel-sulphate, 0.006% hydrogen peroxide in PB). All solutions 

were made in PBS with 0.5% Triton X (PBS-Tx) unless otherwise specified.

Immunostained sections were mounted on gelatin-coated glass slides, coverslipped and 

coded for blinded quantitative analysis. All sections included in the study were processed 

simultaneously within the same session to avoid procedural differences. Each six-well 

staining dish contained sections from SZ, BD and control subjects and was carried through 

each step for the same duration of time. Omission of the primary or secondary antibodies did 
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not result in detectable signal. The primary antibody for SST has been shown to have no 

cross-reactivity with enkephalins, endorphins, or substance P (Spec sheet, Millipore 

Corporation, Temecula, CA). Specificity of these antibodies was confirmed by our group 

(Supplemental Materials) and others (51).

Data Collection—SST- and NPY-IR neurons were counted in the lateral (LN), basal (BN), 

accessory basal (AB) and cortical (CO) nuclei of the amygdala using a Zeiss Axioskop-2 

Plus interfaced with Stereo Investigator 6.0 (Microbrightfield Inc., Willinston, VT). Intra-

rater (J.W.) reliability of at least 95% was established before formal data collection and 

reassessed regularly. The borders of amygdala nuclei (Fig. 1) were traced and confirmed in 

adjacent Nissl stained sections according to cytoarchitectonic criteria described by Amaral et 

al, 1992 and Sims and Williams, 1990 (52, 53). The nomenclature adopted was used by 

Sorvari et 1995 (54). The central, medial and anterior nuclei could not be quantified because 

their dorso-medial portion was damaged in several samples. Each traced nucleus was 

systematically scanned through the full x, y, and z-axes to count each SST- and NPY-IR 

neuron over complete sets of serial sections (6–10 sections) representing the whole extent of 

the amygdala from each subject (section interval 1040 μm).

Statistical Analysis—Differences between groups relative to the main outcome measures 

were assessed for statistical significance using stepwise linear regression (ANCOVA). Effect 

sizes were calculated according Hedges’ g. Logarithmic transformation was uniformly 

applied to all values because data were not normally distributed. Statistical analyses were 

performed using JMP v5.0.1a (SAS Institute Inc., Cary, NC). BD and SZ were compared 

separately to normal controls. Potential confounds (Supplemental Materials) were tested 

systematically for their effects on main outcome measures, and included in the model if they 

significantly improved goodness-of-fit. Time of death (TOD) was obtained from the death 

certificate for each subject and tested for potential effects on outcome measures. TOD was 

also used to divide subjects into subjective day (s-Day TOD, 06:00–17:59 hours) and 

subjective night (s-Night, 18:00–05.59 hours) groups on the basis of previous literature 

indicating circadian fluctuations in SST levels (50, 55, 56). Effects of TOD on outcome 

measures were analyzed using three steps: 1) Effect of TOD was tested in stepwise linear 

regression analyses. 2) Subjects were divided into s-Day vs. s-Night groups for comparisons 

using stepwise linear regression analysis 3) We used quartic regression analysis on plots of 

Nt of SST-IR neurons by TOD for each group according to methods used to detect similar 

relationships in postmortem studies (57–59). Quartic regression models were chosen on the 

basis of expression patterns reported in the mouse amygdala consisting of two peaks and two 

troughs in SST expression levels (2). Quartic regression, commonly used to fit plots 

consisting of four real roots, or x-intercepts of a graph, represented by two expected peaks, 

has been used to fit dual-peak circadian rhythms in several studies (60–63). The t-ratios and 

p-values for all main outcome comparisons are reported in Supplementary Table S2. 

Covariates found to significantly affect outcome measures are also reported.

Numerical Densities and Total Numbers Estimates—Total number (Nt) of IR 

neurons was calculated as Nt = i • Σn where Σn = sum of the cells counted in each subject, 

and i is the section interval (i.e. number of serial sections between each section and the next 
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within each compartment=26) as described previously (64). Numerical densities were 

calculated as Nd= ΣN / ΣV where V is the volume of each amygdala nucleus, calculated as 

V= z • ssf • Σ a where z is the thickness of the section (40 μm), ssf is the section sampling 

fraction (1/26; i.e. number of serial sections between each section within a compartment) 

and a is the area of the region of interest.

Results

Amygdala Volumes

Volumetric results confirm previous findings (64). In subjects with SZ, no volume changes 

were detected (Supplementary Fig. 1). A significant effect of hemisphere was observed on 

the volume of the overall amygdala. In subjects with BD, significant volume decreases were 

detected in the LN (p<0.005, g=−1.22; adjusted for a significant effect of lifetime exposure 

to CPZ), and CO (p<0.007, g=−1.09) (Supplementary Fig. 1).

SST-IR Neurons

In the healthy human amygdala, SST-IR neurons were detected in all amygdala nuclei 

examined, with the highest numbers in the LN and the highest densities in the AB and CO 

(Figure 1, Supplementary Table S1), consistent with observations in primates (3). In subjects 

with SZ, Nt and Nd of SST-IR neurons were decreased selectively in the LN (Nt, p= 0.03, g=

−0.98; adjusted for hemisphere p=0.03; Nd, p = 0.02, g=−0.92; Figure 2, Supplementary 

Table S2). Similarly, in subjects with BD, SST-IR neurons were decreased in the LN (Nt, p = 

0.005, g=−1.11; Nd, p = 0.005, g=−0.91; Figure 2, Supplementary Table S2, with a 

significant effect of TOD, p<0.005). In both disease groups, decreases of SST-IR neurons 

did not correlate with years of illness, and were not affected by exposure to antipsychotics, 

lithium, SSRIs, alcohol or nicotine (Supplemental Materials). No changes were observed in 

any of the other amygdala nuclei examined (Figure 2, Supplementary Table S2).

NPY-IR Neurons

NPY-IR neurons are less numerous than SST-IR neurons, and evenly distributed across 

amygdala nuclei (Figure 3, Supplementary Table S1). In subjects with SZ, no changes were 

detected in any of the nuclei examined. In subjects with BD, a marginally significant 

decrease of Nt, but not Nd, of NPY-IR neurons was detected in the CO (Nt, p<0.04, g= 

−0.81, adjusted for PMI) (Figure 4, Supplementary Table S2).

Effects of Time of Death

In control subjects, Nt of SST-IR neurons in the LN, as well as in the combined LN-BN-AB-

CO, were significantly higher in subjects with s-Night TOD, as compared to subjects with a 

s-Day TOD (LN, Nt, p<0.03, g= −1.34; with a significant effect of sex (p<0.01), and cause 

of death (p<0.02); Nd, p<0.03, g= −1.24; LN-BN-AB-CO, Nt, p= 0.14, g= −0.81; Nd, 

p<0.04, g= −1.15). To further test this relationship, Nt of SST-IR neurons in the LN were 

plotted by TOD and fit to quartic regression analysis. A rhythmic-like relationship was 

observed, with a significant quartic regression fit (F=6.9, p<0.006; Fig. 5), displaying two 

peaks of SST-IR neurons in diurnal humans, identical to amygdala SST rhythms reported in 
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nocturnal mice (2). A first peak in Nt of SST-IR neurons at approximately 12 AM was 

followed by a trough at approximately 6 AM, and by a second, smaller, peak at 

approximately 12 PM, followed by a second trough at approximately 6 PM.

Subjects with BD showed an enhanced day/night difference with respect to controls. Nt of 

SST-IR neurons in the LN were significantly higher in BD subjects with a s-Night TOD (Nt, 

p<0.01, g= −1.49; Nd, p<0.002, g= −2.04; Fig. 5) and in the combined LN-BN-AB-CO (Nt, 

p<0.0009, g= −2.24; Fig. 5) with respect to BD subjects with a s-Day TOD. Notably, healthy 

control versus BD between-group comparison showed that Nt of SST-IR neurons were 

significantly lower in BD in the s-Day groups (LN-BN-AB-CO: p= 0.04, g= −1.12; LN: p= 

0.01, g= −1.39) but not in the s-Night groups (Fig. 5). Quartic regression analysis showed Nt 

of SST-IR neurons in subjects with BD display an altered rhythmic-like relationship with 

respect to control subjects (quartic regression fit: F= 5.08, p<0.02, Fig. 5). The appearance 

of a ‘reversed rhythm’ with a trough at approximately 12 AM, a peak at approximately 6 

AM, a second trough at approximately 12 PM and a second peak at approximately 6 PM, is 

driven by the sharp reduction of SST-IR neurons between 6AM–12PM in the BD group.

TOD analyses could not be performed in subjects with SZ because of insufficient number of 

subjects with SZ with TOD between 4 PM and 12 AM. Nt of NPY-IR neurons in the LN did 

not vary between the s-Day and s-Night groups in controls or in subjects with BD (Fig. 5), 

consistent with lack of effect of TOD in stepwise linear regression models.

Discussion

The present studies resulted in three main, previously unreported, findings: i) SST-IR 

neurons are decreased in the amygdala in SZ and BD, ii) the expression of SST in the 

healthy human amygdala displays a circadian-like rhythm, and iii) this circadian-like SST 

expression is altered in BD. These findings add to growing evidence for involvement of SST 

in SZ and BD (18–20, 22, 23), and suggest that amygdalar SST decreases represent a 

common denominator, contributing to elevated anxiety in both disorders. In BD, we 

observed enhanced rhythmic-like SST expression in the LN defined by a marked decrease of 

SST-IR neurons in the morning, when numbers of SST-IR neurons increase in control 

subjects. The lowest portion of that cycle corresponds to the ‘morning worse’ time period 

typical of BD. Consistent with these findings, comparisons between control and BD subjects 

show a significant effect of TOD on SST-IR neuron numbers. These results contribute to 

emerging evidence for circadian rhythm disruption in BD, and suggest that dysregulation of 

circadian SST expression in the amygdala may contribute to morning peaks of anxiety and 

depression (34–37). In subjects with SZ, relationships with circadian rhythms were not 

investigated for technical reasons.

Technical Considerations

TOD Analysis as a Proxy for Circadian Time—In these postmortem studies, TOD for 

each subject was used to monitor expression changes as they may relate to circadian 

rhythms. TOD represents a single measure per subject at a specific time point, rather than 

repeated measures across time. Therefore, we refer to SST-IR neuron numbers plotted by 

TOD as “circadian-like” and “rhythmiclike”. This approach has been successfully used in 
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several postmortem brain studies (57–59, 65, 66). In the present study, the validity of this 

method is supported by the observation that “rhythmic-like’ changes of SST expression 

observed in healthy human amygdala (Fig. 5) are consistent with those reported in the rodent 

amygdala (2). In addition, SST rhythmic-like abnormalities detected in BD parallel similar 

abnormalities reported in cerebrospinal fluid of live subjects with mood disorders (50).

Treatment of Antipsychotics and Lithium—We did not detect significant effects of 

exposure to antipsychotics, lithium, or valproic acid on SST-IR and NPY-IR neurons. 

Although effects of these confounding factors cannot be ruled out with certainty, our results 

indicate that pharmacological treatment did not contribute to decreases of SST-IR neurons. 

In support, chronic treatment with antipsychotics or lithium in rodents increases SST and 

NPY expression (67–71). For additional considerations, see ‘Supplemental Material’.

Decreases of SST-IR neurons

Decreased numbers of SST-IR neurons in the amygdala may reflect neuronal loss or 

decreased expression. Several considerations point to decreased expression as the most 

likely interpretation. First, in both SZ and BD, numbers of NPY-IR neurons, co-expressed in 

a large percentage of SST neurons, were not altered. This discrepancy suggests that either 

changes in SST expression occur in NPY-negative neurons, or differential factors may 

regulate SST and NPY in the same neurons. This latter possibility is supported by studies on 

SST mutant mice and chronic stress reporting altered SST expression but normal levels of 

NPY (72). Second, previous studies in a largely overlapping cohort showed that amygdalar 

Nt and Nd of Nissl-stained neurons and volumes were unchanged in SZ (64), a finding 

inconsistent with neuronal loss. Third, in BD, significant decreases of Nt and Nd of SST-IR 

neurons in the LN do not parallel normal Nd of Nissl-stained neurons in a largely 

overlapping subject cohort, even in the presence of volume decreases (64). Fourth, 

fluctuations of SST in the amygdala of rodents (2) and SST-IR neurons in healthy humans 

(this study), and s-Day decreases of SST-IR neurons in BD across all amygdala nuclei (i.e. 

including those with normal total neuron number and volume (64)) are not consistent with 

neuronal loss. The likelihood that we detect SST-IR cells above a certain threshold of protein 

expression rather than absolute measures of protein, together with the short circulating half-

life of SST (<3 minutes) (73, 74), further suggest that SST-IR neuron numbers across TOD 

represent fluctuating levels of SST within neurons. Together, these observations provide 

strong support for decreased SST expression in the amygdala of subjects with SZ and BD.

Decreased SST expression in SZ and BD: Implications for Amygdala Activity and 
Comorbidity with Anxiety and Stress Vulnerability

Amygdala SST-IR neurons are primarily GABAergic (75), and form inhibitory synapses 

onto distal dendrites of local pyramidal neurons (76). The proximity of these synapses to 

excitatory inputs suggests that SST synapses on pyramidal neurons affect synaptic plasticity 

related to emotional learning (76). SST exerts an inhibitory effect on amygdala pyramidal 

neurons and, in several brain regions, modulates GABAergic inhibition (77–82). These 

considerations suggest that decreased SST may contribute to reduced inhibitory regulation 

and disruption of amygdala intrinsic circuits. Consistent with this possibility, increased 

amygdala activity has been reported in SZ during the processing of emotional stimuli (83, 
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84), and in subjects with BD during mania (85). Predominant SST-IR neuron decreases in 

the LN, known to mediate plasticity and rapid behavioral responses to fearful stimuli (86, 

87), point to abnormal processing of sensory stimuli and fear response. In addition, it is 

possible that small populations of LN SST-IR neurons projecting to the entorhinal cortex 

(88), and BN and CO SST-IR neurons to the basal forebrain (89) may be involved, 

potentially contributing to disrupted sensory gating in SZ (90–94), and dysregulation of 

sleep-wake patterns in BD (95–97) through the basal forebrain (98, 99), respectively.

Growing evidence suggest that SST in the amygdala powerfully reduces anxiety (1, 2, 4–6), 

indicating that SST represents a potential pharmacological target against depression and 

anxiety (100, 101). Animal models show anxiolytic, and possibly antidepressant, effects of 

SST in the amygdala, and suggest a role in fear learning and expression (102, 103). 

Increased SST receptors in the amygdala in response to threatening stimuli (104) suggest 

that SST activation in this region may counteract anxiety-related responses, perhaps 

contributing to maintain a balance between adaptive fear responses and maladaptive, or 

generalized, anxiety. Thus, it is reasonable to speculate that decreased SST expression in the 

amygdala of subjects with SZ and BD may result in increased anxiety and heightened 

vulnerability to stress. Consistent with this hypothesis, SST−/− mice display high cortisol 

levels and increased anxiety and depressive-like behaviors (8). Furthermore, decreased SST 

levels in subjects with depression correlate with increased cortisol levels (50, 105–107), and 

are associated with a greater plasma cortisol response to dexamethasone (50), suggesting 

that decreased SST contributes to disinhibited stress response. Finally, SST expression in 

subjects with SZ and BD was reported to correlate with levels of inflammatory cytokines 

(108), in turn associated with altered expression of stress-related markers (109). 

Alternatively, amygdala SST expression may decrease as a consequence to chronic stress 

experienced by patients with SZ or BD. Lack of correlation of SST-IR neuron numbers with 

years of illness suggests otherwise.

SST-IR Neurons in the Amygdala of Subjects with BD: Potential Link to Circadian Rhythm 
Dysregulation

In subjects with BD, SST-IR neuron decreases across amygdala nuclei were selective for the 

s-Day group, suggesting a link with circadian rhythm dysregulation (34, 35, 37, 50, 110). 

These findings are consistent with results from another group, showing decreased levels of 

SST in the CSF of subjects with affective disorders selectively in the morning (50). Notably, 

the significant difference in rhythmic-like SST expression in the LN of subjects with BD 

(Fig. 5) points to an abnormal circadian phase in the amygdala. The enhanced rhythmic-like 

distribution observed, with its appearance of a reversed rhythm in the regression plot driven 

by the sharp decrease of SST-IR neurons in BD subjects with a morning TOD, represents an 

enhanced day/night difference with respect to the moderate s-Day decrease of SST-IR 

neurons in control subjects. In BD, the sharp decrease between 6AM–12 PM may contribute 

to the morning-worse phase of anxiety and depression (34–37).

Circadian rhythms are controlled by clock genes in the suprachiasmatic nucleus (SCN), 

which coordinates rhythms throughout the brain and body (111, 112). However, clock genes 

exist in many neural and non-neural tissues (113–115), and can impact mood in a variety of 
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manners (116). Animal studies have shown that clock gene rhythms in distinct brain regions 

can change phase irrespective of the SCN rhythm (117, 118). Thus, altered circadian rhythm 

of SST expression in the amygdala of subjects with BD may result from at least two, non-

mutually exclusive, mechanisms, i.e. i) core circadian dysfunction in the SCN, and ii) 

dysregulation of intrinsic amygdala circadian rhythms. Support for reduced synchrony of 

rhythms by the SCN comes from studies reporting reduced circadian amplitude of activity 

rhythms in subjects with BD (119–121), and from observations on the effects of bright-light 

therapy (122), which may resynchronize the circadian clock through established effects of 

light input to the SCN (123–127). Support for intrinsic amygdala dysregulation is based on 

evidence that molecular rhythms within this region change phase in response to fearful 

stimuli (118). Thus, altered amygdala SST rhythms may result from heightened responses to 

negative environmental factors, as observed in subjects with BD (128–130). Notably, 

glucocorticoids are regulated by the circadian clock and affect amygdalar circadian rhythms 

(131–136). It is plausible that altered SST rhythms in this region may be induced by 

interactions between heighted responses to stress and circadian rhythm dysregulation. In 

addition, the basolateral amygdala displays a circadian rhythm anti-phase to the central 

amygdala (137), the later of which is regulated by glucocorticoids (135). Glucocorticoid 

receptors (GR) are present throughout the amygdala (138, 139), with highest concentrations 

in the central nucleus (140, 141). Furthermore, glucocorticoids also directly regulate 

CLOCK genes through glucocorticoid response elements located in the promoter region of 

Per1 and Per2 genes (142, 143). A complex interaction of stress and CLOCK genes may 

contribute to enhanced SST amygdala rhythms in BD.

Evidence that neurons in the hypothalamus switch between dopamine and SST expression 

under altered light-dark cycles (144), suggest a complex relationship of circadian rhythms 

with SST and dopamine. CLOCK has been shown to regulate dopamine expression (145–

147). Altered CLOCK function resulting in enhanced dopamine transmission to the 

amygdala, together with disrupted SST rhythms, may contribute to an imbalance of mood 

regulation.

In summary, reductions of amygdalar SST-IR neurons add to growing evidence of the 

involvement of this neuropeptide in SZ and BD. Reduced SST expression in the amygdala 

may contribute to anxiety and stress vulnerability frequently comorbid in these disorders. 

Our findings also suggest SST expression in the normal human amygdala varies according to 

circadian rhythms. In BD, a disruption of this rhythm, with decreased SST expression in the 

subjective day, may contribute to peaks of anxiety and depression in the morning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Somatostatin Immunoreactive Neurons in the Human Amygdala
Somatostatin immunoreactive (SST-IR) neurons display various morphological subtypes in 

the human amygdala, including fusiform (A) and multipolar (B) neurons. SST-IR neurons 

are widely distributed across all of the amygdala nuclei examined, as shown by 

representative plots from a control subject depicting the distribution of SST-IR neurons in 

the rostral (C) and caudal (D) amygdala. Scale bars = 50 μm. LN: lateral nucleus, BN: basal 

nucleus, AB: accessory basal nucleus, CO: cortical nucleus.
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Figure 2. Decreased Total Numbers and Numerical Densities of Somatostatin Neurons in the 
Lateral Nucleus of SZ and BD Subjects
Scatterplots depicting total numbers (Nt) (A), and numerical densities (Nd) of SST-IR 

neurons in control, SZ, and BD subjects. Significant decreases of Nt (A) and Nd (B) were 

detected in the lateral nucleus of SZ and BD subjects. Significance values are derived from 

stepwise linear regression models. Scatterplots show the mean (histogram) and 95% 

confidence intervals (black lines). *Adjusted for significant effect of hemisphere. ** 

Adjusted for significant effect of time of death.
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Figure 3. Neuropeptide-Y Immunoreactive Neurons in the Human Amygdala
Neuropeptide-Y immunoreactive (NPY-IR) neurons morphological subtypes in the human 

amygdala, including fusiform (A) and multipolar (B) neurons. NPY-IR neurons are widely 

distributed across all of the amygdala nuclei examined as shown by representative plots from 

a control subject depicting the distribution of NPY-IR neurons in the rostral (C) and caudal 

(D) amygdala. Scale bars = 50 μm. LN: lateral nucleus, BN: basal nucleus, AB: accessory 

basal nucleus, CO: cortical nucleus.
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Figure 4. Total Numbers and Numerical Densities of Neuropeptide-Y Immunoreactive Neurons 
Are Not Altered in the Amygdala of SZ or BD Subjects
Scatterplots depicting total numbers (Nt) (A), and numerical densities (Nd) of NPY-IR 

neurons in control, SZ, and BD subjects. A marginally significant decrease of Nt, but not Nd, 

of NPY-IR neurons was detected only in the CO nucleus (Nt, p<0.04, g= −0.81, adjusted for 

effect of PMI). No other significant changes were observed in Nt or Nd of NPY-IR neurons 

when SZ or BD subjects were compared to normal control subjects. Significance values are 

derived from stepwise linear regression models. Scatterplots show the mean (histogram) and 

95% confidence intervals (black lines).
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Figure 5. SST-IR Neurons are Decreased Selectively in BD Subjects with Subjective Day Time of 
Death
(A) Scatterplot depicts total numbers (Nt) of SST-IR neurons in the combined LN-BNAB-

CO of subjects with a time of death (TOD) in the subjective day (06:00–17:59) in 

comparison to subjects with a time of death in the subjective night (18:00–05:59). Within the 

normal control group, there is a trend toward higher numbers of SST-IR neurons in the 

subjective night TOD group with respect to subjective day TOD group. Within the BD 

group, this comparison is significant, with subjective night TOD group showing higher 

numbers of SST-IR neurons with respect to the subjective day TOD group (p< 0.009). 

Between group comparisons of subjective day and subjective night respectively show a 

significant effect of diagnosis selectively for the subjective day TOD group (p< 0.04).. (B) 

No relationship was observed between TOD and total number of NPY-IR neurons in the LN 

in either diagnosis group. (C) Scatterplots of Nt of SST-IR neurons in the subjective day 

TOD vs. subjective night TOD across each amygdala nucleus. SST-IR neuron numbers were 

found to be lower in the subjective day TOD in both control and BD subjects in most 

amygdala nuclei. In subjects with BD, decreases of total number of SST-IR neurons were 

present in the subjective day TOD group in the LN, and CO, with statistical trends for 
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decreases in the BN and AB. Furthermore, comparisons of subjective day vs. subjective 

night groups in subjects with BD revealed a significant decrease of Nt of SST-IR neurons in 

the subjective day across all amygdala nuclei examined in this disorder (C). (D) Plots 

display quartic regression analysis of total numbers of SST-IR neurons in the LN by TOD 

for each diagnosis group. A rhythmic relationship is evident for both normal control and BD 

groups. In control subjects, total numbers of SST-IR neurons display a peak at 

approximately 12 AM, followed by a trough at approximately 6 AM, and a second peak at 

approximately 12 PM followed by a second trough at approximately 6 PM (Black circles, 

gray solid line). Subjects with BD show a reverse rhythmic-like relationship, with a trough at 

approximately 12 AM, a peak at approximately 6 AM, a second trough at approximately 12 

PM and a second peak at approximately 6 PM (black squares, black dashed line). 

Scatterplots show the mean (histogram) and 95% confidence intervals (black lines). 

*Adjusted for significant effect of sex and cause of death.
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