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Abstract

Many scientific research programs aim to learn the causal structure of real world phenomena. This 

learning problem is made more difficult when the target of study cannot be directly observed. One 

strategy commonly used by social scientists is to create measurable “indicator” variables that 

covary with the latent variables of interest. Before leveraging the indicator variables to learn about 

the latent variables, however, one needs a measurement model of the causal relations between the 

indicators and their corresponding latents. These measurement models are a special class of 

Bayesian networks. This paper addresses the problem of reliably inferring measurement models 

from measured indicators, without prior knowledge of the causal relations or the number of latent 

variables. We present a provably correct novel algorithm, FindOneFactorClusters (FOFC), for 

solving this inference problem. Compared to other state of the art algorithms, FOFC is faster, 

scales to larger sets of indicators, and is more reliable at small sample sizes. We also present the 

first correctness proofs for this problem that do not assume linearity or acyclicity among the latent 

variables.

1. INTRODUCTION

Psychometricians, educational researchers, and many other social scientists are interested in 

knowing the values of, or inferring causal relations between, “latent” variables that they 

cannot directly measure (e.g. algebra skill, or anxiety, or impulsiveness). One study 

attempted to learn the causal relations between depression, anxiety, and coping, for example 

[7]. A common strategy is to administer survey or test “items” that are thought to be 

measures or indicators of the latent variables of interest, e.g. by asking for a survey 

respondent’s level of agreement with the statement, “I felt that everything I did was an 

effort”. Unfortunately, it is rare that a latent variable is measured perfectly by any single 

measured indicator because any number of other factors may also influence the value of the 

indicator.

Researchers attempt to resolve this problem by estimating each latent of interest from the 

values of multiple indicators, rather than just one. A model in which each latent variable of 

interest is measured by multiple indicators is called a multiple indicator model [1]. In the 
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above-mentioned study, for example, approximately 20 questions are used to estimate each 

investigated latent variable, in order to obtain more accurate estimates of the latent variables 

[7].

In many cases, despite significant care in the design of the indicator variables, the true model 

generating the data is not known. In particular, the measurement model, the part of the 

multiple indicator model that relates the indicators to the latent variables, is not known. It 

can be difficult to ascertain how many other factors might be influencing particular 

indicators or sets of indicators, or whether some of the indicators might be directly 

influencing other indicators, given just the survey design and background domain 

knowledge. Algorithms such as MIMBuild [6] can learn the causal relations between the 

latent variables if they are given a correct measurement model along with the indicator data, 

but correct output is not guaranteed if the measurement model is wrong. Incorrect 

measurement models result in incorrect inferences about the latent variables. Learning a 

correct measurement model is thus a critical step in learning a multiple indicator model. This 

paper addresses the problem of learning correct measurement models.

The space of all possible measurement models for a set of indicator variables is very large, 

and involves latent variables. It is much larger than the space of directed graphs over the 

indicator variables.1 Instead of searching the entire space, researchers look for measurement 

models that have a particular form. Specifically, they look for measurement models where 

each indicator is a function only of the latent variable it measures, and an independent noise 

term that doesn’t correlate with any other indicator. This transforms the structure learning 

problem to a clustering problem: indicators should be clustered together if they measure the 

same indicator, and clustered apart if they do not.

Factor analysis is the most commonly used method for identifying multiple indicator 

models, but simulation studies have shown that factor analysis performs poorly when there 

are sources of covariation among the indicators other than the factor being measured [6]. If 

the way participants answer one survey item influences how they answer another survey 

item, for example, then factor analysis will often not cluster the indicators correctly. The 

BuildPureClusters (BPC) algorithm [6, 8] solves this problem by leveraging higher order 

algebraic constraints on the covariance matrix of the indicators. Intuitively, BPC uses a 

theorem stating that under conditions such as linearity, certain products of values in the 

covariance matrix will be equal if and only if the data was generated by the kind of 

measurement model we are looking for. This class of measurement models is described in 

detail in section 1.2. Unfortunately, BPC is slower than factor analysis and does not perform 

optimally on smaller data sets, such as those that social scientists often work with.

In this paper, we introduce the FindOneFactorClusters (FOFC) algorithm, a clustering 

method for discovering measurement models that is orders of magnitude faster than BPC 

and has improved accuracy on smaller sample sizes. This advantage in speed allows FOFC 

to be used on data sets that are too large for BPC to produce results within a practical 

1Since any directed graph can have latent variables added as parents of arbitrary sets of measured variables, the space of measurement 
models is a superset of the space of directed graphs.
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amount of time. FOFC’s improved performance on small sample sizes is also important, as 

such data sets are common in social science domains. Factor analysis methods are still 

widely used by practitioners, so we also compare FOFC to a typical factor analysis method, 

though they are already known to perform worse than BPC in many situations [6, 8]. Finally, 

we use FOFC to analyze real sociometric survey data. By leveraging FOFC’s speed and 

accuracy, we are able to find multiple factor models that pass chi-square tests for this data 

set, rather than just a single model. The discovered models also incorporate many mores 

indicators than the model discovered using BPC, and are thus more informative.

1.1 Structural Equation Models

We represent causal structures as structural equation models (SEMs), described in detail in 

[2]. SEMs are frequently employed for this purpose [5, 10]. We denote random variables 

with italics, and sets of random variables with boldface. In a SEM the random variables are 

divided into two disjoint sets: substantive variables are the variables of interest, while error 
variables summarize all other variables that have a causal influence on the substantive 

variables [2]. Each substantive random variable V has a unique error variable ϵV. A fixed 
parameter SEM S is a pair ⟨φ, θ⟩, where φ is a set of equations expressing each substantive 

random variable V as a function of other substantive random variables and a unique error 

variable, and θ is the joint distribution of the error variables. The equations in φ represent 

what happens if variables in the system are manipulated, while θ represents the random 

external noise when there is no manipulation. φ and θ collectively determine a joint 

distribution over the substantive variables in S. We call that distribution the distribution 
entailed by S.

A free parameter linear SEM model replaces some real numbers in the equations in φ with 

real-valued variables and a set of possible values for those variables, e.g. X = aX,LL + ϵX, 

where . In addition, a free parameter SEM can replace the distribution over ϵX and ϵL 

with a parametric family of distributions, e.g. the bi-variate Gaussian distributions with zero 

covariance. The free parameter SEM is also a pair ⟨Φ, Θ⟩, where Φ contains the set of 

equations with free parameters and the set of values the free parameters are allowed to take, 

and Θ is a family of distributions over the error variables. We make the 4 following 

assumptions. 1) There is a finite set of free parameters. 2) All allowed values of the free 

parameters lead to fixed parameter SEMs such that each substantive variable X can be 

expressed as a function of the error variables of X and the error variables of its ancestors. 3) 

All variances and partial variances among the substantive variables are finite and positive. 4) 

There are no deterministic relations among the substantive variables.

This paper includes several figures showing path diagrams (or causal graphs). A path 

diagram is a directed graph representing a SEM: it contains an edge B → A if and only if B 
is a non-trivial argument of the equation for A. By convention, error variables are not 

included in a path diagram if they are not correlated. A fixed-parameter acyclic structural 

equation model with uncorrelated errors is an instance of a Bayesian Network ⟨G, P(V)⟨, 
where the path diagram is G, and P (V) is the joint distribution of the variables in G entailed 

by the set of equations and the joint distribution of the error variables [10].

Kummerfeld and Ramsey Page 3

KDD. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The work in this paper makes heavy use of “structural entailment”. A polynomial equation 

Q, where the variables represent covariances, is entailed by a free-parameter SEM when all 

values of the free parameters entail covariance matrices that are solutions to Q. In such 

cases, Q is true as a consequence of the SEM’s structure alone. For example, a vanishing 
tetrad difference holds among {X, W} and {Y, Z}, iff cov(X, Y)cov(Z, W)–cov(X, Z)cov(Y, 
W) = 0, and is entailed by a free parameter linear SEM S in which X, Y, Z, and W are all 

children of just one latent variable L.

1.2 Pure 1-Factor Measurement Models

There are many kinds of measurement models that one might look for, but in this paper we 

focus on finding pure 1-factor measurement models. 1-Factor measurement models are a 

widely used type of multiple indicator model, where each measure (indicator variable) has 

precisely 1 latent (unmeasured) parent in addition to its “error” variable. There is often no 

guarantee, however, that the measures do not have unwanted additional latent common 

causes, or that none of the measures are causally influenced by any other measures. For a 1-

factor measurement model to be easily used for making inferences about the latents, the 

model must be “pure” [6].

A set of variables V is causally sufficient when every cause of any two variables in V is also 

in V. Given a set of measured indicators O, and a causally sufficient set of variables V 
containing O such that no strict subset of V containing O is causally sufficient, then a 1-pure 
measurement model for V is a measurement model in which each observed indicator has at 

most 1 latent parent, no observed parents, and no correlated errors. Any model whose 

measurement model is pure is a pure model. Figure 1 shows two 1-factor measurement 

models, one impure and one pure. There are two sources of impurity in Figure 1 (a): X1 

causes X7, and X6 has two latent causes, L1 and L2. However, note that the sub-model 

shown in Figure 1 (b) is a 1-pure measurement model, because when the variables X6 and 

X7 are removed, there are no edges between measured indicators, and each measured 

indicator has at most 1 latent cause.

Any subset S of O that contains four variables and for which every member of S is a child of 

the same latent parent, is adjacent to no other member of O, and has a correlated error with 

no other member of V is 1-pure; otherwise the subset is 1-mixed. In Figure 1 (a), {X2, X3, 

X4, X5} is a 1-pure quartet, but {X1, X2, X3, X4} and {X6, X7, X8, X9} are not 1-pure 

quartets.

2. TREK SEPARATION

Our algorithm utilizes trek separation theorems that were originally proven by Sullivent 

[11], and then extended by Spirtes [9]. In order to understand why our algorithm works, it is 

first necessary to understand the trek separation theorems.

A simple trek in directed graph G from i to j is an ordered pair of directed paths (P1; P2) 

where P1 has sink i, P2 has sink j, and both P1 and P2 have the same source k, and the only 

common vertex among P1 and P2 is the common source k. One or both of P1 and P2 may 

consist of a single vertex, i.e., a path with no edges. There is a trek between a set of variables 
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V1 and a set of variables V2 iff there is a trek between any member of V1 and any member 

of V2. Let A, B, be two disjoint subsets of vertices V in G, each with two vertices as 

members. Let S(A, B) denote the sets of all simple treks from a member of A to a member 

of B.

Let A, B, CA, and CB be four (not necessarily disjoint) subsets of the set V of vertices in G. 

The pair (CA; CB) t-separates A from B if for every trek (P1; P2) from a vertex in A to a 

vertex in B, either P1 contains a vertex in CA or P2 contains a vertex in CB; CA and CB are 

choke sets for A and B [9]. Let ∣C∣ be the number of vertices in C. For a choke set (CA; CB), 

∣CA∣ + ∣CB∣ is the size of the choke set. We will say that a vertex X is in a choke set (CA; 

CB) if X ∈ CA ∪ CB.

The definition of linear acyclicity (LA) below a choke set is complicated and is described in 

detail in [9]; for the purposes of this paper it suffices to note that, roughly, a directed 

graphical model is LA below sets (CA; CB) for A and B respectively, if there are no directed 

cycles between CA and A or CB and B, and each member of A is a linear function with 

additive noise of CA, and similarly for B and CB.

For two sets of variables A and B, and a covariance matrix over a set of variables V 
containing A and B, let cov(A, B) be the sub-matrix of Σ that contains the rows in A and 

columns in B. In the case where A and B both have 2 members, if the rank of the cov(A, B) 

is less than or equal to 1, then the determinant of cov(A, B) = 0. In that case the matrix 

satisfies a vanishing tetrad constraint since there are four members of A ∪ B if A and B are 

disjoint. For any given set of four variables, there are 3 different ways of partitioning them 

into two sets of two; hence for a given quartet of variables there are 3 distinct possible 

vanishing tetrad constraints. The following two theorems from [9] (extensions of theorems 

in [11]) relate the structure of the causal graph to the rank of the determinant of sub-matrices 

of the covariance matrix.

THEOREM 1 (PETS1)

(Peter’s Extended Trek Separation Theorem): Suppose G is a directed graph containing CA, 
A, CB, and B, and (CA;CB) t-separates A and B in G. Then for all covariance matrices 

entailed by a fixed parameter structural equation model S with path diagram G that is LA 

below the sets CA and CB for A and B, rank(cov(A, B)) ≤ ∣CA∣ + ∣CB∣.

THEOREM 2 (PETS2)

For all directed graphs G, if there does not exist a pair of sets , , such that ( ; ) t-

separates A and B and , then for any CA, CB there is a fixed parameter 

structural equation model S with path diagram G that is LA below the sets (CA; CB) for A 
and B that entails rank(cov(A, B)) > r.

Theorem 1 guarantees that trek separation entails the corresponding vanishing tetrad for all 

values of the free parameters, and Theorem 2 guarantees that if the trek separation does not 

hold, it is not the case that the corresponding vanishing tetrad will hold for all values of the 

free parameters. If the vanishing tetrad does not hold for all values of the free parameters it 
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is still possible that it will hold for some values of the free parameters, but the set of such 

parameter values will have Lebesgue measure 0. See [9].

This paper focuses only on 1-factor models, but note that the PETS theorems can be applied 

in the manner we describe in the following section for any n-factor model (in particular, see 

[4] for 2-factor models).

3. ALGORITHM

Before describing the FindOneFactorClusters (FOFC) algorithm, we will illustrate the 

intuitions behind it using Figure 1 (a). Let a vanishing quartet be a set of 4 indicators in 

which all 3 tetrads among the 4 variables are entailed to vanish by the PETS theorems. In 

general, pure sets of 3 variables (pure triples) can be distinguished from non-pure sets of 3 

variables (mixed triples) by the following property: a triple is pure only if adding each of the 

other variables in O to the triple creates a vanishing quartet. For example, in Figure 1(a), T1 

= {X2, X3, X4} is a pure triple. Adding any other variable to T1 creates a quartet of variables 

which, no matter how they are partitioned, will have one side t-separated from the other side 

by a choke set ({L1} : Ø). In contrast, T2 = {X1, X2, X3} is not pure, and when X7 is added 

to T2, the resulting quartet is not a vanishing quartet; when X1 and X7 are on different sides 

of a partition, at least 2 variables (including L1, and X1 or X7) are needed to t-separate the 

treks between the variables in the two sides of the partition.

The algorithm first calls FindPureClusters, which tests each triple to see if it has the property 

that adding any other member of O creates a vanishing quartet; if it does have the property it 

is added to the list PureList of pure triples. FindPureClusters tests whether a given quartet of 

variables is a vanishing quartet by calling PassesTest, which takes as input a quartet of 

variables, a sample covariance matrix, and the search parameter α that the user inputs to 

FOFC. PassesTest can use any test of vanishing tetrad constraints; we use the Wishart test 

[12].2 The list of pure triples at this point is every subset of X2 through X5 of size 3, and 

every subset of X8 through X12 of size 3. X1, X6, and X7 do not appear in any pure triple. 

GrowClusters then initializes CList to PureList.

If any two pure sets of variables overlap, their union is also pure. FOFC calls GrowClusters 
to see if any of the pure triples in PureClusters can be combined into a larger pure set. 

Theoretically, GrowClusters could simply check whether any two subsets on PureClusters 
overlap, in which case they could be combined into a larger pure set. In practice, however, in 

order to determine whether a given variable o can be added to a cluster C in CList, 
GrowClusters checks whether a given fraction (determined by the parameter GPar) of the 

sub-clusters of size 3 containing 2 members of C and o are on PureList. If they are not, then 

GrowClusters tries another possible expansion of clusters on CList; if they are, then 

GrowClusters adds o to C in CList, and deletes all subsets of the expanded cluster of size 3 

from PureList. GrowClusters continues until it exhausts all possible expansions.

2We have also implemented FOFC with an asymptotically distribution-free statistical test of sets of vanishing tetrad constraints that is 
a modification of a test devised by Bollen and Ting [3].
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Finally, when GrowClusters is done, SelectClusters goes through CList, iteratively 

outputting the largest remaining cluster C still in CList, and deleting any other clusters in 

CList that intersect C (including C itself).

FindPureClusters dominates the algorithm’s complexity, which in the worst case requires 

testing n choose 4 sets of variables, and each quartet requires testing 2 of the 3 possible 

vanishing tetrad constraints in order to determine if they all vanish. In practice, we have 

found that it can be easily applied to hundreds of measured variables at a time. On a personal 

laptop, running FOFC on a data set of 200 measured variables took only a few seconds, and 

a data set of 500 measured variables took approximately one minute. We believe that 

running FOFC on data sets with thousands or tens of thousands of variables should be 

feasible, but further testing is required to identify the upper bounds of FOFC’s scalability in 

practice.3

Algorithm 1

FindOneFactorClusters

Data: Data, V, GPar, α

Result: SelectedClusters

Purelist = FindPureClusters(Data, V, α)

CList = GrowClusters(Purelist, GPar)

SelectedClusters = SelectClusters(CList)

Algorithm 2

FindPureClusters

3http://www.phil.cmu.edu/tetrad/ contains an implementation available by downloading tetrad-5.1.0-6.jnlp, creating a “Search” box, 
selecting “Clustering” from the list of searches, and then setting “Test” to “TETRAD-WISHART”, and “Algorithm” to 
“FIND_ONE_FACTOR_CLUSTERS”.
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Algorithm 3

GrowClusters

4. CORRECTNESS

The main theorems in this section are more general and abstract than the correctness and 

completeness of FOFC. They are included here so that they might be utilized directly for 

future theorems and algorithms. FOFC’s correctness and completeness under appropriate 

assumptions follows as a corollary of these other theorems, and is stated and proven after the 

more general theorems. The general theorems make use of terms and concepts that are not 

necessary for understanding the problem we focus on in this paper, or how FOFC functions. 

The appropriate transitions from these abstract concepts to those related to FOFC’s 

correctness and completeness are made within the corollary proof.

4.1 Definitions and Assumptions

Let SEM  have measured variables O and unmeasured variables L. A set of variables M ⊆ 
O is a 1-separable cluster relative to O iff every M ∈ M has no zero partial correlations with 

any other O ∈ O conditional on any set S ⊆ O \ ({O} ∪ M), but for which there is a L ∈ L, 

re ferred to as a key latent for M in O, such that all M ∈ M have zero partial correlations 

with all O ∈ O conditional on L. In graphical terms, this means that the key latent L d-

separates the members of M from the members of O. A set of measures C ⊆ O is a 

swappable tetrad cluster iff all tetrads over variables in O that include at least 3 variables in 
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C are entailed to vanish, and ∣C∣ ≥ 3 (to prevent vacuously satisfying the universal 

quantifier).

We assume that there is a trek between every pair of indicators and that there are no entailed 

vanishing partial correlations within O conditional on any subset of the other members of O. 

It is easy to check in practice whether this assumption is satisfied, and variables that violate 

this assumption can be removed from the data in pre-processing. In analogy to the Causal 

Faithfulness Assumption [10], we assume that tetrad constraints vanish only when they are 

entailed to vanish by the structure of the graph, and thus for all values of the free parameters. 

In the linear case and other natural cases, the set of parameters that violates this assumption 

is Lebesgue measure 0. In all of the following, we assume that all the indicators have a linear 

relationship with their latent parents.

4.2 Theorems and Proofs

Theorem 3 (Uniqueness of Key Latents)—If ∣M∣ ≥ 2, ∣O∣ ≥ 3, and there are no 

entailed zero partial correlations in O, then: if L1 ∈ L is a key latent for M in O, then there 
can be no L2 ∈ L, L2 ≠ L1, Corr(L2, L1) ≠ 1, such that L2 is a key latent for M in O.

Proof—Assume ∣M∣ ≥ 2, ∣O∣ ≥ 3, that there are no zero partial correlations in O, and that 

there is a L1 ∈ L such that all M ∈ M are independent of all O ∈ O conditional on L1.

By contradiction, assume that there is an L2 ∈ L, L2 ≠ L1, Corr(L2, L1) ≠ 1, such that all M 
∈ M are independent of all O ∈ O conditional on L2.

Both L1 and L2 must lie on every trek from each member of M to each member of O. Since 

M has at least two distinct members, and there is at least one additional member in O, let M1 

and M2 be distinct members of M, and let X ∈ O be an additional distinct variable. L1 and 

L2 must both lie on every trek between M1 and M2, M1 and X, and M2 and X. Since we’ve 

assumed there are no entailed zero partial correlations in O, then there must be at least one 

trek for each pair.

Let an O-unblocked ancestor of A be an ancestor of A with at least one directed path to A 
without any member of O in it. Similarly, let an O-unblocked trek be a trek without any 

member of O on it, with the possible exception of the endpoints.

Since there is at least one trek between each pair, and L1 must lie on each of those treks, L1 

must be an O-unblocked ancestor of at least two of M1, M2, and X. To see this, note that 

since L1 lies on all treks from M1 to M2, and since there is at least one such trek, then L1 

must be an O-unblocked ancestor of M1 or M2. WLOG let it be M1. By similar reasoning, 

L1 must also be an O-unblocked ancestor of M2 or X.

WLOG let L1 be an O-unblocked ancestor of M1 and M2. Then there is an O-unblocked trek 

of the form {M1, … ← …, L1, … → …, M2}. Since this is a trek between M1 and M2, L2 

must also be on this trek, and since L2 ≠ L1, L2 must be be on either the M1 or the M2 side 

of L1. WLOG, let the trek be of the form {M1, … ← …, L1, … → …, L2, … → …, M2}.
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L1 must also be on an O-unblocked trek from X to M1, entailing that there is a (possibly 

trivial) O-unblocked trek from L1 to X. L2 either does or does not lie on this trek. If L2 does 

not lie on this trek, then there is a trek from X to M1 that does not include L2, violating the 

assumption that L2 is on all such treks. If L2 does lie on this trek, then there is a trek from X 
to M2 which does not include L1, violating the assumption that L1 is on all such treks. Thus, 

both parts of the disjunct lead to contradiction.

Theorem 4—If M is a 1-separable cluster relative to O with key latent L, and ∣M∣ ≥ 3, then 
M is a swappable tetrad cluster.

Proof—Let M be a 1-separable cluster relative to O with key latent L, with ∣M∣ ≥ 3. If ∣O∣ = 

3 then M is vacuously a swappable tetrad cluster since there are no tetrads, vanishing or 

otherwise, so assume ∣O∣ ≥ 4. Since ∣M∣ ≥ 3 we have at least three distinct measures in M, 

M1, M2, and M3; and since ∣O∣ ≥ 4 there is at least one more distinct variable, X.

By the definition of 1-separable cluster, every M ∈ M has no entailed zero partial 

correlations with any other O ∈ O, and all M ∈ M are independent of all O ∈ O conditional 

on L. It follows that there are no direct edges between any M ∈ M and any O ∈ O, that there 

are treks from ever M ∈ M to every O ∈ O, and that L lies on all those treks.

M1, M2, M3, and X were chosen arbitrarily, and there are three distinct tetrads formed with 

those variables. WLOG, consider the tetrad {{M1, M2}, {M3, X}}. In order to apply PETS1 

to show that this tetrad vanishes, we need to show that either L is on the {M1, M2} side of 

every trek from {M1, M2} to {M3, X}, or L is on the {M3, X} side of every trek from {M1, 

M2} to {M3, X}. By contradiction, assume otherwise, entailing that one of those treks has its 

source only on the {M1, M2} side of L, and another trek has its source only on the {M3, X} 

side of L (with L not being the source for either trek). But this entails that there’s a 

nontrivial trek from a member of {M1, M2} into L and a nontrivial trek from {M3, X} into 

L, which collectively form an active path from a member of {M1, M2} to a member of {M3, 

Xg} with L as either the sole collider on the path, or a descendent of the sole collider on the 

path. This would make the path active when we condition on L and thus violate the 

assumption that all M ∈ M are independent of all O ∈ O conditional on L.

We can now apply PETS1 (see section 2) to show that all tetrads formed from {M1, M2, M3, 
X} must vanish. Since those variables were chosen arbitrarily, it follows that all tetrads 

consisting of 3 variables from M and 1 from O will vanish, and so M is a swappable tetrad 

cluster.

Theorem 5—If ∣O∣ ≥ 4 and M is a swappable tetrad cluster relative to O, then M is a 1-
separable cluster relative to O.

Proof—This theorem is a corollary of Lemma 9 in [6]. Silva’s Lemma 9 states: “Let G(O) 

be a linear variable model, and let C = {X1, X2, X3, X4} ⊂ O be such that all tetrads over C 
vanish. If all members of C are correlated, then a unique node P entails all the given tetrad 

constraints, and P d-separates all elements in C.” In particular, note that the unique node P 
mentioned in the lemma will satisfy the requirements for being a key latent of C.
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The proof of Lemma 9 given by Silva doesn’t require assumptions beyond those we’re using 

in this paper; in particular it does not make use of linearity above the choke sets. As such, it 

can be applied in our setting.

Theorem 6 (FOFC is sound and complete)—FOFC outputs cluster M if and only if: 
∣M∣ ≥ 3, and there is a pure 1-factor measurement submodel with one latent variable using 

all and only those measured variables in M, and no other cluster N s.t. M ⊂ N and there is a 

pure 1-factor measurement submodel with one latent variable using all and only those 

measured variables in N.

Proof—The proof proceeds by proving each direction of the “if and only if” separately. 

First, let ∣M∣ ≥ 3, and let there be a pure 1-factor measurement submodel with one latent 

variable using all and only those measured variables in M, and let there be no other cluster 

N, with M ⊂ N, s.t. there is a pure 1-factor measurement submodel wit one latent variable 

using all and only those measured variables in N. Since there is a pure 1-factor measurement 

submodel with one latent variable using all and only those measured variables in M, it 

follows that M is a 1-separable cluster (the one latent variable is the key latent). By theorem 

4, M is a swappable tetrad cluster. Since M is a swappable tetrad cluster, every subset of size 

3 will be in PureList (see section 3). By theorem 5 and using the assumption that M’s pure 

1-factor measurement model is not contained by another pure 1-factor measurement model, 

M is not contained by another swappable tetrad cluster. It follows that during the 

GrowClusters step of FOFC, some member of PureList will be grown up to M, and stop 

growing at that point. M will then be a cluster output by FOFC.

For the other direction, assume FOFC outputs cluster M. For M to be in the output of FOFC, 

it must have been grown from some member of PureList, meaning that it contains that 

member of PureList (see section 3). All members of PureList are sets of at least 3 distinct 

indicators, so ∣M∣ ≥ 3. By how FOFC constructed PureList and then M, M is a swappable 

tetrad cluster. By theorem 5, M is a 1-separable cluster. By theorem 3, there is exactly 1 key 

latent separating the indicators in M. It follows that there is a pure 1-factor measurement 

submodel with one latent variable using all and only those measured variables in M. There 

can be no other cluster N with a pure 1-factor measurement submodel with one latent 

variable using all and only those measured variables in N s.t. M ⊂ N, since this would lead 

to FOFC continuing to grow M into N during the GrowClusters step, contradicting the 

assumption that FOFC outputs cluster M.

5. SIMULATIONS

We simulated data from 4 different data generating models with free parameters. The base 

graph has 4 factors, with 48 measures divided evenly among them, e.g. factor L1 is 

measured by X1 – X12. The latent structure is L1 → L2, L1 → L3, L2 → L4, L3 → L4.

Case 1 is a linear SEM with free parameters, Gaussian noise, and no impurities. In all cases, 

the Gaussian noise variables have mean 0 and variance drawn from U(0.5, 1), and in cases 

1-3 the edge parameters are drawn from a uniform distribution with support split between 
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(−2, −1 and (1, 2). To account for sensitivity to variable order, we randomized the order of 

the measures before applying the search procedures.4

Case 2 adds impurities to Case 1. Specifically, we add the following edges: {X1 → X2, X2 

→ X3, X1 → X3, X2 → X4, X1 → X13, X2 → X14, L4 → X15, X25 → X26, X25 → 
X27, X25 → X28, X37 → X40, X38 → X40, X39 → X40}.

Case 3 modifies Case 2 s.t. L2, L3 and L4 are nonlinear functions of their parents: each 

latent L was set to the sum over its parents of 0.5 * c1 * P + 0.5 * c2 * P2 plus an error, 

where P is one of the parents of L, and c1 and c2 are edge parameters. We tested the data for 

non-linearity with a White test in R, and the null hypothesis test of linearity was rejected.

Case 4 modifies the latent structure of Case 2 to be a cycle of length 4: L1 → L3 and L3 → 
L4 were removed and replaced with L4 → L3 and L3 → L1. The parameters on all 4 

resulting latent structure edges are drawn from U(0.1, 0.3) to guarantee that the values of the 

latents will converge. All other edge parameters were as in cases 1-3.

Using these 4 cases, we evaluated FOFC alongside BPC [6] and factor analysis (FA) [1]. 

The versions of FOFC and BPC we used can be found in our publicly available 

implementation, noted in section 3. Note that our implementation of BPC is a well-

optimized version of the code used by [6]. For FA, we used factanal() from R 3.1.1 with the 

oblique rotation promax. Data was generated from each free parameter SEM described 

above, at n = 100, 300, and 1000. The FOFC and BPC algorithms were run with significance 

level (for the vanishing tetrad tests) of 1/n where n is the sample size.5 FA was run with 4 

factors and a cutoff threshold of 0.5. For all methods, we ignore and treat as unclustered any 

output cluster of size < 4; in our experience, very small clusters are unreliable and 

uninformative.

All simulations were run on the same Macbook Air (2Ghz CPU, 8g RAM). In terms of run 

time, FOFC was almost an order of magnitude faster than FA, and was two orders of 

magnitude faster than the computationally optimized implementation of BPC. FOFC’s speed 

is perhaps its primary advantage over BPC.

For each of the three methods and three sample sizes, we calculated the average cluster 

precision, recall, and accuracy of the inferred latent structure. We first evaluate these 

methods on precision: the proportion of output clusters that are pure, to the total number of 

output clusters. A cluster in a clustering is considered pure if there exists a latent in the true 

model that d-separates every member of that cluster from every over measure included in 

some cluster in the clustering.

Figures 2, 3, and 4 show the mean (over 50 runs) of the precision, recall, and Structural 

Hamming Distance (SHD), respectively, of the clustering output for each simulation case. In 

4In many applications of multiple indicator models, the indicators are deliberately chosen so that the correlations are fairly large 
(greater than 0.1 in most cases), and all positive; in addition, there are relatively few correlations greater than 0.9. We chose our 
parameters for these simulations in order to produce correlation matrices with some of these properties (though we allow for negative 
and small correlation values to occur). We did not however, adjust the model parameters according to the results of the algorithm.
5This parameter choice is a rule of thumb we have informally found to work well for both algorithms.
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Figure 2, the error bars show the standard deviation of the precision. The blue, red and green 

bars represent the performance of FA, BPC and FOFC respectively. The bars are grouped by 

sample size: n =100, 300, and 1000 respectively. We generated 50 models for each of Cases 

1-4.

For some practitioners, precision may be the most important evaluative criterion, as it 

measures the how reliably output clusters can be trusted. FOFC and BPC both excelled in 

precision, while FA did worse than expected. FA did worse as the sample size increased, 

while BPC and FOFC improved when there was room to do so. It is possible that the 

excellent performance of FOFC and BPC is due to these algorithms creating very little 

output, however the results for the next evaluative criterion, recall, show that this is not the 

case.

We define recall to be the ratio of the number of output measures used in the output 

clustering to the number of output measures in a maximal pure clustering. A maximal pure 

clustering is a clustering composed of only pure clusters such that no other clustering 

composed of pure clusters uses more measures than it. For Case 1, a maximal pure 

clustering uses all 48 measures, while for Cases 2-4 a maximal pure clustering has 38 

measures in it.

Unlike typical recall metrics, this kind of recall can have a value greater than 1. The ideal 

recall is 1; recall greater than 1 entails that there are impure clusters in the output; recall less 

than 1 means that fewer measures are being utilized by the output clusters than is optimal. 

These plots show that FOFC and BPC produce outputs that are large but not too large, while 

FA outputs too many variables. FOFC and BPC have similar recall for most circumstances, 

but FOFC has some advantages at smaller sample sizes.

To evaluate the accuracy of the structural models inferred by the three methods, we first used 

the output clusters as inputs to the MIMbuild algorithm [6] for inferring structural models 

from measurement models. We then created a mapping from the latent variables in the 

inferred structural models to those of the true structural models in the same manner as [6]. 

Finally, we computed the Structural Hamming Distance (SHD) between the inferred 

structural model and the true structural model, using the mapping from the previous step to 

identify inferred latents with their respective true latents (when they exist).

FOFC and BPC have very similar SHD in all cases and at all sample sizes. In most cases, 

FOFC and BPC improve with sample size. It is somewhat surprising that the SHD is as 

small as it is for cases 3 and 4, since the MIMBuild algorithm assumes that the causal 

relations amongst the latents are linear and acyclic. In those cases, even with perfect clusters, 

MIMBuild is not guaranteed to find the correct structure amongst the latents.

For some cases and sample sizes, the SHD of FA is comparable to that of BPC and FOFC, 

however in other cases it is dramatically worse. Unlike BPC and FOFC, FA often does not 

improve with sample size, and in case 2 actually significantly worsens at sample size 1000. 

FA’s performance is surprisingly good, considering its poor precision, but this is due to the 

way in which SHD is being calculated: actual structural nodes can be associated with 

hypothesized structural nodes even if the hypothesized clusters are impure [6]. FA is also 
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benefitting from using the correct number of factors as input, unlike BPC and FOFC. 

Overall, BPC and FOFC have improved SHD compared to FA, as expected.

6. REAL DATA

We applied the current implementation of FOFC to Lee’s depression data [7], which has 61 

indicator variables and a sample size of 127. Lee’s model fails a chi-square test: p = 0. Silva 

analyzed the same data set, using BPC to infer the existence of 1-pure measurement models 

[6]. The 1-pure measurement models are then used to construct a factor model over the 

variables in the measurement models, using the prior knowledge that Stress is not an effect 

of other latent variables. That factor model passes a chi square test with p = 0.28. However, 

that factor model includes only 5 out of 21 measures of Stress, 4 out of 20 measures of 

Coping, and 3 out of 20 measures of Depression, which is only barely enough indicators to 

informatively measure the factors in the model.

Since FOFC is fast, we reran it numerous times using different parameters and randomly 

reordering the measure variables for different results. We kept track only of discovered 

models that passed a chi square test. The highest scoring model that was found (p = 0.297) is 

shown in Figure 5 (a). The graphical model in this figure includes edges with “o” symbols at 

both ends, meaning that MIMBuild could not determine how those edges should be oriented. 

Such models represent an equivalence class of directed acyclic graphs, and are described in 

more detail in [10]. That model contains 4 factors (3 for depression, 1 for coping, 0 for 

stress) and uses a total of 17 measures. Another discovered model, shown in Figure 5 (b), 

does not pass a chi square test at as high of a p-value (p = 0.155), but is still notable due to 

its large size. That model contains 5 factors (2 for depression, 2 for coping, and 1 for stress) 

and uses 27 of the 61 measures recorded in Lee’s data set.

A few features shared by both graphs are worth discussing. First, both graphs include a 

cluster of measured variables, and their latent parent, which is disconnected from the rest of 

the graph. Looking at the sample correlation matrix this appears to be warranted: many 

coping variables have near-zero correlations with non-coping variables, but moderate 

correlations with other coping variables. Both of these features of the distribution can be 

explained by the presence of an independent measurement model applying to some or all of 

the coping variables in the output graph.

Second, both models include multiple clusters for depression variables whose latents are 

connected. This suggests that it might be productive to reconceptualize depression as having 

a multi-dimensional value rather than a single number. Or, one might hypothesize that there 

is still a uni-dimensional depression value, but that it is more diffcult to measure than 

previously thought. In particular, it may be the case that a person’s level of depression is 

actually expressed via multiple more fine-grained properties, which are themselves also 

latent variables. The absence of an edge between L3 and L4 in Figure 5 (a) suggests that this 

hypothesis may not be correct, as the presence of such a higher-order latent variable causing 

L1, L3, and L4 would induce an edge between L3 and L4 if, as in this graph, it is not 

explicitly represented. Nonetheless, it may be worth further investigation.
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Third, all the clusters identified by the algorithm accord very strongly with the background 

knowledge of the expert who designed the survey and identified which variables were, e.g., 

“coping” variables, and which were, e.g. “depression” variables. The sole exception is that 

COP6 reliably clusters with depression variables, rather than with other coping variables. 

According to [7], COP6 is the respondent’s reported degree of agreement with the following 

statement: “I feel that stressful situations are God (high power)’s way of punishing me for 

my sins or lack of spirituality”. We leave it to the reader to decide whether it is plausible that 

this item could cluster with depression indicators, rather than coping indicators.

The two models diverge regarding how depression relates to the other two factors of interest 

(coping and stress). Figure 5 (a) identifies no links between the depression factors and the 

coping factor it identifies, and identifies no stress factor at all. One can unfortunately 

conclude relatively little from this. This model suggests that there is at least some dimension 

of coping which is independent of a person’s depression, but remains agnostic as to whether 

there may be another dimension of coping which is causally connected to depression, 

especially because a large number of coping measures remain unclustered and are thus 

absent from the model. Since the model identifies no stress factor, it remains agnostic 

regarding its potential causal connections with the other factors.

Figure 5 (b) finds two coping factors, which are independent of each other. One of these 

coping factors has an edge oriented towards L3, a depression factor, but does not have any 

other connections to any other factors, and in particular is not connected to the other 

depression factor or to the stress factor. This suggests that some aspect of coping may 

causally influence some aspect of depression, but that the two are not connected as strongly 

as one might think. The edge from L3 to L5 is undirected, so it is unclear whether the coping 

factor is a causal ancestor of the L5 factor or not: an aspect of coping may or may not have a 

causal effect on stress mediated by an aspect of depression. L5, the stress factor, is 

connected by undirected edges to both L1 and L3, and so the graph is relatively agnostic 

about whether stress causes the depression factors. If L1 and L3 were both parents of L5, 

however, there would be no unoriented edges, so the graph does at least suggest that it is not 

the case that both aspects of depression cause stress.

Lee’s original hypothesis was that stress, coping, and depression each have a single factor, 

and that the stress and coping factors both cause the depression factor, and would also be 

correlated, although Lee was agnostic about whether that correlation would be due to the 

stress or coping factor causing the other one, or to the stress and coping factors having 

correlated error terms. Neither of the two models presented here, however, include a direct 

edge between a coping variable and a stress variable, and both models suggest that at least 

depression is better represented with multiple factors than with one. Both models also 

suggest that Lee’s data is relatively agnostic regarding whether stress causes depression or 

not, as a stress factor does not occur in model (a), and the edges between the stress factor 

and the depression factors in model (b) are unoriented. Model (b) partially corroborates 

Lee’s hypothesis that a coping factor causes a depression factor, as one of the two coping 

factors in that model is a direct cause of one of the two depression factors in the model. 

Overall, it is not a bad sign that the models found here do not align closely with Lee’s 

hypothesis, as Lee’s model does not pass a chi square test: p=0.
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Silva used the BPC algorithm on Lee’s data, and found a model with a single stress factor, a 

single depression factor, and a single coping factor, with the stress factor being a direct cause 

of the depression factor, and the depression factor being a direct cause of the coping factor 

[6]. These edge orientations were identified by constraining their model such that the stress 

factor could not be a descendent of the other latent variables. Their model passes a chi 

square test with p=0.28, however it is also very small, incorporating only 12 observed 

variables. In contrast, the model in Figure 5 (a) has more variables and passes a chi square 

test at a higher p value, although it does not tell a story as compelling as the one told by 

Silva’s model. In terms of their structural differences, the models found here do not find an 

edge from a depression factor to a coping factor. The model in Figure 5 (a) finds no 

connection at all, while the one in 5 (b) actually finds the opposite: an edge from a coping 

factor to a depression factor. Further, this edge orientation is made without making any 

structural assumptions about the factors, unlike the corresponding edge in Silva’s model. 

Model (a) does not find a stress factor at all, but model (b) finds a stress factor with edges 

connecting it to both depression factors. If we also assumed that stress cannot be a 

descendent of depression, then that information could be used to orient these edges in accord 

with Silva’s model.

7. FUTURE WORK

We are currently exploring additional approaches for making FOFC even more reliable and 

efficient. FOFC’s principle benefit over BPC is speed, but the degree of the advantage is 

such that not only can FOFC be applied to much larger problems, but it is feasible to 

incorporate FOFC as part of a more complex algorithm for improved stability and reliability. 

We also believe FOFC’s recall could be improved by removing impure variables from the 

input variables given to it, which could be done in pre-processing or as part of a more 

complex process between iterations of FOFC. It would also be beneficial to develop a better 

understanding of the space of possible search procedures involving pure quartets, of which 

this implementation of FOFC is only one type of greedy search. Finally, we would like to 

generalize this method to arbitrary number of factor parents, rather than just 1.
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Figure 1. 
(a) Impure 1-Factor Model; (b) Pure Sub-model
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Figure 2. 
(a-d) Average Precision of FA (blue), BPC (red), and FOFC (green) Clustering Output for 

Cases 1-4
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Figure 3. 
(a-d) Average Recall of FA (blue), BPC (red), and FOFC (green) Clustering Output for 

Cases 1-4

Kummerfeld and Ramsey Page 20

KDD. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a-d) Average SHD of FA (blue), BPC (red), and FOFC (green) MIMbuild Output for Cases 

1-4
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Figure 5. 
Factor Models Inferred From Lee’s Data
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Table 1

Run Times On Simulated Data (ms)

METHOD MEAN SE

FA 642 222

BPC 9482 4953

FOFC 94 68

KDD. Author manuscript; available in PMC 2017 January 01.


	Abstract
	1. INTRODUCTION
	1.1 Structural Equation Models
	1.2 Pure 1-Factor Measurement Models

	2. TREK SEPARATION
	Theorem 1 (PETS1)
	Theorem 2 (PETS2)

	3. ALGORITHM
	Algorithm 1
	Algorithm 2
	Algorithm 3
	4. CORRECTNESS
	4.1 Definitions and Assumptions
	4.2 Theorems and Proofs
	Theorem 3 (Uniqueness of Key Latents)
	Proof
	Theorem 4
	Proof
	Theorem 5
	Proof
	Theorem 6 (FOFC is sound and complete)
	Proof


	5. SIMULATIONS
	6. REAL DATA
	7. FUTURE WORK
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

