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ABSTRACT

The glycine riboswitch often occurs in a tandem architecture, with two ligand-binding domains (aptamers) followed by a single
expression platform. Based on previous observations, we hypothesized that “singlet” versions of the glycine riboswitch, which
contain only one aptamer domain, are able to bind glycine if appropriate structural contacts are maintained. An initial alignment
of 17 putative singlet riboswitches indicated that the single consensus aptamer domain is flanked by a conserved peripheral
stem–loop structure. These singlets were sorted into two subtypes based on whether the active aptamer domain precedes or
follows the peripheral stem–loop, and an example of each subtype of singlet riboswitch was characterized biochemically. The
singlets possess glycine-binding affinities comparable to those of previously published tandem examples, and the conserved
peripheral domains form A-minor interactions with the single aptamer domain that are necessary for ligand-binding activity.
Analysis of sequenced genomes identified a significant number of singlet glycine riboswitches. Based on these observations, we
propose an expanded model for glycine riboswitch gene control that includes singlet and tandem architectures.
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INTRODUCTION

The glycine riboswitch plays an important role in bacterial
glycine homeostasis and offers an unusual example of gene
regulation due to its unique tandem architecture (Barrick
and Breaker 2007; Barrick et al. 2004; Mandal et al. 2004;
Kazanov et al. 2007; Lipfert et al. 2007; Kwon and Strobel
2008; Huang et al. 2010; Butler et al. 2011; Erion and
Strobel 2011; Kladwang et al. 2012; Sherman et al. 2012;
Baird and Ferré-D’Amaré 2013; Esquiaqui et al. 2014; Ruff
and Strobel 2014; Zhang et al. 2014). Glycine riboswitches
control genes related to the import, synthesis, and degrada-
tion of glycine, and these genes maintain the intracellular gly-
cine concentration within a narrow range in bacterial cells
(Barrick and Breaker 2007; Barrick et al. 2004; Kazanov
et al. 2007). Disruption of the riboswitches has been shown
to be toxic to S. griseus growing in media containing glycine
(Tezuka and Ohnishi 2014). More than 7000 examples of the
riboswitch class are found across bacterial phyla and environ-
mental sequences (P McCown and R Breaker, unpubl.).

Previous sequence analysis of the glycine riboswitch iden-
tified a tandem structure, with two homologous ligand-bind-
ing domains (aptamers) that each binds a separate glycine

molecule (Mandal et al. 2004). Unlike the few other known
examples of tandem riboswitches, the two aptamer domains
are followed by a single expression platform (Mandal et al.
2004; Sudarsan et al. 2006; Welz and Breaker 2007; Breaker
2011). Because the two tandem aptamers have been con-
served against evolutionary drift, they are expected to provide
some benefit relative to the simpler, single-aptamer ribos-
witch. It was originally proposed that the two aptamer do-
mains are cooperative, providing a sharper, more digital
response to changes in glycine concentration (Mandal et al.
2004; Lipfert et al. 2007; Kwon and Strobel 2008; Erion
and Strobel 2011). Recent work has shown that, at least for
in vitro binding assays, certain glycine riboswitch constructs
examined under equilibrium conditions are not cooperative
(Kladwang et al. 2012; Sherman et al. 2012; Baird and
Ferré-D’Amaré 2013), and the two binding sites bind ligand
independently (Ruff and Strobel 2014). Further research is
necessary to determine whether tandem riboswitches act co-
operatively in vivo.
The two aptamer domains of the tandem riboswitch in-

teract to form a network of conserved structural contacts
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(Fig. 1A,B; Huang et al. 2010; Butler et al. 2011). Biochemical
analysis has shown that these tertiary interactions between
the aptamer domains are necessary for ligand-binding activ-
ity and that ligand binding and interface formation are linked
equilibria (Erion and Strobel 2011; Ruff and Strobel 2014).
The two aptamer domains are connected by a kink-turn
and P0 helix (Kladwang et al. 2012; Sherman et al. 2012),
which likely stabilize and organize the
two binding domains. We have previous-
ly hypothesized that the first aptamer
domain could be important for stabiliz-
ing or kinetically scaffolding the second
(Ruff and Strobel 2014), whose forma-
tion is proposed to be important for
gene control (Mandal et al. 2004).
The original alignment of glycine

riboswitches identified a small number
that contain only a single-aptamer
domain (Mandal et al. 2004). Each sub-
sequent alignment has identified a
small percentage of these “singlet” ribo-
switches (Kazanov et al. 2007; Kladwang
et al. 2012; P McCown and R Breaker,
unpubl.), but these sequences have not
been characterized. Given the impor-
tance of aptamer dimerization in the
tandem system (Ruff and Strobel 2014),
we set out to determine if singlet versions
of the glycine riboswitch are able to bind
glycine and are likely to serve as genetic
switches.We biochemically characterized
two prototypical examples, showing that
the singlet aptamers do bind ligand
and are dependent on a “ghost-aptamer”
domain for ligand-binding activity. Based
on these observations, we propose an
expanded model for glycine riboswitch
control of gene expression that incorpo-
rates singlet riboswitch activity.

RESULTS

Putative glycine singlet aptamers
are flanked by conserved stem–loop
“ghost aptamers”

Seventeen putative singlet riboswitches
were initially identified by inspection
in searches for tandem riboswitches
(Supplemental Fig. S1; J Barrick and R
Breaker, unpubl.). Because this initial
set of singlet riboswitches appeared in
searches for tandem switches even while
missing one aptamer, their sequences
are closely related to that of the consen-

sus glycine aptamer. The single aptamer domains are flanked
by adjacent conserved helical elements with the sequence and
length of the P1 stem of a glycine aptamer domain (consen-
sus sequences shown in Fig. 1C,D). In addition, the P0 and
kink-turn motifs are conserved, indicating that the helical
domain is positioned in the same orientation as a P1 stem
with respect to the extant aptamer domain. Although the

FIGURE 1. Consensus sequences and distribution of singlet glycine riboswitches based on an
initial alignment of 17 sequences. (A) Schematic diagrams showing the secondary structures
and tertiary interactions of tandem, type-1 singlet, and type-2 singlet riboswitches. (B–D)
Consensus sequences for tandem (B), type 1 singlet (C), and type 2 singlet riboswitches (D).
The α and β A-minor motifs are conserved. (E) Distribution of genes controlled by the singlet
riboswitches in the initial alignment.
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helical sequence is conserved, the loop length and sequence
vary widely among the singlets. There is no evidence of
a ligand-binding site and none of the conserved elements
of a glycine aptamer are retained, except the P1 stem. We
therefore dubbed these helical regions “ghost aptamers.”
The singlets can be classified into two subtypes based on
whether the aptamer domain precedes the ghost aptamer
(type-1) or follows it (type-2). These subtypes are relatively
evenly distributed among the small number of riboswitches
in the initial alignment. Interestingly, all of the type-1 singlet
riboswitches are predicted to be “ON” switches, while the
type-2 examples have less obvious expression platforms but
are likely a mixture of “ON” and “OFF” switches.

The top three base pairs (bp) of the P1 stem of a glycine
aptamer in a tandem riboswitch have been shown to partic-
ipate in extensive A-minor tertiary interactions with A-rich
bulges in the P3 stem of the partner aptamer (Fig. 1A).
Because the stem length and the sequence of these three
base pairs are conserved in the ghost aptamers of singlet
riboswitches, we hypothesized that they might fulfill a similar
structural role in the singlet architecture. Sequence analysis of
the relevant bulge of the singlet aptamer domain indicates
that the adenines are conserved, and the formation of A-mi-
nor interactions is possible (Fig. 1A–D).

The P1 stem of the first aptamer in a tandem riboswitch is
considerably more stable than that of the second aptamer (8–
9 bp vs. 5–6 bp) (Ruff and Strobel 2014). This stability differ-
ence is also observed in the singlet riboswitches, with the
stem of the ghost aptamer more stable in type-1 singlets,
and less stable in type-2 singlets. This difference has implica-
tions for the gene-control model, as discussed below.

Type-1 and type-2 singlet riboswitches bind glycine
as tightly as tandem riboswitches and are active
as monomers

Prototypical examples of each type of singlet were chosen
for biochemical analysis in vitro. A type-1 singlet from
Listeria monocytogenes (Lmo) and a type-2 singlet from
Desulfitobacterium hafniense (Dha) were synthesized by in vi-
tro transcription, and equilibrium dialysis was used to deter-
mine the glycine-binding affinity. Both bind glycine with low
micromolar affinities (Table 1; Fig. 2), comparable to that of
the tandem riboswitch from Vibrio cholerae (VC) (Kladwang

et al. 2012; Sherman et al. 2012; Baird and Ferré-D’Amaré
2013; Ruff and Strobel 2014).
Isolated glycine aptamer domains can homodimerize in vi-

tro (Huang et al. 2010; Sherman et al. 2012; Ruff and Strobel
2014), but only monomeric binding activity is expected to be
relevant to the in vivo function of the singlet riboswitch. The
singlet riboswitches were analyzed by size-exclusion fast per-
formance liquid chromatography (FPLC) and multi-angle
light scattering (MALS) to determine their multimeric state.
The Lmo type-1 singlet is >95% monomer when refolded in
the presence of saturating ligand (Supplemental Fig. S3). The
Dha type-2 singlet is 70%–80% monomer when refolded in
the presence of saturating ligand. We isolated >90% mono-
meric wild-type Dha (WT) using a native preparative-FPLC
method and determined that it bound to glycine with similar
affinity to that of the monomer/dimer mixture. The mono-
mer was stable at room temperature overnight (16 h), or
for several days at 4°C. Based on these analyses, we conclude
that the Lmo type-1 and Dha type-2 singlets are able to bind
glycine as monomers.

Singlet riboswitches have a single ligand-binding site
that is analogous to those found in tandem riboswitches

The extant aptamer domains of singlet glycine riboswitches
contain the conserved ligand-binding-site sequence found
in tandem riboswitches, but it is missing in the peripheral
“ghost-aptamer” sequences (Figs. 1, 3). Therefore, singlet
riboswitches are expected to bind only a single molecule
of glycine. We determined the equivalents of glycine bound
per singlet RNA molecule using equilibrium dialysis
with a known excess of glycine and found that both Lmo

TABLE 1. Ligand-binding affinities of singlet glycine riboswitches

Species Type Kd (μM)

L. monocytogenes (Lmo) Type-1 singlet 0.7 ± 0.1
D. hafniense (Dha) Type-2 singlet 3.9 ± 0.5
V. cholerae (VC) Tandem 2.0 ± 0.1/4.0 ± 0.3a

aAs reported in Ruff and Strobel (2014); determined using identical
methods.

FIGURE 2. Singlet glycine riboswitches bind glycine as strongly as tan-
dem riboswitches. (A) Diagrams of prototypical tandem (VC), type-1
singlet (Lmo), and type-2 singlet (Dha) riboswitches. (B) Glycine-bind-
ing curves for prototypical singlet and tandem riboswitches. VC WT is
as reported in Ruff and Strobel (2014).
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type-1 and Dha type-2 singlets bind one equivalent of glycine
(Table 2).
Mutating the uracil (U) that contacts the glycine (Fig. 3)

to an adenine (A) disrupts ligand binding in the VC tandem
riboswitch (Ruff and Strobel 2014). We incorporated this
mutation into the binding site of each singlet (see Supple-
mental Material for full sequences) and determined the li-
gand-binding affinity of the binding-site mutants (mutBS).
Both Lmo type-1 and Dha type-2 binding-site mutants
show no detectable glycine binding at the highest RNA con-
centrations tested (Tables 2, 3; Fig. 3). These data demon-
strate that singlet riboswitches contain a single canonical
ligand-binding site within their single aptamer domain.

Ghost aptamers mediate proper folding and ligand-
binding activity of singlet riboswitches via formation
of A-minor interactions with the aptamer domains

Based on the conservation of the sequence at the top of the
helices of the ghost aptamers (Figs. 1C,D, 4A) and the simi-
larity of this sequence to that found in the tandem riboswitch,
we tested if these regions form similar tertiary contacts with

the aptamer domains. We deleted the entire ghost aptamer
(Lmo type-1 singlet) or the conserved base pairs at the top
of the stem (Dha type-2 singlet) and determined the li-
gand-binding affinity of the resulting truncation mutants us-
ing equilibrium dialysis. Deletions were chosen to preserve
the kink-turn and P0 helix in an attempt to minimize dimer-
ization (see Supplemental Material for full sequences).
The Lmo type-1 truncation mutant (Trn) shows barely

detectable binding at the highest RNA concentration tested
(Table 3; Fig. 4C), indicating a greater than 400-fold disrup-
tion of ligand-binding affinity. The Dha type-2 truncation
mutant binds glycine with modest affinity (KD = 68 µM),
which is 17-fold weaker than Dha WT (Table 3; Fig. 4D).
However, this ligand-binding activity likely depends on spu-
rious dimerization of the Dha Trn construct (see Results).
Therefore, in both type-1 and type-2 singlets, the conserved
ghost aptamers are required for high-affinity monomeric
binding.
We next sought to determine if the flanking helical regions

form A-minor interactions with the aptamer domains.
Structural (Butler et al. 2011) and biochemical (Kwon and
Strobel 2008; Erion and Strobel 2011; Ruff and Strobel
2014) characterizations of tandem riboswitches have shown
that A-minor interactions form between A-rich bulges in
one aptamer and the P1 stem of the other aptamer (Fig.
4B) and that these interactions are important for high-affinity
binding. Singlet riboswitches contain conserved A-rich bulg-
es in their aptamer domains (Figs. 1, 4A), and these may form
similar A-minor interactions with the ghost-aptamer helices.
We mutated the adenines to cytosines (Doherty et al. 2001;
Kwon and Strobel 2008; Erion and Strobel 2011; Ruff and
Strobel 2014) in one-half of the A-rich bulge for each singlet
and determined the effect on ligand-binding affinity using
equilibrium dialysis.
The Lmo type-1 A-minor mutant construct shows no

detectable binding at the highest RNA concentration tested,
again indicating at least a 400-fold disruption of ligand-bind-
ing affinity (Table 3; Fig. 4C). The Dha type-2 A-minor mu-
tant construct shows barely detectable binding at the highest
concentration, a greater than 75-fold disruption of ligand-
binding affinity (Table 3; Fig. 4D). The magnitudes of these

FIGURE 3. Singlet riboswitches bind glycine with a canonical binding-
site motif. (A) Structural model of one glycine-binding site from the F.
nucleatum tandem riboswitch (Butler et al. 2011), showing the con-
served uracil that contacts glycine (black). (B,C) Diagrams depicting
binding-site mutants and glycine-binding curves for wild-type (closed
symbols) and mutated binding sites (open symbols), demonstrating
that the singlet binding sites can be disrupted with canonical U-to-A
mutations.

TABLE 2. Equivalents of glycine bound by singlet glycine
riboswitches

Riboswitch Equivalents bound

Lmo type-1 WT 0.95 ± 0.07
Lmo type-1 mBS Not detectable
Dha type-2 WTa 0.84 ± 0.13
Dha type-2 mBS Not detectable
VC tandem WTb 1.8 ± 0.1

aDetermined using native purification of RNA to ensure >90% mo-
nomeric Dha WT.
bAs reported in Ruff and Strobel (2014); determined using identical
methods.

Singlet glycine riboswitch binds as well as tandem

www.rnajournal.org 1731

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.057935.116/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.057935.116/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.057935.116/-/DC1


effects are greater than the 10- to 30-fold effects seen for A to
C mutations in the VC system (Ruff and Strobel 2014).
Therefore, the A-minor tertiary interactions formed with

the peripheral stem–loop domains are necessary for proper
folding and high-affinity binding by singlet riboswitches.

Unexpectedly strong ligand binding by the Dha
truncation mutant occurs in an alternative dimeric
conformation

The Dha type-2 truncation mutant is the only one of the
four singlet constructs containing mutated tertiary inter-
actions that binds glycine with even moderate affinity
(Table 3). Given the known tendency of isolated aptamer-2
domains to homodimerize (Huang et al. 2010; Sherman
et al. 2012; Ruff and Strobel 2014), we questioned if the ob-
served binding affinity resulted from spurious dimerization
of the Dha truncation mutant construct in vitro. The Dha
type-2 wild-type and mutant constructs were analyzed by
size-exclusion FPLC to determine their multimeric state
in the presence and absence of ligand (Supplemental Fig.

TABLE 3. Glycine-binding affinities of mutant singlet riboswitches

Mutant Kd (μM) Fold-change vs. parent

Lmo mBS Not detectable >400
Lmo Trn >300 >400
Lmo mutA-minor Not detectable >400
Lmo TL 52 ± 6 70
Lmo PL 1.6 ± 0.2 3
Dha mBS Not detectable >75
Dha Trna 68 ± 14a 17
Dha mutA-minor >300 >75
Dha HL 3.6 ± 0.4 ∼1

aActivity likely the result of dimerization (see Fig. 4E).

FIGURE 4. Singlet riboswitches require conserved A-minor tertiary interactions with an adjacent “ghost-aptamer” domain. (A) Diagrams highlight-
ing the conserved helical regions and A-rich bulges in the Lmo and Dha riboswitches. (B) Structural model of the conserved A-minor interaction from
the F. nucleatum tandem riboswitch (Butler et al. 2011). (C,D) Diagrams and glycine-binding curves for singlet mutants with disrupted A-minor in-
teractions. (E) MALS analysis of Dha Trn refolded in the presence of saturating glycine, showing that the major species is an alternative dimer
conformation.
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S4). The Dha truncation mutant was further characterized by
MALS to confirm its dimerization in the presence of glycine
(Fig. 4E).
Because a significant portion of the Dha Trn pool exists as

dimer across the RNA concentrations where ligand binding
occurs (Fig. 4E; Supplemental Fig. S4), and because the di-
mer binds ligand more tightly than monomer (see Supple-
mental Material), we expect that the ligand-binding activity
of Dha Trn is due to a spurious dimer state. The multimeric
states of the other Dha mutants were also analyzed by FPLC
(Supplemental Fig. S4). All form some dimers, particularly at
the highest RNA concentrations tested, but in no other case
did ligand binding promote formation of the dimer. There-
fore, the observed ligand-binding affinities of the other Dha
mutants are attributed to monomeric states.

The nonconserved loops and helical extensions
of the ghost aptamers are not necessary for
ligand-binding activity

Although the helical regions of the ghost aptamers are con-
served in length and sequence, the loops vary widely. We test-
ed if these variable regions could be deleted without affecting
binding affinity. Lmo type-1 WT contains a large 20-base
loop, with some possible base-pairing within the loop.We re-
placed this large loop with a pentaloop (PL) containing the
sequence of the S. mutans ghost aptamer, the smallest loop
sequence observed in our alignment. This mutation largely
retains the wild-type ligand-binding affinity, indicating that
the Lmo loop sequence is unimportant for singlet folding
or binding activity. Further truncation to a GNRA tetraloop
(TL) causes a 70-fold loss of ligand-binding affinity (Table 3;

Fig. 5A). The tetraloop may constrain the
top of the helix in such a way that it dis-
rupts the A-minor interactions.

Dha type-2 WT contains a 28-base ex-
tension of the ghost aptamer, which is
predicted to form a 6-bp helical region
with a bulge. As the helical extension
was not conserved in other singlets, we
deleted it, leaving a heptaloop (HL)
with the sequence of the bulge (Table 3;
Fig. 5B). Dha HL binds glycine as tightly
as Dha WT. The Dha type-2 ghost-
aptamer helical extension is, therefore,
not involved in RNA folding or glycine
binding.

A significant fraction of glycine
riboswitches are singlets

We updated the consensus sequence
for the glycine aptamer to be as gener-
al as possible (Supplemental Fig. S5)
and searched the National Center for

Biotechnology Information (NCBI) Reference Sequence
(RefSeq) Database. Only sequences from completed genomes
were considered for inclusion, in order tominimize false pos-
itives where aptamers could lie at the edge of contiguous se-
quence in a partly assembled genome. This search identified
approximately 1000 unique glycine aptamers, which were
then sorted into tandem or singlet riboswitches, where a tan-
dem riboswitch was defined as two glycine aptamers that re-
side in the 5′-UTR of the same gene in an organism. The
isolated aptamer domains were confirmed to be singlets by
manual inspection. This process identified 322 glycine singlet
riboswitches (50% of total).
CMfinder (Yao et al. 2006) indicates that there are con-

served helices in the flanking sequences around every isolated
aptamer domain. However, these helix sequences lack consis-
tently conserved nucleotides that could definitively identify
them as ghost aptamers. We speculate that the large number
of representatives and the broader evolutionary diversity of
host organisms in the full alignment may obscure any con-
served sequences within the flanking helices. Because multi-
ple helices often surround single aptamers, we were not able
to sort the 322 singlets in the larger alignment into subtypes.
Given the strict conservation of the A-rich bulge in the
aptamer domain (Supplemental Fig. S5), the presence of
flanking helices, and the known sequence flexibility of the
helix portion of A-minor motifs (Doherty et al. 2001), the
singlets in the larger alignment are likely to form tertiary in-
teractions with peripheral helices.
We analyzed the genomic contexts of the isolated singlet

aptamers and found that they are widely distributed, with
examples identified in Gram-positive and Gram-negative
bacteria (Fig. 6A). The singlet riboswitches are located

FIGURE 5. Variable loops and helical extensions of singlet ghost aptamers can be deleted with
minimal effect on glycine-binding affinity. (A,B) Diagrams and glycine-binding curves for singlet
mutants with truncated or mutated loop regions.
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in the 5′ untranslated regions (UTRs) of similar genes to
tandem riboswitches (Fig. 6B). More than 50% regulate
ORFs related to the glycine cleavage system. This suggests
that these isolated aptamer domains are likely to be active
riboswitches.

DISCUSSION

In this study, we characterized the consensus motifs and in
vitro ligand-binding activity of previously uncharacterized
singlet glycine riboswitches. We identi-
fied 322 singlet glycine riboswitches,
which represent a significant fraction of
the glycine riboswitches in the database,
singlet or tandem. Like the tandem ribo-
switches, the singlets are widely distribu-
ted, appear in similar genomic contexts,
and are located in genes important for
glycine homeostasis. Given the preva-
lence of singlet riboswitches in both
Gram-positive and -negative bacteria,
they are likely to be functional for gene
control in both transcriptional (kinetic)
and translational (thermodynamic) sys-
tems (Vitreschak et al. 2002; Barrick
et al. 2004; Hollands et al. 2012).

Singlet riboswitches consist of a single glycine-aptamer
domain flanked by a short stem–loop, here referred to as a
“ghost aptamer.” The ghost-aptamer helical regionmaintains
the length and sequence of the P1 stem of a standard glycine
aptamer, while the loop varies greatly in length and sequence.
Biochemical characterization of prototypical type-1 and
type-2 singlets from L. monocytogenes and D. hafniense, re-
spectively, demonstrated that both subtypes of singlet bind
glycine with low micromolar affinities, comparable to tan-
dem riboswitches. Mutational analysis of conserved binding
and structural motifs within these singlets confirmed that
the singlets contain a single canonical glycine-binding site
and require the formation of tertiary A-minor interactions
between the aptamer domain and the flanking stem–loop
for ligand-binding activity.
Based on these observations, we propose a model for gene

control by singlet glycine riboswitches (Fig. 7). It is informed
by our model for tandem riboswitch function (Ruff and
Strobel 2014), in which ligand binding in either aptamer
stabilizes the tertiary interactions between the two aptamers,
directly and indirectly stabilizing the P1 stem of aptamer-2.
The formation of this stem competes with an alternative
stem–loop, which hides or reveals the gene-control element
(often an intrinsic terminator or the Shine-Dalgarno se-
quence) (Mandal et al. 2004; Ruff and Strobel 2014). Ac-
cording to this model, the conserved difference in P1-stem
length and stability between the two aptamers plays a key
role in stabilizing or scaffolding the formation of aptamer-
2, either thermodynamically or kinetically (Ruff and Strobel
2014).
For a type-1 singlet, we propose that indirect stabilization

of the ghost-aptamer stem plays a crucial role in gene control
(Fig. 7A). Glycine binding in the aptamer domain promotes
formation of the A-minor tertiary interaction, stabilizing the
stem of the ghost-aptamer and disfavoring formation of the
alternative stem–loop structure (shown in red). The aptamer
domains of type-1 singlets have significantly more stable P1
stems than the aptamers of type-2. We propose that the P1
stem of this aptamer is preformed, similar to aptamer-1 in

FIGURE 6. Distribution of singlet glycine riboswitches in the full align-
ment of 322 sequences. (A) Singlet glycine riboswitches are broadly dis-
tributed across bacterial phyla. (B) Singlet glycine riboswitches control
genes associated with glycine metabolism, amino acid transport andme-
tabolism, and cell-wall integrity.

FIGURE 7. Proposed models for switch control for a type-1 singlet (A) or type-2 singlet (B). In
each case, glycine binding stabilizes the overall tertiary structure, which destabilizes the alternative
stem–loop responsible for gene control (red).
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the tandem system (Sherman et al. 2012; Esquiaqui et al.
2014; Ruff and Strobel 2014; Cheng et al. 2015). Therefore,
the energy of ligand binding is transferred, by way of the
A-minor interaction, to the shorter, less stable stem of the
ghost aptamer.
In contrast, for the type-2 singlet, we predict that ligand

binding directly stabilizes the stem of the aptamer domain,
disfavoring formation of the alternative stem–loop that serves
as the switch for gene control (Fig. 7B). In this case, the ghost
aptamer contains a longer, more stable stem–loop sequence
that is likely preformed. This stabilizes or scaffolds the forma-
tion of the A-minor tertiary interaction, such that ligand
binding stabilizes the short P1 stem of the aptamer domain.
Given the model above and the prevalence of singlet gly-

cine riboswitches, we expect that singlets will be functional
to control expression of their associated genes. At the same
time, the conservation of two tandem glycine aptamers in
the remaining ∼50% of cases indicates that some benefit
is likely to be provided by the tandem system, such as more
digital gene control, as originally proposed (Mandal et al.
2004). An examination of other riboswitch systems that
bind two or more ligand molecules provides insight into po-
tential benefits.
While the glycine riboswitch remains the only example of a

tandem riboswitch wherein two homologous aptamer do-
mains each bind a separate molecule of ligand and control
a single expression platform, two other families of ribo-
switches have recently been shown to bind two molecules of
ligand within a single aptamer domain. Both the tetrahydro-
folate (THF) riboswitch (Trausch et al. 2011) and the cyclic-
di-adenosine monophosphate (c-di-AMP) riboswitch (Gao
and Serganov 2014; Ren and Patel 2014) were crystallized
with two ligand molecules bound. In the case of the THF
riboswitch, mutants that disrupt each ligand-binding site
were identified and analyzed (Trausch and Batey 2014). In
functional assays measuring transcriptional termination,
only one of the two single-binding mutants responds to li-
gand. The authors propose that binding at the pseudoknot
site is critical for gene control, while binding at the distal
site could play a scaffolding role and/or allow a cooperative
response to changes in THF concentration. In the case of
the c-di-AMP riboswitch, ligand binding at the two sites ap-
pears to be cooperative (Meehan et al. 2016); although it is
not yet clear if binding of both ligands is necessary for gene
control.
There aremultiple instances of tandem riboswitches where

two or more complete riboswitches, each with an indepen-
dent expression platform, control expression of a single
open reading frame (ORF) (Sudarsan et al. 2006; Breaker
2012; Peselis et al. 2015; P McCown and R Breaker, unpubl.).
The riboswitches can recognize the same ligand, as in the
tandem thiamin pyrophosphate (TPP) riboswitches in
Bacillus anthracis, where each riboswitch modulates an in-
trinsic terminator stem, leading to improved dose-response
(Sudarsan et al. 2006; Welz and Breaker 2007; Breaker

2012). In Candidatus pelagibacter ubique, two different S-
adenosylmethionine (SAM) riboswitch architectures control
tandem expression platforms, the first transcriptional, the
second translational (Poiata et al. 2009). The transcriptional
riboswitch has been proposed to prevent wasteful transcrip-
tion at very high SAM concentrations, whereas the transla-
tional riboswitch might allow a rapid increase in gene
expression once ligand concentrations decrease (Poiata
et al. 2009; Breaker 2012). Alternatively, tandem riboswitches
can recognize different ligands, combining to form AND,
NAND, or NOR logic gates. For example, the metE gene in
Bacillus clausii is controlled by both SAM and adenosylcoba-
lamin riboswitches (Sudarsan et al. 2006; Breaker 2012).
In the most similar case to glycine, glutamine ribo-

switches often contain two or even three aptamer sequences
in tandem (Ames and Breaker 2011). Although no expres-
sion platform has been identified in these systems, the
aptamers are separated by only a few nucleotides, and are un-
likely to each control an individual expression platform.
These tandem glutamine riboswitches do not bind coopera-
tively by in vitro ligand-binding assay (Ames and Breaker
2011), and no benefit of the tandem arrangement has been
identified.
These other cases of tandem and dual-binding aptamers

provide insight into the possible value of the tandem archi-
tecture for the glycine riboswitch. This study demonstrates
that the previously characterized tandem glycine riboswitch
does not provide improved ligand-binding affinity in vitro
compared to singlets. Yet the prevalence of the tandem archi-
tecture implies that it provides some benefit. Perhaps the two
aptamer domains are cooperative when controlling gene ex-
pression in vivo, providing a sharper, more digital response
to changes in glycine concentration (Mandal et al. 2004).
Multiple studies have shown that the isolated aptamer do-
mains do not bind glycine cooperatively in vitro (Sherman
et al. 2012; Baird and Ferré-D’Amaré 2013; Ruff and Strobel
2014), but perhaps, in the context of the full-length tran-
script, additional tertiary contacts with the expression plat-
form affect the thermodynamics of ligand binding.
Alternatively, tandem riboswitches might bemore effective

for certain types of gene control or more versatile in accom-
modating different types of gene control, in the form of
transcriptional versus translational or “ON” versus “OFF”
switches. The glycine riboswitch class is one of only two clas-
ses that participate in both “ON” and “OFF” switches (the
other being lysine) (Barrick and Breaker 2007). Perhaps the
tandem architecture is more robust and therefore more easily
transferrable from one context to another.
It is also interesting to speculate on the evolutionary histo-

ry of the tandem and singlet architectures. The flanking
“ghost-aptamer” sequences in our initial alignment were ex-
tremely highly conserved and almost certainly resulted from
the deletion of the bulk of one aptamer from a tandem ribo-
switch. However, the tandem architecture itself likely resulted
from the duplication of a progenitor singlet aptamer. Given
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the high prevalence of these riboswitches across bacterial
phyla, perhaps this duplication and deletion process has oc-
curred multiple times.

MATERIALS AND METHODS

DNA oligonucleotides and chemicals

DNA oligonucleotides were synthesized by the W.M. Keck Foun-
dation Biotechnology Resource Laboratory at Yale University.
Overlapping oligonucleotides for the initial construction of the
riboswitch templates were PAGE- or cartridge-purified. Primers
were used without purification. Glycine and other chemicals were
obtained from Sigma.

DNA constructs

The L. monocytogenes and S. mutans singlet templates were con-
structed by ligation of four overlapping oligonucleotides. The
D. hafniense template was constructed by PCR of two long overlap-
ping oligonucleotides. The final templates consisted of the T7 pro-
moter sequence followed by the riboswitch DNA sequence in the
pUC19 (NEB) plasmid. Mutant riboswitch constructs were made
by PCR using corresponding primers.

In vitro transcription and denaturing purification

Plasmid DNA encoding the singlet glycine riboswitches was linear-
ized by restriction digest and used as template for transcription by
T7 RNA polymerase. RNAs were transcribed in 40 mM Tris-HCl
(pH 7.5 at 23°C), 4 mM spermidine, 10 mM DTT, 55 mM
MgCl2, 0.05% Triton X-100, and 4 mM of each 5′-nucleotide tri-
phosphate (7 mM for GTP) for 2 h at 37°C.

The majority of RNAs were prepared with a denaturing protocol.
They were purified by 6% polyacrylamide gel electrophoresis
(PAGE), eluted into 0.3 M NaOAc (pH 5.2), precipitated with eth-
anol, and resuspended in TB buffer (90 mM Tris-borate at pH 8.3)
containing 10 mM MgCl2 and 100 mM KCl. RNA transcripts were
then buffer-exchanged four times and concentrated using Amicon
Ultra centrifugal filters.

RNA concentrations were determined by UV absorbance at 260
nm. Absorption coefficients were determined by digestion with
Nuclease P1, according to established protocols (Cavaluzzi and
Borer 2004; Wilson et al. 2014). Briefly, ∼1 nmol of RNA was incu-
bated at 50°C for 1 h with 1 unit of Nuclease P1 in 200 mMNaOAc,
pH 5.3, with 5 mM EDTA and 10 mM Zn(OAc)2. Based on ex-
tinction coefficients for the individual nucleotides, the extinction
coefficient of fully digested Lmo WT is 1.6 mol−1 cm−1 and that
of the intact, folded RNA is 1.4 mol−1 cm−1. The extinction co-
efficients for fully digested and intact, folded Dha WT are 1.7 and
1.1 mol−1 cm−1, respectively.

Native FPLC purification of Dha WT

Dha WT was prepared using both the denaturing prep outlined
above and a native preparation, as follows. In vitro-transcribed
RNA was buffer exchanged several times into TB buffer containing
10 mM MgCl2 and 100 mM KCl using a 15-mL Macrosep Cen-
trifugal Device (Pall Corporation). RNAs were purified by size-

exclusion chromatography with a Superdex 200 column (GE
Healthcare) on an NGC Chromatography System (Bio-Rad) with
TB running buffer containing 10 mM MgCl2 and 100 mM KCl.
Monomer fractions were combined, concentrated using Amicon Ul-
tra centrifugal filters, and quantified as discussed above. Analytical
FPLC under the same conditions confirmed that the monomer
Dha WT is stable over the time frame of the dialysis experiments.

Equilibrium dialysis assay

RNA transcripts were combined with trace 14C-labeled glycine in TB
buffer containing 10 mM MgCl2 and 100 mM KCl. Samples were
heated to 60°C then allowed to slow cool to ∼30°C over an hour.
The RNA/glycine mixture was equilibrated overnight at 23°C across
from an equal volume of buffer in a 5000 MW cut-off Dispo
Equilibrium Dialyzer from Harvard Apparatus. The amount of
14C-labeled glycine on each side of the dialyzer was determined by
scintillation counting in Ultima Gold on a PerkinElmer Tri-Carb
2910TR scintillation counter. The fraction bound was determined
for each sample ([counts on RNA side− counts on buffer side]/
counts on RNA side). The Kd value for glycine binding was deter-
mined by plotting the fraction-bound value versus the concentra-
tion of RNA and fitting to a standard equation for one-site
binding, using Prism to perform a least squares regression:

Y = Bmax × X

(Kd + X) +NS× X + Background,

where Y is the fraction bound, X is the concentration of RNA, and
NS is a constant term for nonspecific binding.

Formutants that failed to saturate at the RNA concentrations test-
ed, Bmax values were fixed at 0.99. Errors were calculated based on
at least four replicates from at least two independent preparations
of RNA.

Equilibrium dialysis equivalents assay

RNA transcripts were combined with a threefold excess of cold gly-
cine as well as trace 14C-labeled glycine. The RNA was refolded and
equilibrated with buffer in a 5000 MW cut-off equilibrium dialysis
cassette, as discussed above. The amount of 14C-labeled glycine on
each side of the dialyzer was determined by scintillation counting,
and the equivalents of bound glycine were determined ([counts
on RNA side – counts on buffer side] × 3/[counts on RNA side +
counts on buffer side]). Errors are standard deviations calculated
based on at least six replicates from at least two independent prep-
arations of RNA.

Native equilibrium dialysis equivalents assay

Natively prepared Dha WT was combined with a threefold excess of
cold glycine as well as trace 14C-labeled glycine. The RNA was not
refolded. Instead, it was equilibrated overnight with buffer in a
5000 MW cut-off equilibrium dialysis cassette. The equivalents of
bound glycine were determined as discussed above.

Multi-angle light scattering

Lmo RNAwas transcribed and buffer-exchanged as discussed above.
Glycine was added to a final concentration of 5 mM, and the RNA
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was heated to 60°C then allowed to slow cool to ∼30°C over an hour
before further incubation at room temperature for at least 30 min.
Thirty-micromolar samples were filtered and analyzed without fur-
ther dilution. Three hundred-micromolar samples were diluted 10-
fold and filtered immediately before analysis.
Natively prepared Dha WT was combined with a threefold excess

of cold glycine. The RNAwas not refolded. Instead, it was equilibrat-
ed for 5 h at room temperature, then diluted and filtered immediate-
ly before analysis.
RNAs were separated by size-exclusion on a Superdex 200 col-

umn (GE Healthcare) with TB running buffer containing 10 mM
MgCl2 and 100 mM KCl. Light-scattering data were collected on a
DAWN HELEOS (Wyatt Technology) coupled to an OPTILAB
rEX (Wyatt Technology) interferometric refractometer. Multi-angle
light scattering (660 nm), absorbance (280 nm), and the refractive
index were monitored after elution. Molar masses were determined
by comparison of light scatter to the monomeric fraction of a BSA
control (Sigma-Aldrich).

Analysis of multimeric state by size-exclusion FPLC

RNA transcripts were buffer exchanged into TB running buffer con-
taining 10 mM MgCl2 and 100 mM KCl, as discussed above. Five-
millimolar glycine was added where indicated, then the RNAs
were heated to 60°C and allowed to slow cool to ∼30°C over an
hour before further incubation at room temperature for at least 30
min. Samples were diluted and filtered immediately before analysis.
The oligomeric, dimeric, and monomeric fractions of the RNAs

were separated by size-exclusion chromatography with a Superdex
200 column (GE Healthcare) on an NGC Chromatography System
(Bio-Rad) with TB running buffer containing 10 mM MgCl2 and
100mMKCl. Peaks in the UV absorbance (255 nM) were integrated
using ChromLab software (Bio-Rad), with peak cutoffs manually
adjusted to be consistent between consecutive runs. Errors are stan-
dard deviations calculated from two or three replicates from two in-
dependent preparations of RNA.

Bioinformatics searches and alignment generation

Bioinformatics searches for all glycine riboswitches, including pos-
sible variant glycine riboswitches, were conducted as previously
described (McCown et al. 2011, 2014). Using INFERNAL 1.1,
searches were conducted on the National Center for Biotechnology
Information (NCBI) Reference Sequence (RefSeq) Database release
56, with the highest E-value for possible variants set to 1000.
Only sequences from completed genomes in this data set were con-
sidered for inclusion, so as to minimize erroneously reported sin-
glets. Once a list of all glycine riboswitches was determined from
this data set, the consensus structure markup was changed to re-
move possible discrimination between type-1 and type-2 aptamers
(Mandal et al. 2004). The resulting Stockholm file was then used
as a template for an additional search through the same NCBI
RefSeq database as mentioned above. False-positive results were
eliminated based on overlap with a known ORF or where the se-
quence lacked key nucleotides that are necessary to bind glycine
(Huang et al. 2010; Butler et al. 2011). As the generalized Stockholm
file contains only one aptamer, the resulting riboswitch results were
then determined to be either singlet arrangements or tandem
arrangements, with the definition of tandem as being within the

same 5′-UTR with another glycine riboswitch within the same or-
ganism. Each singlet riboswitch was verified by examining the entire
5′-UTR for any additional glycine aptamers. Riboswitch consensus
diagrams were generated with the R2R program (Weinberg and
Breaker 2011).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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