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Abstract
Metabotropic glutamate receptor type 5 (mGluR5) abnormalities have been described in tissue resected from epilepsy
patients with focal cortical dysplasia (FCD). To determine if these abnormalities could be identified in vivo, we
investigated mGluR5 availability in 10 patients with focal epilepsy and an MRI diagnosis of FCD using positron-emission
tomography (PET) and the radioligand [11C]ABP688. Partial volume corrected [11C]ABP688 binding potentials (BPND) were
computed using the cerebellum as a reference region. Each patient was compared to homotopic cortical regions in 33
healthy controls using region-of-interest (ROI) and vertex-wise analyses. Reduced [11C]ABP688 BPND in the FCD was seen
in 7/10 patients with combined ROI and vertex-wise analyses. Reduced FCD BPND was found in 4/5 operated patients
(mean follow-up: 63 months; Engel I), of whom surgical specimens revealed FCD type IIb or IIa, with most balloon cells
showing negative or weak mGluR5 immunoreactivity as compared to their respective neuropil and normal neurons at the
border of resections. [11C]ABP688 PET shows for the first time in vivo evidence of reduced mGluR5 availability in FCD,
indicating focal glutamatergic alterations in malformations of cortical development, which cannot be otherwise clearly
demonstrated through resected tissue analyses.
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Introduction
Focal cortical dysplasia (FCD), a common cause of drug-
resistant epilepsy, is histologically characterized by cortical
dyslamination and presence of dysmorphic neurons, includ-
ing balloon cells (Taylor et al. 1971; Blumcke et al. 2011).
Lineage marker protein expression studies in FCD specimens
indicate that balloon cells derive from the radial glial progeni-
tor cells in the telencephalic ventricular zone, most carrying a
glutamatergic, and therefore excitatory, neurochemical
phenotype (Lamparello et al. 2007).

Metabotropic glutamate receptor type 5 (mGluR5) is a post-
synaptic G-protein coupled receptor that mediates neuronal
excitability (Conn and Pin 1997; Anwyl 1999). mGluR5 plays a
key role in cortical development, neurogenesis, cell survival,
and regulation of morphogenesis (Catania et al. 2007). In add-
ition, several lines of evidence support a role of mGluR5 in epi-
leptogenesis. mGluR5 downregulation has been described
after amygdala kindling and in the pilocarpine mesial tem-
poral lobe epilepsy models (Akbar et al. 1996; Kirschstein et al.
2007). A serial [11C]ABP688 positron-emission tomography
(PET) study in pilocarpine-treated rats demonstrated binding
changes during the silent period (i.e., epileptogenesis), with
pronounced and diffuse reduction of binding following status
epilepticus that resolved in all locations except in the hippo-
campi, as seizures develop in these regions (Choi et al. 2014).
The observation of an anticonvulsant effect from mGluR5
antagonism and initiation of persistent epileptiform activity
from mGluR5 agonism further indicate an underlying mechan-
ism modulated by this receptor in epileptogenesis, which may
contribute to the intrinsic epileptogenicity attributed to
malformations of cortical development (Palmini et al. 1995;
Chassoux et al. 2000; Merlin 2002; Catania et al. 2007; Bianchi
et al. 2009).

Whereas surgical specimens resected from patients with
FCD show mGluR5 abnormalities in dysmorphic neurons and
balloon cells (Aronica et al. 2003), it remains unclear whether
such abnormalities can be identified in vivo. In addition, as
with any information obtained exclusively through resected tis-
sue, it is unknown whether mGluR5 abnormalities could be a
diffuse cortical characteristic of patients with FCD or limited
within the boundaries of the epileptogenic lesion.

Therefore, our primary goal was to investigate in vivo
mGluR5 abnormalities in patients with FCD using [11C]ABP688,
a PET tracer that binds selectively to the mGluR5 allosteric site
allowing whole brain imaging of its availability (Ametamey
et al. 2007; Treyer et al. 2007). Demonstrating the possibility to
detect mGluR5 abnormalities in vivo could have important
clinical implications not only for diagnosis of malformations
of cortical development as an underlying cause of seizures
(i.e., finding occult or subtle lesions not clearly depicted thro-
ugh anatomical imaging) but also as a biomarker for future
pharmacological interventions through identification of popu-
lations at higher risk for acquired epilepsies, in whom halting
of epileptogenesis and prevention of epilepsy could be
attempted.

In order to ensure accurate comparisons between the FCD
lesion and healthy cortex, we developed a surface-based

analysis with a data-driven partial volume correction method.
This method has been instrumental for identifying regional dif-
ferences related to mGluR5 availability in cortical and subcor-
tical structures (DuBois et al. 2016) and to ensure accurate
comparisons across FCD and healthy tissue accounting for
location, magnitude, and extent of abnormalities. Furthermore,
here we provide information about cortical mGluR5 immunor-
eactivity for patients who underwent surgical resection and to
whom surgical specimens are available for analysis.

Material and Methods
Subjects

We studied 10 patients with focal epilepsy and an MRI diagno-
sis of FCD investigated at the Montreal Neurological Hospital
(Table 1). Five patients underwent surgery and had pathological
diagnosis of FCD type IIb or type IIa. Four operated patients are
currently seizure-free (Engel I, mean follow-up, 5 years and 9
months, Table 1), while the fifth patient experienced recurrent
seizures (Engel II) and relocated medical care 1.5 years ago, at
which point follow-up information became unavailable.

Thirty-three healthy subjects (range = 20–77 y/o; males,
n = 18, 47.4 ± 17.7 y/o; females, n = 15, 46.2 ± 18.9 y/o) were
recruited via university advertisements. Exclusion criteria
included: personal or first-degree relative history of axis I psy-
chiatric disorders, chronic use of CNS active medications or
illicit drugs, pregnancy/breastfeeding, present or past cigarette
usage, history of neurological or medical disorders, and MRI
contraindications. The study was approved by the Montreal
Neurological Institute Research Ethics Board. All subjects pro-
vided written informed consent prior to participation in the
study.

PET Acquisition and Reconstruction

[11C]ABP688 was synthetized using the same methodology as
in our previous studies (Elmenhorst et al. 2010; DuBois et al.
2016). [11C]ABP688 was administered as a slow bolus injection
through an intravenous line at the antecubital region
(injected dose/activity = 356.7 ± 25.2 MBq; specific activ-
ity = 13.6 ± 6.3 GBq/μmol, unavailable for 10 of the controls).
Immediately following injection, a 1-h dynamic emission scan
was acquired in 3D list mode.

Six patients and 7 controls were scanned in the Siemens
ECAT EXACT HR+ scanner [approximate resolution, 6mm full
width at half maximum (FWHM)]. The remaining subjects
(4 patients, 26 controls) were scanned with the Siemens High
Resolution Research Tomograph (HRRT, approximate reso-
lution of 3mm FWHM).

After correction for attenuation, scatter, and decay, data
were reconstructed by filtered back-projection. The recon-
structed time-series was 128 × 128 × 63 voxels (2.45mm pixels)
for the HR+ and 256 × 256 × 207 voxels (1.21875mm pixels) for
the HRRT.

To combine data from both scanners, the HRRT images
were blurred with an anisotropic Gaussian kernel of
5.7 × 5.7 × 6.7mm FWHM, based on findings from an in-house
phantom study (unpublished data). The anisotropic Gaussian
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kernel used here was similar to previously published methods
using an isotropic Gaussian kernel of 6mm FWHM (van Velden
et al. 2009).

MRI Acquisition and Processing

As described previously in DuBois et al. (2016), a 3D T1-
weighted MPRAGE sequence (1mm3 voxel size, 256 × 256 × 256
matrix; TE = 2.98; TR = 2300; TI = 900ms; flip angle = 9) was
acquired for each subject using a Siemens Trio 3 T scanner. MRI
data were analyzed with FreeSurfer (www.surfer.nmr.mgh.
harvard.edu, version 6.0 beta) (Dale et al. 1999; Fischl et al.
1999a, 2002) in order to perform subvoxel reconstruction of the
pial surface and gray matter/white matter boundary (i.e., the
white matter surface). The initial surface reconstruction was
then manually inspected and corrected for errors due to incom-
plete removal of nonbrain tissue or inadequate intensity nor-
malization. At each vertex on the final white matter surface,
cortical thickness was estimated as the closest distance
between the white matter surface to the pial surface (Fischl
and Dale 2000). The subject surface was registered to symmet-
ric and asymmetric average templates for subsequent analysis
and visualization (Fischl et al. 1999b; Greve et al. 2013).

Boundary-based rigid-body registration was utilized to
accurately align the MRI and the time-averaged raw PET images
by fitting the white matter surface to the maximum of the
radioactivity gradient (Greve and Fischl 2009). Each subject’s
registration was visually inspected and manually adjusted
when necessary. Using the cortical thickness information, PET
data were then sampled from the middle of the cortex, halfway
between the white matter and pial surfaces (Greve et al. 2014;
DuBois et al. 2016).

Correction for partial volume error was performed using a
data-driven, region-based per-voxel partial volume correction
method, as described in DuBois et al. (2016). First, time-
averaged raw PET data were sampled to the surface and blurred
at 10mm FWHM (Greve et al. 2014). For each hemisphere, high,
low, and mid-range clusters were created by setting thresholds
one standard deviation above and below the mean

radioactivity. Clusters were defined as a set of continuous verti-
ces within the threshold range and with a surface area greater
than 200mm2 (DuBois et al. 2016). These cortical regions were
then sampled back to the subject’s MRI volume space and
combined with subcortical gray and white matter segmenta-
tions (Desikan et al. 2006). The geometric transfer matrix
method was used to obtain the partial volume corrected PET
values for each region (Rousset et al. 1998). The resulting
values were then used to perform per-voxel correction for the
whole brain (Thomas et al. 2011).

Binding Potential Analysis

Following PVC, [11C]ABP688 nondisplaceable binding potentials
(BPND) were estimated using the simplified reference tissue mod-
el (with the cerebellar gray matter as reference region) and a
basis function implementation of voxel-wise parametric map-
ping (Lammertsma et al. 1996; Gunn et al. 1997; Innis et al. 2007;
Elmenhorst et al. 2010). Despite the presence of mGluR5 in the
cerebellar cortex, several lines of evidence indicate that specific
[11C]ABP688 binding in the cerebellar cortex is negligible, includ-
ing in vitro and in vivo imaging of [11C]ABP688 binding in
humans and animals (Elmenhorst et al. 2010; Milella et al. 2011),
and human postmortem analysis of mGluR5 mRNA (Daggett
et al. 1995) and protein expression (Deschwanden et al. 2011).

FCD Manual Labeling Procedure

Three labels were created for each patient to encompass the
lesion, as well as the perilesional and contralateral cortex in
relation to the lesion (Fig. 1). The “FCD label” was manually
traced along the white matter surface representation in volume
space using each patient’s MRI. Characteristics such as cortical
thickness, blurring of the gray/white matter junction, and
abnormal gyrification were used to estimate the extent of the
lesion. When available, the clinical T2-weighted MRI was also
utilized. All tracings were reviewed and corrected, when
needed, by an experienced epileptologist. Each labeled voxel
was assigned to the nearest white matter surface vertex. An
automatic topological closing operation was used to fill any

Table 1 Clinical information

Patient Age Sex FCD location Last sz
prior to scan
(days)

AEDs Age at sz
onset/duration of
epilepsy (years)

Surgery follow-
up (years), Engel
class

Pathology PET
scanner

1 39 F L lateral frontal 180 LEV, LMT, CLB, CBZ 3/36 No N/A HR+
2 56 M R mesial parietal/

posterior cingulate
1 CBZ, LEV, CLB 8/48 6 y, Engel I FCD IIb HR+

3 25 M R superior temporal 4 CBZ 8/17 6 y9m, Engel I FCD IIb HRRT
4 20 F L superior temporal 1 CLB 14/6 No N/A HRRT
5 19 F R parahippocampal 11 VA, LEV, PB 15/4 6 y11m, Engel II FCD IIa HR+
6 31 F L posterior

cingulate/mesial
parietal

1 LMT, DPH, CLB 16/15 No N/A HR+

7 39 F L mesial
orbitofrontal

30 None (LMT discontinued
at admission)

34/5 No N/A HR+

8 29 M R frontal pole 1 VA, OXC, CLB 0.4/29 4 y3m, Engel I FCD IIb HRRT
9 41 F L posterior fusiform

gyrus
6 LMT, PB, CLB 12/29 No N/A HR+

10 38 M R inferior frontal 1 CBZ, CLB 17/21 5 y1m, Engel I FCD IIb HRRT

F, female; M, male; L, left; R, right; sz, seizure; AED, antiepileptic drug; LEV, levetiracetam, LMT, lamotrigine; CBZ, carbamazepine; CLB, clobazam; DPH, diphenylhy-

dantoine; VA, valproic acid; OXC, oxcarbazepine; PB, phenobarbital.
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holes created by gaps in the volume label or the subvoxel reso-
lution of the surface. The “perilesional label” was created to
account for the possibility of lesions extending beyond the
MRI-visible abnormalities, by dilating each surface lesion label
by approximately 10mm in all directions followed by subtrac-
tion of the FCD label area. The “contralateral lesion label”
was created by sampling the surface lesion label to the contra-
lateral surface using average symmetrical atlas. This surface-
based approach was used to ensure that the contralateral
lesion label was sampled to the appropriate cortical anatomy
(Greve et al. 2013).

Statistical Analyses

Vertex-wise group comparisons of BPND were conducted in the
average surface space using the FreeSurfer software package.
Once sampled to the surface, BPND images were blurred at
5mm FWHM and 2-tailed Z-tests were computed between each
patient and the entire control group. Multiple comparisons cor-
rection for the number of vertices was carried out with a
cluster-based Monte Carlo simulation (cluster-wise P < 0.05)
(Hagler et al. 2006). In order to assess the distribution of extrale-
sional vertex-wise findings, we calculated the Euclidian dis-
tance along the cortical surface originating from the maximum
vertex within the extralesional cluster and the nearest edge of
the lesion label.

Z-tests were used to determine differences between average
BPND within a given region-of-interest (ROI) for each patient

and homotopic areas in the control group. Based on the
results of the vertex-wise analysis, Z-scores were converted to
one-tailed P-values for false discovery rate correction for mul-
tiple comparisons (Benjamini et al. 2006). Analyses and
figures were generated with the R statistical software package
(R Core Team 2013).

Surgical Specimens Analysis

FCD was confirmed based on the presence of cortical dyslami-
nation and dysmorphic neurons with balloon cells (Type IIb)
or without balloon cells (Type IIa) (Blumcke et al. 2011) us-
ing formalin-fixed paraffin-embedded tissue from surgery
(Blumcke et al. 2011). Neuropathology protocol included
immunostaining for neuronal nuclear antigen NeuN, MAP2,
synaptophysin, glial fibrillary acidic protein GFAP, Nissl (Luxol
Fast Blue/Cresyl Violet), and Bielschowsky stainings.

mGluR5 staining (anti-mGLUR5 C-terminus antibody,
Millipore Chemicon 06–451, 1:100) was performed in 5 μm slices
adjacent to those used for clinical diagnosis. Immunohistochem-
istry was performed on a Benchmark XT stainer (Ventana Med-
ical System): after deparaffinization, sections were pretreated
with cell conditioning 1 buffer, the primary antibody was applied
for 32min and the Ultraview DAB kit was used. Slides were digi-
talized using an Aperio scan-scope system and image analysis
was performed using Spectrum software.

A descriptive qualitative analysis of mGluR5 immunostain-
ing was conducted (Aronica et al. 2003). Cells (balloon cells,

Figure 1. Individual vertex-wise z-score maps showing reduced [11C]ABP688 BPND in FCD lesions. Results are displayed on each patient’s inflated cortical surface, with

light gray regions indicating gyri and dark regions indicating sulci. FCD boundaries from manual labeling are displayed as a white outline. Blue-teal colors indicate

regions with lower BPND as compared to controls, whereas red-yellow colors indicate regions with higher BPND compared to controls. (A) Six patients showed clusters

of decreased [11C]ABP688 BPND differences within the lesion boundaries, which remained significant after correction for multiple comparisons (corresponding cluster-

wise P-value is indicated as CWP). (B) Two patients showed small lesional clusters of reduced [11C]ABP688 BPND that (displayed here at P < 0.05), were not significant

after correction for multiple comparisons.
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dysmorphic neurons and normal neurons) and neuropil were
visually analyzed and rated for the immunoreactivity pattern
as negative, mild, moderate, and strong (Aronica et al. 2003).

Results
Vertex-wise Analysis of [11C]ABP688 BPND

Reduced BPND was found within the lesion in 8/10 patients,
which remained significant in 6 patients after cluster-wise cor-
rection for multiple comparisons (see Fig. 1; Supplementary
Table 1). No patients showed clusters of increased BPND within
the lesion. Eight out of 10 patients showed a median of 3 extra-
lesional areas of increased or decreased BPND, which were dif-
fusely scattered throughout the ipsilateral and contralateral
cortices (Fig. 2). These extralesional clusters were mainly found
in 3 patients, at variable distance from the lesion (Fig. 2).
Although the HRRT PET data were blurred to match the HR+
resolution, extralesional BPND abnormalities were more fre-
quent in patients imaged with the HR+ scanner.

ROI Analysis of [11C]ABP688 BPND

Confirming vertex-wise analysis, significantly lower lesional
BPND, was found in 6/10 patients as compared to the homotopic
cortex in healthy controls (z-scores ranging from −5.58 to −2.32;
see Supplementary Table 1; Fig. 3). No differences were found
between patients and controls in the perilesional or the contra-
lateral lesion labels. These ROI results differed slightly from the
vertex-wise results in that patient #5 (significantly reduced BPND

within a small anterior portion of the lesion—Fig. 1) did not
show a significant difference in the ROI analysis, which can be
understood by the extensive portion of the lesion extending pos-
teriorly and that does not show any BPND abnormality. On the
other hand, patient #4 showed significantly reduced lesional
BPND in the ROI analysis (Fig. 3), but only small nonsignificant
vertex-wise clusters of decreased BPND in the ipsilateral tem-
poral lobe, including some located within the lesion (Fig. 1).

Epilepsy duration showed no association with mean BPND in
the FCD lesion (r = 0.17, n = 8, P = 0.65). Considering the possible
effect of extracellular glutamate levels fluctuations in [11C]
ABP688 BPND (Zimmer et al 2015), we further analyzed whether
there was a relationship between the last seizure and the scan
date. Likewise, no correlation was found between the number
of days since the last seizure and BPND in the FCD lesion
(r = 0.19, n = 8, P = 0.60).

mGluR5 Immunohistochemistry

We found a high degree of intra/intersubject variability in
mGluR5 immunoreactivity within the lesions. There was weak
to strong neuropil staining; dysmorphic neurons as well as bal-
loon cells, however, most often showed negative or weak immu-
noreactivity, with isolated and at times rare cells showing
moderate or strong immunoreactivity. Intracellular and mem-
brane staining was variable across sections and cells, with one
patient showing intranuclear immunoreactivity in isolated dys-
morphic and balloon cells (Fig. 4F). Normal neurons from cortical
regions at the border of the resections showed normal strong
cytoplasmic mGluR5 immunoreactivity (Aronica et al. 2003).
Altogether, the resulting cortical pattern was of weak-moderate
mGluR5 immunoreactivity derived from neuropil staining
(Fig. 4A,C,E,G), with negative-mild intracellular immunoreactiv-
ity in portions of the lesion with most severe abnormalities
(i.e., with higher concentration of balloon cells, Fig. 4B,H).

Discussion
In this study, we identified for the first time in vivo mGluR5
abnormalities in FCD lesions using [11C]ABP688 PET. Reduced
BPND within the FCD was observed in 70% of patients using a
combination of vertex-wise and ROI analyses. While no BPND

differences were found in perilesional or contralateral cortices
in ROI analysis compared to homotopic regions in healthy con-
trols (Fig. 3), vertex-wise whole cortex analysis showed mGluR5
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abnormalities within the visible lesion sometimes extending to
the surrounding cortex (Fig. 1).

Reduced BPND may indicate reduced mGluR5 tissue concen-
tration or a reduction of [11C]ABP688 affinity to mGluR5 caused
by receptor internalization, conformational changes, anomal-
ous receptor isoforms, or excessive concentrations of endogen-
ous ligands. Reduced BPND observed in our patients can be first
explained by mGluR5 interactions with glutamate, found to be
at high levels in the extracellular compartment in the epilepsy
focus (During and Spencer 1993). While [11C]ABP688 binds
selectively to the mGluR5 allosteric site, glutamate binding to
its orthosteric site causes a conformational change that makes
the transmembrane allosteric site unavailable (Ametamey et al.
2007; Treyer et al. 2007).

Although it is still unclear to what degree mGluR5 availabil-
ity fluctuates during and after seizures, microdialysis studies
have shown that extracellular glutamate concentrations
increase prior to and during a seizure (During and Spencer
1993; Meurs et al. 2008). Interestingly, the two patients who
showed no [11C]ABP688 BPND differences in the FCD lesion (i.e.,
patients #9 and #10), experienced frequent seizures prior to
[11C]ABP688 PET scanning. We have previously demonstrated,
by combined microdialysis and PET, that [11C]ABP688 BPND is
influenced by extracellular synaptic concentration of gluta-
mate (Zimmer et al. 2015). Prior evidence further supports that

[11C]ABP688 BPND can be modulated by extracellular gluta-
mate: administration of a sub anesthetic dose of ketamine,
known to elicit glutamate release, caused a 20% decrease in
BPND throughout the brain of healthy controls (DeLorenzo
et al. 2014).

Since seizures induce dynamic changes in GABA and gluta-
mate (Rowley et al. 1997) as well as glutamate transporter
expression (Hubbard et al. 2016), it is plausible to expect that
[11C]ABP688 BPND in FCD might incorporate information
regarding extracellular concentration of glutamate. As such,
these factors should be taken into account to interpret PET
mGluR5 imaging in epilepsy due to the high frequency of sei-
zures (including electrographic seizures) among carriers of an
FCD lesion. Many patients with FCD have abundant spiking
activity, particularly evidenced when these lesions are targeted
with intracranial EEG electrodes.

Patient #10 had not only frequent seizures but also abundant
interictal epileptiform discharges, with almost continuous spik-
ing activity found in intracranial EEG monitoring prior to sur-
gery. In addition, patients #9 and #10 experienced frequent
nocturnal seizures, which may have interrupted their normal
sleep pattern. A recent study showed that sleep deprivation
was associated with a global increase in [11C]ABP688 binding,
maximal in the medial temporal lobe and cingulate cortex,
in healthy individuals (Hefti et al. 2013). While further
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investigation is needed to confirm these speculations, it is pos-
sible that increased seizure activity alone or combined with
sleep deprivation may have obscured localized lesional changes
in [11C]ABP688 BPND in these patients.

Furthermore, given its dependency on glutamate concentra-
tions, [11C]ABP688 BPND might also be related to excitotoxicity.
In FCD type IIb, glutamatergic balloon cells with reduced or

dysfunctional mGluR5 could potentially result in insufficient
postsynaptic modulation of glutamatergic transmission, lead-
ing to increased excitotoxicity.

Extralesional areas of increased or decreased BPND were also
observed in some patients, including those who underwent
resection of the MRI-visible lesion and who are currently
seizure-free. While we cannot fully understand the significance

Figure 4. mGluR5 immunohistochemistry in resected FCD IIb tissue. (A) Patient #2, objective ×10: Disorganization of the cortex, in which no pyramidal cell layer can

be properly identified. There is presence of numerous dysmorphic neurons and balloon cells, with few entrapped neurons strongly stained for mGluR5. (B) Patient #2,

objective ×40: Detailed view of deeper cortical section in the same slide, with presence of balloon cells (asterix), which are negative for mGluR5, with few entrapped

neurons and dysmorphic neurons showing a cytoplasmic pattern of mGluR5 staining. (C) Patient #3, objective ×10: Disorganization of the cortex, presence of dys-

morphic neurons and rare neurons strongly stained for mGluR5. (D) Patient #3, objective ×40: Detailed view of deeper section in the same slide, with presence of

mGluR5-negative balloon cells (asterix) and mGluR5-positive neurons. (E) Patient #8, objective ×10: Disorganization of the cortex, in which no pyramidal cell layer can

be properly identified. Few neurons are strongly stained for mGluR5. (F) Patient #8, objective ×40: Detailed view of deeper section of the cortex, with presence of bal-

loon cells (asterix) with either no clear staining or with a strong nuclear mGluR5 staining. (G) Patient #10, objective ×10: Disorganization of the cortex, with strong

neuropil staining but no mGlur5-positive neurons identified. (H) Patient #10, objective ×40: Detailed view of deeper section depicting the transition of cortex/white

matter, with presence of balloon cells (asterix) with either absent staining or weak cytoplasmic staining.
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of these scattered extralesional abnormalities, in this small
series of patients it did not seem to implicate in a poor
postsurgical prognosis or to highlight additional areas of
epileptogenicity.

Our analysis showed that extralesional abnormalities could
be found scattered across both hemispheres, but were unevenly
represented across subjects (Fig. 2). The patient with the largest
number of significant extralesional abnormalities (patient #9)
has not been operated. This patient has frequent clusters of
seizures and bilateral independent EEG abnormalities, which
may suggest cortical abnormalities extending beyond the vis-
ible lesion. However, the other two patients who showed a
large number of extralesional abnormalities are both seizure-
free following resective surgery of the MRI-visible FCD lesion.
The reason why patients imaged in the HR+ PET scanner
showed a larger number of extralesional abnormalities could
be a result of variability in the HR+ scanner, the effect of com-
bining the HR+ and HRRT data sets, or differences inherent to
the patients.

Because of its role in cortical development, neurogenesis,
cell survival and regulation of morphogenesis, mGluR5 abnor-
malities in FCD could reflect a developmental feature of the
malformed tissue mediated through this receptor that makes
these lesions highly epileptogenic, as demonstrated by neuro-
physiological studies (Palmini et al. 1995; Catania et al. 2007). In
a pilocarpine-treated rat model of temporal lobe epilepsy, sta-
tus epilepticus was associated with a global reduction in [11C]
ABP688 BPND (Choi et al. 2014). Following status, [11C]ABP688
BPND remained reduced in the hippocampus and amygdala,
regions that later developed epileptogenicity and became cap-
able of producing spontaneous seizures in the chronic stage.
This suggests a role for mGluR5 in epileptogenesis of previously
normal brain regions.

Tissue analysis conducted in a small subsample of our
patients who underwent surgical resection of the MRI-visible
FCD lesion, showed concordance between mGluR5 immunor-
eactivity pattern, abnormal histology and [11C]ABP688 PET.
mGluR5 immunohistochemistry revealed negative or weak
staining of balloon cells and dysmorphic neurons that, despite
not being a quantitative measurement of protein levels, suggest
that this might be contributory to the in vivo findings with [11C]
ABP688. In three operated patients, reduced BPND within the
FCD could be at least partially attributed to the substitution of
normal appearing mGluR5-positive neurons by mGluR5-
negative or weakly stained abnormal (balloon) cells.

The reason why one operated patient did not show detect-
able in vivo [11C]ABP688 BPND abnormalities is unknown since
the tissue analysis did not reveal any significant differences
compared to other operated patients who had in vivo [11C]
ABP688 BPND abnormalities (Fig. 4G,H). In vivo binding studies
using PET should be carefully interpreted since the binding of
the radioligand is influenced by 1) the total amount of protein
in the tissue (Morey et al. 2009), 2) the functional state of the
receptor (high/low affinity state), and 3) the presence of an
endogenous competitor (Chugani et al. 1988; van Wieringen
et al. 2013; Zimmer et al. 2015; Vidal et al. 2016).

Furthermore, the quantification or mGluR5 using molecular
imaging agents cannot discriminate cellular compartments, but
rather provide measures of tissue concentrations (Zimmer
et al. 2014). As such, the “normal” [11C]ABP688 binding observed
here can be explained by steady-state status of the tissue dur-
ing the PET scan session (Zimmer et al. 2014). For example, we
have previously shown using PET and microdialysis that reduc-
tion in tissue glutamate concentrations via activation of

glutamate transporter can increase [11C]ABP688 binding by up
to 30%. Therefore PET image, rather than simply indicating tis-
sue concentrations of neuroreceptors, can capture functional
aspects of neuroreceptors in their native environment (Zimmer
et al. 2015).

Moderate-strong mGluR5 immunoreactivity in balloon cells
from FCD type IIb has been previously described (Aronica et al.
2003). In contrast, most balloon cells and dysmorphic neurons
in the tissue obtained in our series had negative or weak
mGluR5 immunoreactivity (Fig. 4), with a moderate-strongly
stained neuropil and strong immunoreactivity in neurons that
had a normal morphology within the periphery of resected tis-
sue. Although the small number of patients in both series (11
in Aronica et al. (2003) and 4 in our study) does not allow for
clear conclusions concerning these findings, it is interesting to
note some differences between FCD IIb patients in these series.
Mean age at surgery being much earlier (18 vs. 37) and propor-
tion of seizure-free patients being much lower (50% vs. 100%) in
the previously reported series might suggest a more severe
form of epilepsy requiring earlier intervention as compared to
our adult series (all our operated patients with FCD IIb had sur-
gery after age 25, compared to only 3/11 of theirs).

Keeping in mind that our cohort is very small and consider-
ing the clinical-pathological findings in both series, we could
speculate that our patients fall into a subcategory of FCD IIb in
which epilepsy is less severe. Tissue differences described here
(such as predominantly negative or weak mGluR5 positive bal-
loon cells) could potentially correlate with a better prognosis,
and the same could be potentially true for the [11C]ABP688 BPND

abnormalities described here.
Because many of our patients in the present series will not

have a surgical resection due to location within eloquent cor-
tex, we unfortunately cannot expand the imaging-pathological
contributions at this point. Furthermore, the regulation on the
administration of radioligands in research by Health Canada
does not allow us to prospectively recruit patients younger
than 18 y/o, making it unfeasible to design a prospective com-
parison to clarify these differences.

Indeed, an important limitation of our study is the small
number of patients evaluated. While we attempted to control
for potential confounds of particular relevance for mGluR5
imaging (from cigarette smoking to depression), a larger sample
size may allow more robust comparisons and more specific
characterization of lesional and extralesional abnormalities.

In conclusion, we have shown for the first time in vivo
imaging of mGluR5 availability in patients with epilepsy and an
underlying FCD. Using [11C]ABP688 PET, we have demonstrated
that binding is reduced in these lesions as compared to homoto-
pic areas in healthy controls. Our findings, albeit derived from a
small number of patients, support future studies on the evalu-
ation of [11C]ABP688 PET for diagnosis of occult malformations
in patients with a negative MRI. Additional analysis comparing
in vivo [11C]ABP688 BPND to ex vivo analyses of protein quantifi-
cation and function in different types of lesions resected from
epilepsy patients may further elucidate the role of mGluR5 in
epileptogenicity and epileptogenesis, particularly in malforma-
tions of cortical development. [11C]ABP688 PET could shed light
on more complex phenotypes related to mGluR5 dysfunction,
including acquired forms of epilepsy, as well as neurodegenera-
tive diseases, psychiatric conditions, and Fragile X chromosome
syndrome, which can also be associated with seizures. Finally,
mGluR5 imaging could potentially be used as an imaging bio-
marker for epileptogenesis in other forms of acquired epilepsies
that can be targeted with disease modifying therapies.
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