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Abstract

Introduction—Despite remarkable advances in tumor treatment, many patients still die from 

common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are 

needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their 

receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the 

conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, 

including interrupting autocrine-growth via the use of over-expressed receptors for imaging and 

targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-

technology.

Areas covered—The unique ability of common neoplasms to synthesize, secrete, and show a 

growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in 

general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and 

CNS). Particular attention is paid to advances in the recent years. Also considered are the possible 

therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the 

therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-

delivery.

Expert opinion—Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed 

by common tumors, which are often malignant and become refractory to conventional treatments, 

therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. 

Of particular interest is the potential of reproducing BnRs in common tumors, such as the recent 

success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide 

the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
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1. Introduction

Mammalian bombesin(Bn)-related peptides [Gastrin-releasing-peptide(GRP) and 

neuromedin-B(NMB)] not only occur widely in peripheral-tissues and the central-nervous-

system(CNS)[1], they have a wide spectrum of actions in both physiological and 

increasingly, pathophysiological processes[1,2••,3,4]. Their biological actions are mediated 

by two G-protein-coupled receptors, the GRPR(BB2) and NMB R(BB1)[1,2••,3]. A third 

receptor is included in the Bombesin-receptor(BnR) family, bombesin-receptor-subtype 

3(BRS-3,BB3) because of its high homology(47–51%) to GRPR/NMBR, however, at 

present its natural ligand is unknown and is likely to have a unique structure, because BRS-3 

has low-affinity for all natural-occurring Bn-peptides[2••,5,6]. GRPR, NMBR and BRS-3 

activation stimulate a large number of cellular signaling cascades, which are principally 

mediated by phospholipase-C activation resulting in stimulation of protein-kinase C and 

cellular calcium changes[1, 2••,7].

Recently a number of reviews/papers have covered various aspects of BnR’s pharmacology, 

physiology and role in various pathophysiological states. These include reviews of general 

advances in all these aspects[2••,3]; the role of BRS-3 in obesity and diabetes[5]; the role of 

BnR’s in feeding disorders[2••,8]; pruritis[2••,9]; CNS function/disorders including memory, 

stress[2••,10]; lung diseases[2••]; inflammatory disorders[2••,11]; the signaling especially in 

cancer[2••,7] and the development of BnR-ligands as possible imaging modalities[2••,

12,13]. In the present paper the possible role of BnRs in neoplastic processes will be 

concentrated on with a view to the use of their overexpression/growth effects by many 

human-cancers as a potential novel target for treatment. Particular attention will be paid to 

papers within the last five years and to recently described novel approaches using BnR 

tumoral overexpression to either image these tumors or to delivery cytotoxic 

agents(radioactive compounds, chemotherapeutic agents including using nanoparticles, 

immunological agents or other cytotoxic-compounds).

2. General: Bn-related peptides-structures, receptors, pharmacology

This family of peptides are named bombesin-related peptides because the original member 

of this family, bombesin, a 14 amino-acid peptide was isolated from the skin of the frog, 

Bombina bombina, and subsequently a large number of related peptides were isolated from 

invertebrates[1]. Subsequently two mammalian members, GRP, a 27-amino-acid peptide that 

has a COOH terminus of Gly-His-Leu-Met-NH2 and thus resembles Bn, and a decapeptide, 

NMB, having a COOH-terminus ending in Gly-His-Phe-Met-NH2, resembling the 

invertebrate peptides litorin-ranatensin[1]. The GRP-gene is located on human-

chromosome-18 and has two introns/three exons, whereas the NMB gene is located on 

human-chromosome 15-q11 and has three exons. NMB is encoded in preproNMB, a 76 

amino-acid precursor, which is processed to NMB32 and the decapeptide, NMB. GRP is 
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processed from a 148 amino-acid peptide preproGRP. The GRPR-gene is localized to 

chromosome-Xp22 similar to the BRS-3 gene, which is located on chromosome-XA71.7.2, 

whereas the NMBR-gene is located on chromosome-6p21[1].

hGRPR has high-affinity for the GRP and 650-fold selectivity for GRP over NMB, whereas 

the hNMBR has the reverse pattern, with a high-affinity for NMB and 640-fold selectivity 

for NMB over GRP[2••,6]. Numerous studies show there is considerable species variation in 

not only the affinities of various Bn-related-peptides for GRPR/NMBR, but also variation in 

whether they function as full agonists/antagonists, so that it is important to examine the 

pharmacology of possible therapeutic-agents for use in human-studies in cells containing 

human-BnRs[6,14,15]. In addition to GRP/NMB, there are a number of selective-natural/

synthetic Bn-related-analogues, that function as selective-agonists for these receptors, 

especially the GRPR, and in many cases they are much more metabolically-stable than GRP/

NMB, which are rapidly degraded[1,6,12, 16•]. In contrast, with BRS-3, even though the 

natural ligand is unknown, there are a number of nonpeptide agonists (MK-5046, compound 

9D, G, etc.) which functional as selective-agonists[5]. With the GRPR there are no potent 

selective nonpeptide antagonists, although there are numerous classes of different peptide 

antagonists[2••,16•,17–20]. With the NMBR the most potent antagonist is a peptoid-

analogue, PD168368[17], and with BRS-3 there is one potent peptide antagonist, 

Bantag-1[21]. A synthetic Bn-related-peptide with the unique 

pharmacology([DPhe6,βAla11,Phe13,Nle14]Bn(6–14)), of having high-affinity for all three 

human-BNRs, as well as GRPR/NMBR of other species(not m,rBRS-3), has received 

considerable attention as a possible pan-BnR-targeting-agent for tumor-imaging or targeted-

delivery[2••,16•,22].

3. General: GRP-NMB and BnR’s in tumors

GRP/NMB-immunoreactivity and their mRNAs are found in a large number of tumors, and 

they are secreted from the tumors and in many cases function as autocrine-growth-factors, 

interacting with their own receptors on the tumor[1]. GRPR, is overexpressed by a large 

number of tumors including tumors of the prostate, breast, colon, CNS(gliomas, 

meningiomas), lung including non-small-cell-lung-cancer(NSCLC), small-cell-lung-

cancer(SCLC)], head/neck-squamous-cell-tumors, pancreatic-cancer, and 

neuroblastomas[1,23, 24•,–25]. NMBR is also frequently overexpressed in neoplasms 

including by tumors of the lung (NSCLC, SCLC), pancreas, colon and carcinoids (bronchial, 

intestinal)[1,23]. BRS-3 is found in neuroendocrine tumors, tumors of the lung, pancreas, 

pituitary, ovary and prostate[23,26]. GRP and NMB stimulate the growth and/or 

differentiation of a wide range of cancers, and studies suggest GRP functions as an 

autocrine-growth-factor in a number of tumors, whereas in other tumors, such as colon-

cancer, it has weak growth effects, and functions primarily as a morphogen[2••,24•,25,27]. 

Recent studies demonstrate in a number of different tumors(neuroendocrine, lung, prostate, 

head/neck-squamous-tumors) that activation of GRPR, NMBR, BRS-3 resulting in growth 

responses are frequently mediated by transactivation of tumor EGFR or HER2[28•,29–31]. 

This signaling pathway frequently requires SRC-activation, action of PKCs, stimulation of 

reactive oxygen species, and stimulation of matrix metalloproteinases with generation of 

EGFR ligands[28•,29]. In a number of tumors this interaction has been used to define a 
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novel potential therapeutic approach, because the combination of a BnR-antagonist and an 

EGFR-inhibitor have potentiating effects on tumor growth such that together they were more 

potent that either alone[28•,29,31].

4. General: Use of BnR-antagonists for anti-growth effects on tumors

Numerous studies show the possible therapeutic promise of BnR-antagonists or other agents 

that block the growth-stimulatory action of BnR agonists on tumors[1,32], since the original 

observation that Bn-related peptides are synthesized, secreted and have autocrine-growth 

effects on human-small-cell-lung-cancers, and that that monoclonal Bn antibodies inhibit 

growth of these tumors both in vitro/in vivo xenografts[33]. The use of BnR-

antagonists(GRPR,NMBR,BRS-3)in specific tumors is discussed in more detail in each of 

the tumor sections below.

In general the use of BnR-antagonists has been reported to effect the growth of a wide range 

of tumors including cancers of the colon, ovary, lung, breast, kidney, 

CNS(glioblastoma,medulloblastomas), pancreas, liver, prostate, head/neck, and 

neuroblastomas [34–36, 37•,38–42]. Furthermore,GRPR-antagonists suppress development 

of experimental benign-prostatic hypertrophy(BPH),which is a due to a pathologic 

proliferation of prostatic glandular and stromal tissues. In this model of BPH,the GRPR-

antagonists reduce the volume of human-prostatic cells, lower prostate-weight and induce 

significant changes in >90-genes related to growth, inflammatory processes, and signal 

transduction, which are thought to be important in the pathogenesis of BPH[43••]]. In the 

various BnR-antagonist studies cited above, inhibition of each of the three-

BnRs(GRPR,NMBR> BRS-3) decrease growth of various tumors, however, the GRPR has 

been the most extensively-studied, followed by the NMBR and lastly the BRS-3. In the case 

of BRS-3 and to some degree with the NMBR, the lower number of studies is related to the 

lack of availability of specific antagonists until recently.

In the various studies of the tumoral growth-inhibitory effects of BnR-antagonists cited 

above, the inhibition is reported in various tumors with either the Bn-antagonist alone, as 

well as in combination with other agents, which in some cases results in increased 

cytotoxicity. As discussed above, in head/neck-squamous-cancer-cells, medulloblastoma-

cells and lung-cancer-cells, the combination of a BnR-antagonist and an EGFR-antagonist 

are reported to have potentiating growth inhibitory effects, mediated in part by their 

inhibitory effects on transactivation of the EGFR by the Bn-related peptide[28•,29,31]. 

Effective Bn-antagonist combinations used include: in rat-glioma-cells the combination of a 

GRPR antagonist and temozolomide was more potent at inhibiting growth than either single 

treatment alone[38]. Furthermore, the combination of the GRPR anatgonist, RC-3095 and 

gemcitabine in nude-mice with xenografts of the human-pancreatic-cancer-cell, CFPAC-1, 

was more potent than either alone[40]. GRPR antagonists potentiate the inhibitory effects of 

histone-deactylase inhibitors on lung-cancer-cells[44]; and the combination of a GRPR-

antagonist and various cytotoxic-agents(5-FU,iniotecan) produced greater inhibition of 

growth of colon-cancer-xenografts(HT-29,HCT-116,HCT-115) that either alone[37•]. In 

contrast, in NMBR-bearing medulloblastoma-cells, whereas a NMBR-antagonist potentiates 

the inhibitory effects of EGFR blockade on cell-growth[45], but it did not potentiate the 
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inhibitory effects of histone deactylase inhibitors, demonstrating the selectiveness of 

NBMR-antagonist inhibition synergy to the type of combination cytotoxic-agent used.

Silencing of BnR-signaling in cancers has also been recently reported using various siRNA-

constructs. Silencing of GRPR/GRP by siRNA-delivery has been shown to decrease the 

signaling cascades leading to proliferation and the growth of neuroblastomas[39], ovarian-

cancers[35] and lung-cancers[46]. Another novel approach reported to be effective[47] in 

silencing the autocrine-growth effect of Bn-related peptides is to immunize animals 

containing melanomas which possess GRPR and produce GRP, with a DNA-vaccine contain 

GRP-fragments coupled to tetanus-toxoid and helper-T cell epitopes. Administration 

intramuscularly of this vaccine decreased B16-F10 melanoma lung invasion and tumor 

associated angiogenesis[47].

A phase 1-trial of the GRPR-antagonist, RC-3095, was reported in 25 patients with various 

solid tumors[48]. No side-effects occurred and no patients demonstrated an objective tumor 

response. However, one patient with a GRPR-positive, medullary thyroid cancer 

demonstrated a minor response[48]. The success of various combination therapies of BnR-

antagonist with another cytotoxic-agent in studies described above, suggest that this might 

be a novel approach in patients with BnR-tumors[38]. An attempt in patients with small-cell-

lung-cancer to block the autocrine effect of Bn-like peptides on the tumor was reported in 13 

patients[49]. Infusion of the monoclonal antibody-2A11 which binds to the biologically 

active COOH-terminus of Bn/GRP amidated-peptides was performed, and one patient 

demonstrated an objective tumor response, four had stable disease, and further evaluation 

was recommended[49].

5. Imaging and targeted-delivery of cytotoxic-agents to neoplasms using 

tumoral overexpression of BnR’s to target the tumor: General comments

There is increased interest in the approach to image tumors, as well as in using BnR-

overexpression to target cytotoxic-agents to tumors. This increased interest is due in large 

part to the successful application of this approach to tumors overexpression somostatin 

receptors (sst1-5). A number of tumors(CNS, endocrine, neuroendocrine, breast, 

lymphomas) overexpress somatostatin-receptors and are imaged using various radiolabeled-

synthetic somatostatin-analogues[50••]. At present the use of 68Ga-labeled-somatostatin-

analogues with positron emission-tomographic scanning(68Ga-labeled-somatostatin-

analogues PET-scanning) is the most sensitive method to image neuroendocrine 

tumors(carcinoid, pancreatic neuroendocrine- tumors). In Europe,68Ga-labeled-

somatostatin-analogues PET-scanning has become the recommended method to assess 

neuroendocrine-tumor location and extent, because its use changes management in 20–50% 

of patients compared to conventional imaging modalities[cross-sectional-imaging with 

computed-tomography(CT-scanning), magnetic resonance imaging(MRI), ultrasound]. The 

results of these imaging studies have established that this methodology can target the 

radiolabeled-probe with very high specificity/sensitivity to neuroendocrine tumors 

overexpressing somatostatin-receptors[50••]. This finding has lead to the development of 

somatostatin-analogues that are coupled to cytotoxic-radiolabels 
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including 177Lutetium/90Yttrium,which can be used therapeutically in these patients[50]. A 

recent prospective, double-blind study(NETTER-1) reported in preliminary form[51], in 230 

patients (randomized 1:1) with advanced, inoperable, progressive, small intestinal, 

metastatic ileal carcinoid tumors, demonstrates for the first time, that using a 177Lutetium-

labeled-somatostatin-analogue, results in a highly significant extension of progressive-free 

survival compared to patients not treated with the 177Lutetium-labeled-somatostatin 

analogue(p<0.0001) and likely extension of survival(23 vs 67 deaths), with acceptable 

toxicity. Unfortunately, most common neoplasms do not overexpress somatostatin-receptors, 

however, many overexpress BnR’s[1,23], which has led to markedly increased interest in 

using a similar approach using Bn-analogues to both image primary tumor location and 

extent of these tumors,as well as to target them with cytotoxic-agents[12,13,16•,52].

Because of the high frequency of overexpression of BnRs(particularly-GRPR) by many 

common tumors, reports of using these receptors to image/target these tumors have 

markedly increased in number and today there are more than 400 papers dealing specifically 

with this subject[12,13,16•,52]. A large number of synthetic Bn-analogues have been 

described with the majority being coupled by various linkers(primarily 

DOTA,DTPA,NOTA,HYNIC,DPR,DTMA) to various 

radioisotopes(99mTc,111In,125I,185/187Re,18F,64Cu,68Ga,90Y,177Lu)[12,13,16•,52]. Initially 

only BnR-agonists were used because of the assumption that for optimum imaging/targeting 

that ligand-internalization was needed. Numerous previous studies have reported that each of 

the BnRs internalize agonist ligands, whereas antagonists show no or only minimal 

internalization, and also agonists stimulate rapid internalization of the BnRs[1,53–57]. The 

recent finding that radiolabeled-somatostatin antagonists gave superior imaging results to 

radiolabeled-agonists[58], led to similar studies in BnRs, and recent studies with GRPR 

report a similar finding with radiolabeled-GRPR-antagonists[16•,56,57,59–65]. In general 

tumor-localization in vivo in animal studies and a few human-studies (Table 1) using 

radiolabeled-ligands has proven to be a sensitive method to image BnR-positive tumors and 

these results will be discussed under the specific tumor types in the following sections.

In addition to coupling to radioisotopes for tumor-localization, BnR-ligands have also been 

coupled to other compounds for tumor-imaging. These include: coupling to fluorescent-

probes to be used for optical-imaging[66–68]; coupling to gold-nanorods coated with PEG 

which can be used for photoacoustical imaging for use particularly in breast-cancers 

idenfication[69]; conjugation to superparamagnetic iron oxide nanoparticles[70,71] or to 

other contrast agents[Gd-TTDA-NP, a protein based contrast agent, ProCA1] enhances 

detection by MRI; magnetofluorescent polymeric nanoparticles coupled to BnR-agonists 

improve the localization of the nanoparticles in PC-3 bearing mice compared to 

nanoparticles without coupling to a Bn-agonist, suggesting this approach could be useful for 

prostate-cancer imaging[72]; and the use of radiolabeled-monoclonal antibodies to proGRP 

to image tumors(gastric, lung) overexpressing Bn-related peptides.

Also bivalent probes for imaging and tumor-localization have been shown to be effective 

including; the combination of a 64Cu radiolabeled-Bn analogue coupled also to DUPA(a 

pentadioic-acid derivative which is a prostate specific membrane antigen(PSMA) probe or a 

BnR-agonist coupled to a PSMA inhibitor for use in imaging/targeted-delivery in prostate-

Moreno et al. Page 6

Expert Opin Ther Targets. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer[73]; using a hetrodimeric peptide ligand containing a BnR-agonist(with radiolabel) 

combined with motifs recognizing integrins α(v) β(3) demonstrated enhanced uptake in 

GRPR containing cells/tumors[63,65,74,75, 76••,77–79] and a 99mTc-radiolabeled-BnR-

agonist conjugated to a folate receptor ligand to enhance localization, because many tumors 

overexpress folate receptors[80]. In addition, radiolabeled-BnR-agonists/antagonists have 

been co-administered with neutral endopeptidase inhibitors, which are one of the major 

proteolytic enzymes for Bn related peptides[81], which has resulted in enhanced uptake in 

tumor xenografts.

In addition to developing BnR-ligands for imaging, BnR-ligands have been coupled to a 

wide range of potentially cytotoxic-agents to allow peptide-receptor-mediated-targeting 

(PRRT) by utilizing the over-expression of the BnR by tumors[12,16•,32,82]. These include 

coupling various BnR-ligands(primarily agonists) to cytotoxic-radioisotopes(90Y,177Lu)[16•,

82,83]; the coupling of BnR-ligands to phthalocyanine or to porphyrin-photosensitizers[84] 

to allow photodynamic therapy[85]; the coupling to various siRNA which can affect tumor 

proliferation/growth/viability[35,86]; coupling to various cytotoxic-chemotherapeutic agents 

including paclitaxel[87], camptothecin[88,89], and doxorubicin[32,90], as well as to various 

cytotoxic-marine toxins[hemiasterlin,dolastatin][91]; coupling BnR-agonists to the 

antimicrobial peptide, magainin 11[92] markedly increase the cytotoxiticity of magainin 11 

both in vitro in a number of GRPR-containing tumor cells and in vivo in MCF-7- breast-

cancer-cells; and coupling BnR-agonists coupled to antimicrobial cytotoxic-peptides showed 

enhanced cytotoxicity for breast-cancer-cells[93]. A doxorubicin-containing Bn-conjugated-

analogue, AN-215,has been studied in a number of different cancers and shown to have 

antitumor activity in cancers of the pancreas, lung, prostate, colon, ovary, endometrium, 

breast,stomach,and CNS(glioblastomas)[16•,32]. Bn-analogues have also been coupled to a 

number of other cytotoxic-agents including diphtheria-toxin[94], mitochondrial-disruptive-

peptides, and to various agents,which activate the immunological system resulting in tumor 

cell-death[16•,95,96].

One approach receiving increasing attention as an effective novel method to deliver 

cytotoxic-agents/image cancer-cells, is to use the over-expression of BnRs on the tumor-

cells to target nanoparticles, liposomes or siRNAs to the cancer-cells. BnR-agonists coupled 

to liposomes and 99mTc showed high specificity/selectivity for imaging breast-cancer-cells 

in tumor-bearing nude-mice[97]. BnR-peptide-agonist ligands have been coupled to 

liposomes, which can, when loaded with doxorubicin or other cytotoxic-agents, demonstrate 

specific cytotoxicity for cancer-cells[98–102]. In a number of studies a liposome-

doxorubicin-complex conjugated to a BnR-agonist showed greater tumoral cytotoxicity than 

free liposome-doxorubicin-complex[100,102]. Furthermore, an 188Re-liposomal-

doxorubicin-complex conjugated to a BnR-agonist caused greater prolongation of survival in 

nude-mice with pancreatic-cancer-xenografts than animals treated with this complex not 

coupled to Bn-agonist[103]. Conjugation of Bn-analogues to doxorubicin-loaded-

nanoparticles demonstrate excellent cytotoxicity against MCF-7/breast-cancer-cells in vitro 

and in a breast-cancer animal-model[90]. Furthermore, the use of this approach reversed the 

resistance of the breast-cancer-cells to doxorubicin[90]. Conjugation of a GRPR-agonist-

ligand to nanoparticles loaded with docetaxol were 12-times more cytotoxic-for breast-

cancer-cells than free-docetaxol[104].
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Gold-nanoparticles are now being widely investigated for their use in antitumor-treatments 

because they can be adjusted to different sizes producing biological responses of interest, 

and can be used to carry cytotoxic cargo to the tumor-cells[105]. Bn-ligands coupled to 

gold-nanoparticles retain high-affinity for GRPR[106] and have enhanced selectivity and 

antitumor activity[105]. Au-nanoparticles conjugated to the GRPR-agonist,[Lys3 ]Bn and 

radiolabeled-with 99mTc, are internalized into nuclei of prostate-cancer-cells and thus could 

be suitable for delivery of photosensitizing agent or other cytotoxic-agents for prostate-

cancer therapy[107]. Bn-conjugated to gold-nanoparticles are internalized in PC-3 prostate-

cancer-cells by clathrin-mediated endocytosis[108] via clathrin-coated-pits and 

intracellularly the gold-nanoparticles are released in the lysosomes. 177Lu-coupled-

nanoparticles have been proposed as a new class of theranostic radiopharmaceuticals and 

these have been recently conjugated to BnR-agonists, and show preclinical efficacy in 

prostate-cancer[107].

siRNA’s are receiving increasing attention because of their specificity and therapeutic 

potential, especially for treatment of cancer, however, one of the main problems is to 

increase their specific-uptake and target them to the desired site. Receptor-mediated-

endocytosis as well as their incorporation into nanoparticles/liposomes are commonly used 

carriers to deliver siRNA. The conjugation of siRNA to Bn/BnR-ligands increases apoptosis 

and decreases invasiveness of ovarian-cancer-cells[35], as well as suppresses tumorigenesis 

and metastatic potential of neuroblastomas[109,110]. In the prostate-cancer-cell-line, PC-3, 

siRNA-constructs coupled to a Bn-agonist-analogue, undergo receptor-mediated endocytosis 

with a Km-value similar to that seen for pharmacological responses of the cell, utilizing a 

clathrin-, actin-and dynamin-mediated pathway. Intracellularly the GRP-antisense construct 

localizes to endomembrane-vesicles associated with Rab7/Rab9 and is transported to late-

endosomes/the trans-Golgi-network, demonstrating the deep intracellular transport of the 

siRNA. An anti-hypoxic-inducible-factor alpha(anti-HIFα) siRNA in nanoparticles coupled 

to a Bn-agonist-peptide, is rapidly internalized in tumor-cells by receptor-mediated-

endocytosis, and the nanoparticles facilitate endosomal escape of the siRNA. Both in vitro 

and in vivo when given by systemic delivery this siRNA-construct inhibits human-Glioma, 

U87 growth and in vivo demonstrates greater inhibition of xenograft’s growth in nude-mice 

than seen with nontargeted-delivery systems.

6. Bn-peptides-BnR: Breast-Cancer

In breast-cancers, 38–96% possess GRPR and 0–50% NMBR,BRS-3[23,26, 111•,112,113]]. 

A number of studies report GRPR-activation stimulates breast-cancer cell-lines, the 

migration of tumor in vitro cells[114]; their growth: and that GRPR-overexpression 

enhances cell-invasiveness[113]. In nude-mice with breast-cancer xenografts, induction of 

high titers of anti-GRP antibodies by a novel GRP-vaccine(HSP65) results in both protective 

and tumor-immunity[115]. Furthermore, knockdown of GRP in MCF-7 breast-cancer-cells 

markedly reduces tumor-invasion[113].

GRPR-receptor-antagonists inhibit metalloproteinase-9 activity, secretion of bFGF,IGF-1 

And VEGF-A by breast-tumor-cells[116], as well as decrease vessel-density[116] and 

growth, both in vitro and in vivo breast-cancer xenografts in nude-mice[116,117]. Similarly, 
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a NMBR-antagonist inhibited growth of MDA-MB-231-breast-cancer-cells both in vitro and 

in vivo in xenografts in nude-mice. A GRP-monoclonal antibody inhibited proliferation of 

breast-cancer-cells[115] suggesting that Bn-like peptides have an autocrine role in breast-

cancer-cells.

In breast-cancer patients, higher expression levels of GRP-IR in lymph node metastases is 

associated with decreased survival and higher primary tumor-expression of GRP correlates 

with the presence of lymph node metastases[113]. In breast-cancers the expression of GRPR 

correlates positively(p=0.026) with estrogen-receptor-expression[111•].

Various radiolabeled (111In,64Cu,99MTc,68Ga,18F) BnR-agonists(primarily for GRPR) 

image[118–122] or allow targeted-delivery of cytotoxic-radioisotopes(177Lu) to bind to 

breast-cancer-cells both in vitro[118,120–122] and in vivo to image breast-cancers 

xenografts in nude-mice[120–123]. In a comparative study in vivo of xenografts of breast-

cancers in nude-mice, a 68Ga-labeled-BnR-agonist showed greater tumor-uptake than a 

commonly used PET-imaging agent,18FDG. Furthermore, the 68Ga-labeled-BnR-agonist 

demonstrated tumoral changes with tamoxifen-treatment that were not seen with 18FDG and 

thus not only imaged the tumor better than 18FDG, but also allowed assessment of responses 

to hormonal-treatment of the breast-cancer-cells, not seen on 18FDG. A high-affinity Bn-

agonist-coupled fluorescent-probe demonstrated both in vitro and in vivo in breast-cancers 

xenografts in nude-mice, high-uptake by the tumor of the probe, but the degree of uptake 

was influenced by the type of linker used. Furthermore, recent studies also report a number 

of BnR-antagonists(primarily to GRPR) coupled to radioisotopes(111In) are highly effective 

at binding to breast-cancer-cells in vitro and imaging breast-cancers xenografts in 

vivo[111•]. BnR-agonists conjugated to superparamagnetic-iron-oxide nanoparticles, which 

function as a targeting contrast agent for MRI-imaging[70], retain high-affinity for the 

GRPR on breast-cancer-cells, and demonstrated good diagnostic ability to localize breast-

cancer-xenografts in nude-mice[70]. A hybrid-probe combining a 99mTc-labeled-BnR-

agonist with a folate-receptor ligand, another receptor, which is frequently overexpressed in 

breast-cancers[80], was reported to show enhanced uptake in both in vitro studies with 

breast-cancer-cells and in breast-cancer- xenografts.

BnR-agonists conjugated to gold-nanoparticles or to gold-nanorods coated with 

polyethyleneglycol to produce a potential phoacoustic-imaging-agent[69], retain high-

affinity for GRPR-expressing-breast-cancer-cells. 99mTc-labeled-liposomes conjugated to a 

BnR-agonist demonstrate high-uptake and strong scintigraphy images of breast-cancers 

xenografts in nude-mice[101,123]. Heterodiameric-PET-probes combining the RGD 

sequence, which binds to α(v)β(3)-integrins[119] and a BnR-agonist to various 

radioisotopes(18F,64Cu,68Ga) demonstrates high-uptake and the ability to image breast-

cancer-cells in xenografts in nude-mice. The dual nature of this probe allows it to image 

breast-cancers with high BnR-expression and low α(v)β(3)-integrin-expression and those 

with the reverse distribution[119].

There is considerable interest in the possible treatment of breast-cancers with BnR-ligands 

conjugated with cytotoxic-radiolabeled-Bn-analogues(177Lu,90Y) as has been demonstrated 

so effectively with studies using 177Lu/90Y-labeled-somatostatin-analogues to treat patients 
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with malignant, neuroendocrine-tumors[50••]. Studies report such Bn-labeled-ligands bind 

breast-tumor-cells with high-affinity and can have cytotoxicity for breast-cancer-cells in in 

vitro/in vivo xenografts in nude-mice[111•].

In other studies nonradioactive cytotoxic-agents coupled to BnR-ligands show promise for 

targeted-cytotoxicity in breast-cancers. Photothermal treatment of breast-cancer-cells 

incubated with a BnR-agonist coupled to gold-nanorods coated with PEG demonstrate 

destruction of the breast-tumor-cells[124•]. Docetaxol-loaded-nanoparticles coupled to a 

BnR-agonist[104] are >12 times more cytotoxic-for breast-cancer-cells than the nonBn-

coupled docetaxol-nanoparticles, suggesting this approach could be useful for active 

targeting of breast-cancer-cells. Doxorubicin-loaded-nanoparticles coupled to Bn[90] 

demonstrate excellent in vitro cytotoxicity for breast-cancer-cells and in vivo on breast-

cancer-xenografts in nude-mice. Targeting GRPR on breast-cancer-cell by the cytotoxic-Bn-

doxorubicin-construct, AN-215[125], inhibited growth of 5 breast-cancers cell-lines, while 

the control doxorubicin-analogue, not conjugated to a BnR-agonist(AN-201), had no effect. 

Furthermore, low or no expression of multi-drug resistance, protein-1 or multidrug 

resistance-related protein-1, was seen after treatment of breast-cancer-cells with the 

AN-215[125].

In 126 female patients with suspicious breast lesions scheduled for biopsy/surgery the ability 

of ultrasound or 99mTc-RGD-Bn with SPECT/CT to localize the tumor was compared[76••]

(Table 1). 99mTc-RGD-Bn is a dual receptor-targeting probe combining an integrin α(v)β(3) 

and GRPR-targeting-peptide[76••]. 99mTc-RGD-Bn with SPECT/CT had a sensitivity of 

93.5% which was significantly better than ultrasound(82%), and retained high 

specificity(79%), equal to ultrasound. 99mTc-RGD-Bn with SPECT/CT detected 

significantly more lesions ≥10mm, and was more sensitive than ultrasound at detecting 

lymph node metastases[76••]. The specificity/positive-predictive values of ultrasound 

and 99mTcRGD-Bn were not different. The authors conclude that,99mTc-RGD-BBN 

SPET/CT shows promise for imaging breast-lesions, however, cannot solely replace 

ultrasound,but it can be used as an additional imaging approach to eliminate the necessity 

for surgical biopsy and histopathologic examination, because of its high negative-predictive 

value. They conclude that the best approach maybe to combine the different imaging 

modalities.

Various radiolabeled-BnR-agonist probes have been examined for their ability to localize 

and image the tumor in breast-cancer patients in a few studies (Table 1)[62,76,126–128,128–

134]. In 4 women with breast-cancers and seven healthy subjects given the radiolabeled-

BnR-agonist,99mTc-HYNIC-Lys3-Bn)[126], the distribution of the radioligand in normals 

was examined(kidney>lugs>pancreas> liver>ovaries>bone marrow) and high-uptake in 

malignant breast-tumors was found. In three women with breast-cancers[127] imaging 

results with 99MTc-Bn were compared to that with 99mTc-alone[127] and in all cases the 

uptake in the tumor was greater with the 99mTc-labeled-Bn probe,which also imaged lymph 

node metastases,suggesting possible utility of this approach(Table 1). In a study of 33 

consecutive women with suspicious palpable breast-lesions the sensitivity/specificity 

of 99mTc-Bn-scanning for identifying breast-cancers was 100%/66% with a negative-

predictive value of 100% [129]. In a study of 13 patients(9-suggestive breast-cancers by 
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clinical exam, 4-tamoxifen-resistant bone metastases from breast-cancers) underwent 

imaging studies after receiving a 99mTc-Bn-labeled-agonist(99MTc-RP527) (Table 1). [134]. 

The primary tumor was seen in 8 of the 9 patients with clinical breast-cancers(all had proven 

breast-cancers with GRPR-IHC positive cells) and in surrounding lymph nodes or distant 

metastases,but localization was not seen in the tamoxifen-resistant patients with low Bn-

IHC[134]. In another study with the same radio-BnR-agonist-ligand(99mTc-RP527)[135], 4 

of 6 patients with breast-tumors showed specific tumor-localization and good tumor-

imaging(Table 1).

7. Bn-peptides-BnR: Prostate-cancer

In contrast to normal prostate and those showing benign, prostatic hyperplasia[136], in 

which by IHC, 73% are negative, 23% show weak-moderate staining and only 4% strong 

staining, prostate-cancers generally show over-expression of BnRs[23,136–139]. In primary 

prostate-cancers in various studies, 62–100 % possess GRPR with NMBR,BRS-3 being 

uncommon((0–20%)[23,136–139] and in lymph node metastases and bone metastases from 

prostate-cancers, 85% and 63% have GRPR. In one study the Gleason-score showed a 

significant inverse correlation with GRPR-expression(p=0.009) and in another study a 

positive correlation was found. In patients with prostate-cancer with high androgen-receptor 

tumor expression, those with also GRPR-expression had better survival[136]. It has been 

proposed that GRPR-overexpression in focal non-invasive, prostate glands with low-grade 

atypia may represent a novel, specific marker of early prostatic neoplastic 

transformation[137,140]. Prostatic-cancer expression of GRPR in a number of studies is 

reported to be influenced by androgen status: increasing with administration of androgens, 

and decreasing with castration[141].

A number of studies report GRPR-activation stimulates growth/invasiveness of prostatic-

cancer cell-lines[1,139]. Bn-agonist-analogues stimulate a number of signaling cascades 

associated with growth/invasiveness including activation of focal-adhesion kinases, COX-2, 

MAPK(ERK, JUN, p38), and pI3K-kinases,[139,142,143].

The growth inhibitor effects of BnR-antagonists[144], anti-bombesin antibodies[139], and 

GRP/Bn-vaccines on prostate-cancer cell-lines support the conclusion that Bn/GRP-related 

peptides may be having an autocrine-growth effect similar to described in an number of 

other tumors[25]. Furthermore, it has been proposed that prostatic neuroendocrine cells, 

which secrete Bn-related peptides, may promote the progression and androgen-

independence of prostate-cancer[144].

GRPR-antagonists inhibit the growth of prostatic-cancer cell-lines and also decreased the 

expression of VEGR, bFGF, and binding capacity of EGF receptors as well as their mRNA 

levels. The growth inhibitory effects of GRPR-antagonists on prostate-cancer-cells are 

accompanied by inhibition of PKC, MAP kinase and c-Jun. In an experimental model of 

benign prostatic hyperplasia(BPH)[43••], treatment with potent GRPR-antagonists results in 

shrinkage of the BPH, which co-incided with a change in the expression >90 genes, 

including decreases in Ki67-proliferative antigen, NF-kB, COX-2 and androgen-receptor 

expression.
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A number of recent studies using various 

radiolabeled(188Re,55/57Co,111In, 64Cu,99MTc,68Ga,18F) BnR-agonists(primarily-GRPR-

agonists) show imaging[16•,73,74,100,121,145,146,147•,148–155] or targeted-tumoral 

delivery of cytotoxic-radioisotopes(177Lu,188Re,111In,64Cu,18F)[16,74,77,100,147•,154] to 

prostate-cancer-cells both in vitro[16,73,74,81,121,145–147•,149,152–155] and in vivo to 

image prostate-cancer xenografts in nude-mice[16•,73,74,77,81,100,121,145,146,147•,

148,149,151–155]. In two comparative studies in vivo of xenografts of the prostate-cancer-

cell-line[155,156], PC-3, in nude-mice, a 68Ga-labeled-BnR-agonist or 18F-labeled-Bn-

antagonist(BAY 86-4367) showed greater tumor-uptake with lower background than a 

metabolic probe, which is increasingly used in prostate-cancer patients. Furthermore, recent 

studies also report a number of BnR-antagonists(primarily-GRPR-antagonists) coupled to 

radioisotopes(111In,18F,68Ga,64Cu,177Lu) are highly effective at binding to prostate-cancer-

cells in vitro and imaging prostate-cancer-xenografts in vivo[16•,60,61,65,100,150,154,157–

163]. In recent studies with somatostatin-receptors, radiolabeled-receptor-antagonists show 

better imaging than seen with a comparable radiolabeled-agonist[58]. There are contrasting 

results in the case of BnR-imaging in different cancer-cells including in prostate-cancer. In 

two studies[57,164] the BnR-antagonist, demobesin 1 coupled to 99mTc or 111In provided 

superior imaging of prostate-cancer in mouse-xenografts than did the 99mTc/111In-labeled-

agonists[57,164]. Similarly, an 111In-labeled-BnR-antagonist demonstrated superior 

targeting to prostate-cancer-cells,PC-3, than the comparable radiolabeled-agonist. In a study 

of 64Cu-labeled-BnR-agonist and antagonist[165], the in vivo studies demonstrated the 

radiolabeled-agonist gave the best imaging of prostate-cancer xenografts with the low 

background and was preferable. At present the basis for differing results in different studies 

is unclear. However, it could be related to the type of Bn-agonist/antagonist used, because a 

recent study[56] of three different 111In-labeled-GRPR-antagonists that were from different 

chemical classes, examining their abilites to image prostate-tumor xenografts, demonstrated 

they varied in their uptake in different organs and thus, this could affect their backgrounds 

and ability to provide superior imaging.

BnR-agonists/antagonists conjugated to fluorescent-probes[16•,67,166,167] demonstrate 

high-affinity/selectivity both in vitro and in vivo for prostate-cancer-cells. Using MRI-

imaging[67] both lymph node and peritoneal metastases were detected in an orthotropic-

mouse model of prostate-cancer and had a sensitivity of 89%, specificity-93% and 

accuracy-90% for detecting prostate-cancer metastases in mice. In another study[166] the 

photo-accoustic-agent, AA3G-70, which consists of a GRPR-antagonist coupled to the 

fluorescent dye, ATT0740, had high-affinity for GRPR-overexpressing prostate-cancer-cells 

and identified even small lesions in xenografts in mice, as well as providing an enhanced 

photoaccoustic signal[166]. There is increased interest in optical-imaging using MRI and 

this has been studied in prostate-cancer using a BnR-agonist conjugated to [Gd(TTDA-

BP)H(2)]2-, a dual-imaging probe acting as a contrast agent for MRI and for optical-

imaging. This agent was effective at targeting in vitro and in vivo in xenografts, prostate-

cancer-cells. A BnR-agonist coupled to a MRI contrast agent, ProCA1 demonstrated in vitro 

and in vivo using prostate-cancer xenografts, imaging of the tumors, as well as prolonged 

retention of the probe by the tumor.
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BnR-agonists conjugated to gold-nanoparticles/nanorods[107,108,126,168] retain high-

affinity for GRPR-expressing prostate-cancer-cells and are taken up by the tumor-cells by 

receptor-mediated-endocytosis[168]. The uptake of the Bn-gold-nanorods by prostate-

cancer-cells is clathrin-mediated via clathrin-coated-pits and results in intracellularlysosomal 

mediated-release of the gold-nanorods[108]. Combining the coupling of BnR-agonists 

to 177Lu-labeled-gold-nanoparticles and to HIV-Tat(49,50••,51–57)a cell penetrating-peptide 

that reaches DNA[107], resulted in uptake and internalization to the nucleus in the prostate-

cancer-cells. 99mTc-labeled-nanoparticles conjugated to a BnR-agonist demonstrate high 

uptake and strong scintigraphy images of prostate-cancer-xenografts in nude-mice. 

Homodimers of various BnR-agonists demonstrate increased binding affinity to GRPRs on 

prostate-cancer-cells[169] and 99mTc-homodimeric-analogue demonstrated 3-fold greater 

uptake in vitro and enhanced uptake in vivo in prostate-cancer-xenografts. Similarly a BnR-

agonist-homodimer coupled to 111In[147•] demonstrated good uptake and imaging in vitro 

and in vivo of prostrate-cancer-xenografts.

A number of heterodimeric-probes interact with overexpressed BnR’s on prostate-cancer 

and have increased sensitivity for imaging prostate-cancer[73,75] or for possibly targeted-

delivery of cytotoxic-agents. A BnR-agonist conjugated to DUPA(small molecule, PSMA-

targeting-probe) radiolabeled-with 64Cu to allow PET imaging, as well as a BnR-agonist 

conjugated to a PSMA inhibitor, Glu-urea-Lys(Ahx)-HBED-CC, which allowed targeting to 

both BnR’s and PSMA which are frequently overexpressed by prostate cancers, 

demonstrates excellent imaging and targeting to prostate-cancer-xenografts in nude-

mice[73] and enhanced affinity for prostate-cancer-cells both in vitro and for xenografts in 

vivo. Another approach with prostate-cancer to increase the tumor-uptake of the BnR probe 

is to co-administer a neutral-endopeptidase inhibitor, because this is one of the main 

proteolytic enzymes for Bn-related-peptides[81]. This approach with both a radiolabeled-

BnR-antagonist/agonist[81], increased the uptake of the radiolabeled-ligand in prostate-

cancer-xenografts.

Heterodimeric-PET-probes combining the RGD-sequence which binds to α(v)β(3) 

integrins[16•,63,65,74,75,77,79] and BnR-agonists or BnR-antagonists coupled to various 

radioisotopes(64Cu,188Re,177Lu,111In,18F) demonstrate high uptake and the ability to image 

prostate-cancers-cells in xenografts in nude-mice. The dual nature of this probe provides 

synergistic-effects and allows it to image prostate-cancers with high BnR-expression and 

low α(v)β(3)-integrin-expression and those with the reverse distribution[63,65,74,75,77,79]. 

Coupling of 99mTc-labeled-BnR-agonists to HIV-Tat(49,50••,51–57)[126], a cell-

penetrating-peptide that reaches DNA[107], resulted in uptake/internalization to the nucleus 

in prostate-cancer-cells such that 59% of the tumor cell-bound ligand occurred in the 

nucleus. Prostate-cancers are among the most hypoxic of cancers[170] and this was explored 

to possibly effect retention of radiolabeled-Bn-analogues in prostate-cancer-

cells[170]. 111In-labeled-Bn-analogues were conjugated to nitroimidazoles, which function 

as hypoxic-selective drugs, and their uptake examined in prostate-cancer,PC-3. This 

combination resulted in a marked increase in retention of the Bn-heterodimer in hypoxic 

conditions[170] in vitro and clear delineation with increased retention in the prostate-cancer-

cells in mice with xenografts in vivo[170].
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There is considerable interest in the possible treatment of prostate-cancer with BnR-ligands 

conjugated with cytotoxic-radiolabeled-Bn-analogues(177Lu,90Y,213Bi), as has been 

demonstrated so effectively using 177Lu/90Y-labeled-somatostatin-labeled-analogues to treat 

patients with malignant, neuroendocrine tumors[16•,50••,160]. Various 177Lu/90Y/213 Bi-

coupled Bn-agonists/antagonists bind prostate-cells with high-affinity and can have 

cytotoxicity for prostate-cancer-cells in vitro/in vivo xenografts in nude-mice[77,157,160]. 

In one study the α–emitter,213Bi coupled to either of two different BnR-agonists, showed 

greater cytototoxicity to prostate-cancer-xenografts in mice that a β–emitting 177Lu-BnR-

agonist, with a good safety profile. The mTor inhibitor, rapamycin, sensitizes various tumor-

cells to the effects of radiotherapy and in a recent study[157] treatment with the combination 

of rapamycin and a 177Lu-tagged-BnR-antagonist, demonstrated greater survival in a mouse-

model of prostate-cancer than with the 177Lu-tagged-BnR-antagonist alone[157].

In other studies nonradioactive cytotoxic-agents coupled to various BnR-ligands 

demonstrate targeted-cytotoxocity for prostate-cancer-cells. Doxorubicin-loaded-liposomes 

coupled to Bn[100] demonstrated excellent cytotoxicity in vivo on prostate-cancer-cells, 

PC-3 xenografts in nude-mice. The Bn-coupled-liposomes-labeled-with doxorubicin showed 

greater cytotoxicity than the nonBn-coupled-doxorubicin-loaded-liposomes[100]. BnR-

agonists conjugated to nanoparticles containing docetaxol[104] demonstrate greater 

cytotoxicity for prostate-cancer-xenografts in mice than the nonBnR-targeted-nanoparticles 

or the docetaxol alone. BnR-overexpression on prostate-cancer-cells has been reported to 

allow targeted-delivery of antisense-constructs to prostate-cancer-cells which are 

endocytosed by a clathrin-, actin- and dynamin-dependent mechanism and partially localize 

to endomembrane-vesicles associated with Rab7/Rab9, and thus are trafficked to deep 

endomembrane compartments. Targeting GRPR on prostate-cancer-cells by the cytotoxic-

Bn-doxorubicin-construct, AN-215[30], inhibited growth of prostate-cancer-cell-lines in 

xenografts. Furthermore, AN-215-treatment of prostate-cancer-cells decreased the 

expression of EGF-receptor family members and the activation of EGFR/HER-2, which are 

associated with a poor prognosis[30].

There are a number of studies investigating the possibility of imaging prostate-cancer in 

humans with various BnR-probes[130,133,171–173, 174••,175–179] (Table 1). In early 

studies using 99mTc-labeled-BnR-agonists[133,178,179] involving 4–10 patients with 

proven/suspected prostate-cancer, specific-uptake by the probe was seen in 25% in one 

study[133] and in 100% of patients in the other two studies[178,179], for both the primary 

tumor and lymph node metastases(Table 1). A recent study[180] investigated the expression 

of various proteins used for imaging prostate-cancer or reported to be overexpressed and 

potentially useful for imaging (PSMA, EpCAM, VEGF and GRPR), in recurrent prostate-

cancer in patients after surgery or radiotherapy. This study[180] in 17 patients prostate-

cancer samples found in the tumor the PSMA; EpCAM; VEGF; GRPR positivity was; 100; 

82; 82;100% and in the surround nontumor, stromal tissue it was 0 ;0; 0; 100%. This led the 

authors to conclude that to evaluate recurrent prostate-cancer after therapy, GRPR should not 

be a target for bio-imaging and that,PSMA, EpCAM; VEGF should be considered[180]. 

Two more recent studies report results using 99mTc-BnR-agonists[175,176] to image 

prostrate-cancer lesions(Table 1). One study[176] using 99mTc-Demobesin4 examined the 

ability of to image disease in 8 patients with prostate-cancer(2-localized,6-met disease). In 
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the 6 patients[176] with advanced disease 3/6 were found to have bone-metastases,the pelvis 

was negative in all 6 and no primary lesions were seen, leading to the conclusion that the 

probe is safe, but hampered by low,metabolic stability in man(Table 1). In the second 

study[175],99mTc-HYNIC-ACA Bn(7–14), a radioligand showing excellent stability in vitro 

in human-serum, was used to image the tumor extent in 8 patients with prostate-

cancer(Table 1). In vivo the radioligand was rapidly degraded(only 20% left intact at 30 min) 

and did not image any of the tumors[175]. It was concluded[175] that there can exist a 

marked disparity between assessment of the stability of a possible BnR-imaging-probe for 

prostate-cancer, assessed by in vitro stability studies in serum and found in vivo in humans, 

and it was recommended either better predictive in vitro assays need to be developed or the 

potential BnR-imaging-probe be assessed in vivo first for stability.

There have been a number of recent studies[62,171–173,174••] examining the ability of 

various radiolabeled(18F,68Ga,64Cu)GRPR-antagonists to image tumor location and extent in 

patients with prostate-cancer(Table 1). In 4 of the studies a radiolabeled-statine13 Bn-

analogue was used[62,172,174••] and in one study a desMet14-ethylamide-analogue was 

used[173], which are from two of the most potent GRPR-antagonist classes(Table 1)[14,15]. 

In general the radiolabeled-antagonists demonstrate better pharmacokinetics than 

radioagonists, and showed enhanced stability in vivo. The 68labeled-Bn-desMet14ethylamide 

analogue showed good stability and ability to image prostrate-tumors in mice xenografts,and 

was given to 9 patients with advanced prostate-cancer. No adverse side effects were seen and 

the radiolabeled-antagonist showed pathological uptake in 5 of the 9 prostate-cancer 

patients(Table 1)[62]. In the 4 radiolabeled 13Statine-Bn-antagonist studies 10[172],7[173],

4,and 14[174••] patients with prostate-cancer were studied. Prostate-cancers were imaged in 

50%[172], 14%[173], 75%, and 88%[174••]. In the largest study of 14 patients[174••] 

imaged prior to prostatectomy or hormonal therapy for recurrence, in addition to having a 

sensitivity of 88%, the 68Ga-labeled-statine13-Bn analogue(BAY 86-7548) had a specificity 

of 81% and accuracy of 83%[174••] for the primary tumor and sensitivity of 70% for 

identifying metastatic lymph nodes(Table 1). It was concluded in this study[174] that using 

this Bn-antagonist-radiolabeled-probe with PET/CT-imaging is a promising molecular 

imaging technique for the detection of extra-prostatic-cancer.

8. Bn-peptides-BnR: Lung-cancer

Lung-cancer has played a very important role in the increasing appreciation of the important 

roles that Bn-related-peptides and BnR’s play in cancer growth, differentiation and now for 

possible treatment. This occurred because small-cell-lung-cancers(SCLC) have long been 

known to produce and secrete Bn-like-peptides[24•,25] and in 1985 it was the first human-

tumor in which an autocrine-growth effect was shown[33]. In addition to synthesizing Bn-

related-peptides, lung-cancers frequently possess BnR’s. In SCLC cancers in various 

studies, 52–100% possess GRPR, 55% NMBR, 25% BRS-3, whereas in nonsmall-cell-lung-

cancer(NSCLC) cells, 62–78% possess GRPR, 68% NMBR, 8 %BRS-3 and in bronchial-

carcinoids 0–100% possess GRPR, 4–88% NMBR, 35–88% BRS-3[1,23,181].

Activation of each of the three BnR-receptor subtypes on lung-cancer-cell-lines stimulates 

growth/proliferation[24•,25,29] and activation of BRS-3 stimulates increased adhesion of 
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tumor-cells. Recent studies demonstrate that transactivation of the EGF-receptor on lung-

cancer-cells is a key mechanism for the stimulation of lung-cancer cell-proliferation by 

activation of each of the three BnR-subtypes[2••,28•,29,31]. Activation of phospholipase-C; 

stimulation of matrix-metalloproteinases with release of EGF family members; activation of 

Akt/Src-kinases; and generation of reactive-oxygen-species are all important signaling 

cascades in mediating the EGFR-transactivation by activation of BnRs in lung-cancer-

cells[9,29]. Studies demonstrate that the combined use of an EGFR tyrosine-kinase-inhibitor 

such as gefitinib, with a BnR-antagonist(GRPR,NMBR-antagonist), causes a 

synergistic,inhibitory effect on growth[2••,28•,29,31].

Specific BnR-receptor-antagonists for each of the three classes of 

BnRs(GRPR,NMBR,BRS-3) inhibit the proliferation/growth of lung-cancer-cells and can 

inhibit growth of lung-cancer-xenografts in nude-mice[24•,25]. The growth-inhibitory effect 

of GRPR-antagonists in lung-cancer-cells is accompanied by reductions in levels of K-Ras, 

COX, pAKT and pERK1/2,and upregulation of p53.

GRPR-expression in non-cancerous bronchial-epithelium is associated with the presence of 

lung-cancer in patients who never smoked or were former smokers[181]. In lung-cancer 

patients strong expression of GRPR in the tumor is more frequent in patients with advanced 

disease, or advanced-stages(p<0.01)[181].

In contrast to breast-cancers and prostate-cancer, there are only a few studies using the 

overexpression of BnRs on lung-cancer-cells to either image/target these cells with 

cytotoxic-agents. In one study a 99mTc-labeled-GRPR-agonist[45] imaged lung-cancer-

xenografts in nude-mice(A549 cells). Good scintigraphic images with high tumor uptake to 

background ratios were obtained,leading to the proposal that this could be a useful imaging 

approach for detecting of non-small lung-cancer[45].). Heterodimeric-probes combining the 

RGD sequence which binds to α(v)β(3) integrins and a BnR-agonist coupled to 99mTc, 

demonstrated high uptake and the ability to image lung-cancer cell metastases in mice[182].

The overexpression of BnRs by lung-cancer can be used to target doxorubicin-loaded-lipid 

nanostructures(LN) conjugated to Bn-analogues[183]. In vitro cytotoxicity studies in NCI-

H460-NSLC cells demonstrated post Bn-loaded-doxorubicin-NL-particles showed high 

transfection rates, 3-fold enhanced cytotoxicity and in vivo in xenografts demonstrated 2–5 

fold greater cytotoxicity than controls[183].

There is only very limited data in human-lung-cancer patients on the ability of BnR-labeled-

probes to image lung-cancers. In two studies involving 3 lung-cancer patients[130,177] 

using 99mTc-labeled-BnR-agonists,uptake by the tumors was seen(Table 1).

Both monoclonal antibody to the biological terminus of Bn(2A11) as well as the GRPR 

antagonist, RC-3095, have been infused into patients with lung-cancer and various 

malignancies[48,49]. In 13 patients with lung-cancer[49] the Bn-monoclonal antibody was 

well-tolerated and resulted in complete-remission in one patient and stable disease in 4 

patients. The BnR-antagonist, RC-3095, was given to 25 patients with various 

malignancies[2 with SCLC], and also was well-tolerated, but no tumor responses were seen, 

however, the planned maximal doses could not be reached[48].
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The 27 amino-acid peptide, GRP, is derived from a148 amino-acid-precursor protein, 

preproGRP and increased levels of various precursor forms have been found in the plasma in 

patients with various tumors(prostate, neuroendocrine, medullary thyroid cancer, SCLC). In 

the case of patients with SCLC, numerous studies have reported that proGRP serum levels 

are frequently elevated[1,184–186]. In two studies[184,187] involving meta-analyses on 

5146/6758 patients, 71% and 72% of patients with SCLC had elevated serum-proGRP 

levels; the specificity was 86% and 92% for SCLC, whereas in one study[184], 92% with 

other diseases/malignances had low levels. In a number of studies serum-proGRP 

determinations had greater sensitivity and specificity in SCLC patients than other proposed 

tumor markers(NSE,CYFRA-21-1)[188]. Changes in serum-proGRP levels show a better 

correlation with changes in tumor size with treatment in patients with SCLC than changes in 

serum-NSE and have greater prognostic value than changes in NSE[188].

9. Bn-peptides-BnR: CNS/nervous-system tumors

BnRs(primarily-GRPR) are reported overexpressed by a number of CNS-tumors and some 

peripheral nervous-system tumors such as neuroblastomas[189]. Gliomas are a frequent 

primary tumor of the CNS(astrocytomas, epenydmomas, oligodendrogliomas) and 85–100% 

possess GRPR[189,190]. Neuroblastomas, occurring at sites of the sympathetic nervous-

system, are the most common solid tumor of infants/children, and GRP/GRPR are found in 

80% of neuroblastomas. Furthermore, bombesin-related-agonists stimulate[189,191,192] 

and BnR-antagonists/GRP-antibodies, inhibit[36,38,189,191,192], the growth/proliferation 

of gliomas/neuroblastomas. A number of these studies show GRP-related-peptides function 

as autocrine-growth-factors in these tumors.

Silencing of GRP in neuroblastomas using siGRP induces apoptosis and it acts 

synergistically with chemotherapeutic agents(ectoposide, vincristine). Furthermore, 

silencing of GRPR in neuroblastomas not only reduces tumor-size; it decreases cell-

proliferation; unregulates PTEN, an inhibitor of the PI3K/AKT-pathway; delays tumor-

growth and diminished liver metastases in vivo.

There have been a few studies examining the ability of GRPR-overexpression to image 

gliomas in human-patients(Table 1)[193,194••,195,196]. In one study[193] of 15-patients 

with recurrent gliomas, a 68Ga-labeled-BnR-agonist(interacting all three BnRs) was 

compared to 18FDG using dynamic PET-imaging. The 68 Ga-labeled-Bn-analogue identified 

gliomas in 70%, which was superior to FDG(40%), and when combined with the 18FDG-

PET discriminated low from high-grade gliomas(Table 1)[193]. In a second study[194••], 

imaging results with a 68Ga-labeled-Bn-agonist were performed in 4-normal volunteers for 

distribution and dosing parameters,as well as in 12-patients with gliomas. The 68Ga-Bn-

analogue[194••] was rapidly cleared, excreted primarily via the kidneys; and in the gliomas 

patients all lesions seen on MRI,were seen with 68Ga-Bn-analogue(Table 1). These 

results[194••] led the authors to conclude this methodology could be used to target gliomas 

in the future. In a third study[195] in seven patients with recurrent gliomas, imaged with 

a 68Ga-labeled-pan-BnR-agonist, the imaging data was compared to results of gene-array 

studies on the tumors for expression of BnRs(Table 1). There was a significant correlation of 

uptake data with GRPR-expression, but not with NMBR or BRS-3-expression[195]. The 
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authors proposed the quantitative analysis of this ligand’s uptake by gliomas can be used to 

predict the GRPR-expression levels[195]. In the fourth study the ability of 68Ga-labeled-Bn 

was compared to FDG-PET imaging in 9-glioma patients, to compare their abilities to 

distinguish between recurrence and malignant transformation(Table 1). In all 9-patients the 

combination of 68Ga-Bn-PET imaging and 18FDG-PET imaging was able to detect a 

malignant transformation from recurrence, which is a critical differentiation in these 

patient’s management.

10. Bn-peptides-BnR: Other tumors

A large number of other tumors also possess BnRs including: pancreatic-cancers/cell-

lines(10–75% GRPR), head/neck-squamous-cell-cancers(100% GRPR), renal-cancers(38% 

GRPR), colon-cancer(76–100% GRPR,63% NMBR), intestinal-carcinoids(75% GRPR,46% 

NBMBR), and bronchial-carcinoids(35% BRS-3)[23,197,198].

Detailed studies of the expression of GRPR in colon-cancer have provided some surprising 

results. Normal epithelial cells of the colon do not express GRP/GRPR, but colon-cancers 

highly express both[197]. The ectopic-expression of GRP/GRPR in colon-cancer is 

associated with improved survival, delayed recurrence, and fewer lymph node 

metastases[198]. Furthermore, the GRP/GRPR-expression is found primarily in well 

differentiated tumors, is associated with enhanced attachment to the extracellular matrix, 

increase colon-cancer cytolysis by activation of natural,killer lymphocytes and regulating 

heterochromatin-protein 1Hsβ, leading to the proposal that it is acting primarily as a 

morphogen, rather that a growth-factor in these tumors[27,198].

In head/neck-squamous-cell-cancers GRP/GRPR have an autocrine-growth effect, and 

activation of GRPR results in activation of cellular matrix-metalloproteinase with release of 

EGFR-proligands, activation of human-rhomboid family-1-gene RHBDF, transactivation of 

EGFR in an Src-dependent manner and activation of MAPK[28•,42,199]. The combination 

of a EGFR-tyrosine, kinase inhibitor(erlotinib) and a GRPR-antagonist(PD2) results in a 

synergistic,antitumor effect[42], leading the authors to suggest that GRPR targeting could 

enhance the antitumor effects of EGFR-inhibition in patients with head/neck squamous-cell-

cancer[42].

Recently, use of GRPR-agonists or BnR-antagonists(primarily-GRPR-antagonists) to inhibit 

the growth of a number of these tumors are reported[1, 2••,5,200] including colon-cancer 

either alone or with a cytotoxic-agent[37•,200]; pancreatic-cancer when used in combination 

with gemcitibane[40]; and hepatocellular-carcinoma cells.

Only a few studies have investigated the possibility of using the overexpression of BnR’s on 

these tumors for imaging/targeted-delivery of cytotoxic-agents. A 99MTc-labeled-BnR-pan-

agonist imaged pancreatic-cancer-cells in xenografts with a 4-fold higher uptake in the 

tumor-cells than normal cells[201]; a 68Ga-labeled-BnR-agonist showed enhanced uptake 

into the pancreatic-cancer cell-lines-AR42J compared to a 68Ga-RGD-labeled-ligand for 

avβ3-integrin binding[202]; a 99mTc-labeled-Bn-agonist imaged colonic-cancer 

xenografts[203] and a study[103] in which the tumor uptake/cytotoxicity of a 188Re-labeled-
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liposomal-Bn-agonist with or without doxorubicin loading in pancreatic-cancer(AR42J 

cells) xenografts was compared. Treatment with the probe with the doxorubicin resulted in 

greater survival times and when compared with a probe without 188Re but with doxorubicin, 

provided evidence the co-delivery of the 188Re and doxorubicin had antitumor effect[103].

A Bn-analogue coupled to a derivative of doxorubicin(AN-215) has been used in number of 

in vitro and tumor xenografts studies of different cancers[renal[204], endometrial, 

pancreatic, ovarian] and reported to have enhanced cytotoxicity over non-Bn-conjugated -

doxorubicin.

Bn-radiolabeled-agonists were used in two human-studies of patients with colonic 

tumors(Table 1)[130,205]. In one study involving 13-patients(7-proven rectal cancer, 6-

suspected), using a 99mTc-labeled-Bn-agonist,16/17-colorectal-cancer locations were 

identified(sensitivity-94%)but it was also positive in two/6 nontumor-lesions(1-Crohns 

disease, 1-polyp with dysplasia) resulting in a specificity of 64%(Table 1). In another 

study[130] 99mTc-labeled-Bn-imaging was performed in 5-patients with colorectal-

cancer,and the radioisotope was rapidly taken up by the tumors(Table 1).

11. Conclusions

Bombesin-related-peptides are synthesized by many common tumors and overexpression of 

their receptors(especially-GRPR) is well documented in many tumors, including some of the 

most frequent causing death and needing new, novel, antitumor approaches(breast, prostate, 

lung, pancreas, CNS). While considerable progress has been made on the cellular signaling 

cascades involved in mediating the effects of activation of these receptors on growth/

proliferation/differentiation of various tumors, and it is well-established that in many tumors 

these peptides have an autocrine-growth effects, in other tumors(colon) this is less clear, and 

a role as a morphogen has been proposed. There still remains controversy in the exact role 

that overexpression of this family of receptors play in these tumor’s pathogenesis/

pathophysiology. Nevertheless, numerous preclinical studies show in animal models as well 

as in vitro studies, that inhibition of BnR’s in these tumors either alone or in combination 

with various cytotoxic-agents, can have marked antitumor effects. Furthermore, the 

overexpression of theses receptors in these tumors in many preclinical studies and more 

recently in human-studies(especially breast/prostate-cancer) (Table 1) show promising 

results for imaging these tumor as well as a promising approach for tumoricidal therapy 

using targeted-delivery of cytotoxic-compounds via the BnR. The coupling of this targeted 

approach with nanoparticles-loaded with cytotoxic-agents recently, appears particularly of 

interest as a novel, therapeutic approach for these malignancies.

12. Expert Opinion

Despite many management/therapeutic advances a number of common tumors such as 

cancer of the breast, prostate, lung, and CNS, are still a frequent cause of death and new 

treatment approaches are needed. New approaches for both their early detection, assessment 

of disease-extent initially, detection of early-recurrences and new approaches for the 

treatment of advanced-disease, would all be important advances. There is increased 
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recognition that many of these tumor not only synthesize and release neuropeptides that 

function as growth-factor/differentiating factors in these tumors, often in an autocrine-

fashion, because the tumors also very frequently overexpress the receptors for these same 

neuropeptides.

This is particularly true, as reviewed in this article, for the Bn-family of peptides [gastrin-

releasing-peptide(GRP), neuromedin-B(NMB)] and for their receptors(GRPR,NMBR). The 

orphan receptor BRS-3, for which the ligand is unknown, is also included in this family of 

receptors[5]. Studies reviewed in this article demonstrate that manipulation or targeted use 

of this family of receptors has the potential to provide new, novel approaches that could be 

used in each of the phases of management outlined above. Manipulation of the growth/

differentiating effects of activation of these receptors in various tumors by various BnR-

ligands (particularly BnR-antagonists, siRNA, antibodies,etc.) either alone or coupled with 

other cytotoxic-agents, in preclinical studies has marked antitumor effects. Furthermore, as 

reviewed in this article, it is increasingly appreciated that the frequent overexpression of the 

BnR-family of receptors has the potential to allow sensitive imaging of these tumors 

allowing early detection, detection of recurrence, better assessment of tumor-extent initially, 

as well as when coupled to cytotoxic-agents(radioisotopes, chemotherapeutic agents, other 

cytotoxic-agents) to be used for targeted-therapy. One of the principal limitations of many 

forms of effective cytotoxic-agents in in vitro studies in vivo, is the problem of how to 

selectively delivery these agents to enhance their cytotoxicity as well as to reduce their side-

effects, and it is increasing recognized the overexpression of the BnR-family of receptors 

could be used to address this problem.

Supporting the viability of this approach are recent results using radiolabeled-somatostatin-

analogues to both image neuroendocrine-tumors as well as for targeted-delivery of 

cytotoxic-agents to these tumors using peptide-receptor radiotherapy(PRRT)[50,206]. 

Numerous recent studies demonstrated that coupling various radioisotopes such as 68Ga to 

somatostatin-analogues, which have high-affinity for somatostatin-receptors(sst1-5), which 

are almost invariably overexpressed by well-differentiated, neuroendocrine-tumors, with in 

vivo detection using positron-emission tomography(PET-scanning), is a highly sensitive 

method to detect these tumors[50,206]. In fact, recent studies demonstrate it not only has 

high specificity, but is more sensitive than any other imaging modality both for detection of 

the primary tumor, the extent of metastases and for early tumor-recurrences in patients with 

neuroendocrine-tumors[50,206]. When these somatostatin-analogues are coupled to 

cytotoxic-radioisotopes such as 177Lu or 90Yttrium, numerous studies demonstrated they 

allow targeted-delivery of the cytotoxic-probes to the malignant, neuroendocrine-tumor 

resulting in tumor cytotoxicity effecting its growth with acceptable safety[50,206]. The 

efficacy of this approach was recently further supported by preliminary results of a double-

blind, prospective study comparing treatment with 177Lu-somatostatin-analogues to 

unlabeled-somatostatin-analogues in patients with advance small intestinal,neuroendocrine-

tumors(NETTER-1)[51].

As reviewed in this study and in other recent papers[2,12,16,32], the potential therapeutic 

value of using the overexpressed BnR’s to delivery cytototoxic-agents to the tumor is not 

limited to radioisotopes and can include coupling to a diverse range of cytotoxic-
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agents(chemotherapeutic agents, cytotoxic-toxins such as marine-toxins or diphtheria-toxin, 

mitochondria-disruptive-peptides, agents that activate the immune system against the tumor, 

to photosensitizing-agents, to siRNA), and especially when coupled using nanoparticle-

technology, can allow enhanced delivery of a broad spectrum of potential therapeutic agents.

Because of the widespread occurrence of BnR overexpression in a number of common 

neoplastic tumors, this family of recptors, particularly the GRPR, is being increasingly used 

to explore innovative approaches to image these tumors, as well asto target them with 

cytotoxic agenty using the overexpression of the BnRs and specific BnR ligands to 

accomplish this. With the promising results with a number of these aproaches reviewed in 

this paper, it is likely a similar approaches will be used with other G-protein coupled 

receptors overexpressed in other tumors.
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Highlights

1. Bombesin (Bn)-related peptides are frequently ectopically synthesized 

and secreted by numerous common tumors.

2. The Bn family of receptors [BnRs],(NMBR [BB1],GRPR 

[BB2],BRS-3 [BB3]) is one of the receptor classes most frequently 

ectopically expressed or over-expressed by many common neoplasms 

(breast, prostate, CNS tumors, lung, pancreas, colon).

3. The presence of both ectopically expressed receptors and synthesis of 

Bn-ligands results in autocrine-growth/proliferative/differentiating 

effects on many of these tumors whose disruption can lead to 

therapeutic effects.

4. Numerous recent studies in vitro, preclinical studies using tumor 

xenografts and increasingly in human-disease, report the use of various 

approaches to use the overexpression of BnR’s to image the primary 

tumor, tumor-extent and recurrences and show promise. These are 

reviewed in depth for the common tumors listed above overexpressing 

BnRs.

5. Similarly the overexpression of BnRs in these tumors, particularly 

breast and prostate, are being used to target novel cytotoxic-agents to 

the tumors and show promise. Progress in this area is also reviewed and 

summarized.
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