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Abstract

Enteropathogenic Escherichia coli (EPEC) are diarrhoeagenic E. coli, and are a significant cause 

of gastrointestinal illness among young children in developing countries. Typical EPEC are 

identified by the presence of the bundle-forming pilus encoded by a virulence plasmid, which has 

been linked to an increased severity of illness, while atypical EPEC lack this feature. Comparative 

genomics of 70 total EPEC from lethal (LI), non-lethal symptomatic (NSI) or asymptomatic (AI) 

cases of diarrhoeal illness in children enrolled in the Global Enteric Multicenter Study was used to 

investigate the genomic differences in EPEC isolates obtained from individuals with various 

clinical outcomes. A comparison of the genomes of isolates from different clinical outcomes 

identified genes that were significantly more prevalent in EPEC isolates of symptomatic and lethal 

outcomes than in EPEC isolates of asymptomatic outcomes. These EPEC isolates exhibited 

previously unappreciated phylogenomic diversity and combinations of virulence factors. These 

comparative results highlight the diversity of the pathogen, as well as the complexity of the EPEC 

virulence factor repertoire.

Enteropathogenic E. coli (EPEC) are a cause of moderate to severe diarrhoea in young 

children, primarily in developing countries1. The Global Enteric Multicenter Study (GEMS), 

an epidemiological study of children with moderate to severe diarrhoea and children with no 

diarrhoea, has demonstrated that EPEC is a leading cause of lethality associated with 

diarrhoea among children that are less than 12 months of age2,3. By definition, EPEC 

contain the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type 

III secretion system (T3SS) involved in the pathogenesis of these organisms4–7. The LEE 

region is a defining feature of the attaching and effacing E. coli (AEEC), which includes 

EPEC and the Shiga toxin-producing enterohaemorrhagic E. coli (EHEC), which are 

associated with severe food-related illness worldwide8–11. EPEC are further categorized by 

the presence or lack of the plasmid-encoded bundle-forming pilus genes (BFP)8,12, which 

are commonly found on the EPEC adherence factor (EAF) plasmid and confer localized 

adherence (LA) to the surface of intestinal epithelial cells13–16. The BFP operon is 

frequently identified in EPEC associated with diarrhoeal illness, and these isolates are 

termed typical EPEC (tEPEC)8,17. E. coli that possess the LEE region, but do not contain the 

BFP or Shiga toxin genes (LEE+/stx−/bfp−), are commonly termed atypical EPEC 

(aEPEC)17. Previous studies investigating the genetic diversity of aEPEC have demonstrated 

that LEE+/stx−/bfp− isolates are a diverse group that can include among them isolates that 

are more related to other E. coli pathovars and commensal isolates18,19. The aEPEC can also 

include EHEC and EPEC that have lost the Shiga-toxin genes and BFP genes during passage 

through a host or the environment or after culture in the laboratory18,19.

Investigation of the genetic and virulence factor diversity of tEPEC has focused mainly on 

isolates within two lineages, EPEC1 and EPEC220, as defined by multi-locus sequence 

typing (MLST)20. MLST and phylogenetic analysis have also described additional tEPEC 

lineages, EPEC3 and EPEC420, as well as EPEC5 and EPEC6, which comprise aEPEC 

isolates19, suggesting that there is probably greater genetic diversity among EPEC isolates 
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than originally anticipated. Until the recent comparative genomic analysis of a collection of 

diverse AEEC isolates18, which included additional EPEC1, EPEC2 and the first EPEC4 

genomes described, the genome sequences available for EPEC isolates were limited to 

E2348/69, B171, E22 (a rabbit EPEC isolate) and E110019 (an aEPEC isolate)21,22. Even 

with recent sequencing, the majority of the EPEC genomes sequenced are historical isolates 

from developed countries, and little is known regarding the genomic diversity of recent 

EPEC isolates from developing countries, where EPEC has been identified in the recent 

landmark GEMS analysis as an important pathogen of children, with tEPEC associated with 

the greatest amount of mortality2.

In the present study we sequenced the genomes and performed comparative genomic 

analysis of 70 EPEC isolates from children less than 5 years of age enrolled in GEMS2. 

Phylogenomic analysis of these 70 EPEC isolates highlighted the considerable evolutionary 

diversity and variability of EPEC virulence mechanisms in more recent EPEC isolates from 

developing countries. By comparing the genomes of 24 EPEC from lethal cases (LI), 23 

EPEC from non-lethal symptomatic cases (NSI) and 23 EPEC from asymptomatic cases 

(AI), we identified the genes that are more frequently associated with EPEC from different 

clinical outcomes. Genomic studies such as this provide valuable insight into the diversity 

and virulence mechanisms of an E. coli pathogen that is associated with increased risk of 

death among infants in developing countries3. The findings of this study can be used to 

generate improved methods for molecular diagnostics of EPEC that will provide information 

regarding the evolutionary history of an isolate as previously described18. The genes that 

were identified as more frequently associated with lethal or symptomatic EPEC isolate 

genomes may be further characterized to obtain a deeper understanding of the EPEC 

pathogenesis and provide additional targets for vaccine and therapeutic development.

Results

Phylogenomic analysis of GEMS site EPEC isolates associated with different clinical 
outcomes

To investigate the genomic diversity and virulence mechanisms of EPEC isolated from 

individuals with differing clinical severity we sequenced the genomes of 70 EPEC from 

multiple geographic sites included in GEMS3. The 70 EPEC isolates were obtained from 

cases of diarrhoeal illness in children classified as LI or NSI, or as controls with 

asymptomatic (AI) outcomes. There were a total of 24 EPEC isolates from LI cases, 23 from 

NSI cases and 23 from AI cases. The 24 EPEC isolates from LI cases were all tEPEC, and 

20 of 23 (87%) of the EPEC from NSI cases and 17 of 23 (74%) of the EPEC from AI cases 

were tEPEC.

Phylogenomic analysis of the 70 EPEC isolate genomes, together with a collection of 

previously sequenced AEEC isolates and diverse E. coli and Shigella18, demonstrated that 

there is greater genomic diversity among recent EPEC isolates from Africa and Asia than in 

prototype E. coli isolates2,3,23 (Fig. 1). The 70 EPEC isolates were present in E. coli 
phylogroups A, E, B1 and B218,24, demonstrating considerable genomic diversity for E. coli 
belonging to a single pathovar (Fig. 1 and Tables 1 and 2). The majority of the isolates were 

in phylogroups B2 (55.7%, 39/70) and B1 (34.3%, 24/70), each of which included multiple 

Hazen et al. Page 3

Nat Microbiol. Author manuscript; available in PMC 2016 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E. coli isolates from various pathovars, as well as laboratory-adapted and commensal E. coli 
(Fig. 1 and Table 2). Overall, the phylogenomic lineages were not geographically confined, 

with the exception of the isolates belonging to EPEC lineages in phylogroup A (EPEC5, 

EPEC10), which were restricted to only two sites (The Gambia and Kenya) (Fig. 1 and Table 

2).

An MLST-based phylogeny was also constructed using anchor isolates of the previously 

described EPEC lineages, EPEC1–EPEC619,20. This allowed the identification of 

relationships among the 70 EPEC isolates sequenced in the current study to the previous 

MLST-defined EPEC lineages (Fig. 1 and Supplementary Fig. 1). Remarkably, only 16 

(22.9%) of the isolates sequenced were present in the two main previously identified MLST-

based lineages of EPEC, EPEC1 and EPEC2, with eight in each lineage (Fig. 1 and Tables 1 

and 2). An additional eight genomes (11.4%) were in the EPEC4 lineage (Fig. 1 and Tables 

1–2), which has previously been described by MLST and a single genome has been 

sequenced18,20. Another three genomes of isolates 103338, 401140 and 401210 grouped in 

the MLST-based phylogeny with an isolate previously designated as EPEC5 using MLST20 

(Supplementary Fig. 1). The remaining 43 genomes formed novel EPEC phylogenomic 

lineages. This finding indicates that there is considerable uncharacterized EPEC genomic 

diversity identified in this study (Fig. 1). To extend the established MLST-based 

nomenclature, we are designating four previously undescribed phylogenomic lineages, 

which each contain five or more genomes, EPEC7–10 (Fig. 1 and Supplementary Table 1). 

Eleven of these genomes were in the EPEC7 phylogenomic lineage and B1 phylogroup 

(Table 2). In phylogroup B2 there were ten genomes forming the EPEC8 phylogenomic 

lineage and six in the EPEC9 phylogenomic lineage (Fig. 1 and Table 2). The remaining two 

genomes belong to the EPEC10 lineage, which was designated when combined with three 

previously sequenced LEE+/stx−/bfp−isolates18 (Fig. 1 and Table 2). The four newly 

described EPEC lineages contain 41.4% (29/70) of the isolates, highlighting the undescribed 

diversity of global EPEC isolates.

In addition to these novel lineages, there were 14 genomes not assigned to phylogenomic 

lineages EPEC1–10, which thus represent unclassified EPEC isolates. These isolates were 

distributed throughout the E. coli phylogeny (Fig. 1 and Table 1). Of these 14 unclassi-fied 

EPEC isolates, only one was associated with an LI case, two with NSI cases and 11 with AI 

controls (Fig. 1 and Table 2), and six of these isolates were bfpA− (Fig. 1). Thus, the 

unclassified EPEC isolates comprised nearly half (11/23, 48%) of the AI isolates, whereas 

the LI and NSI isolates were primarily associated with phylogenomic lineages that contained 

one or more tEPEC. These distributions suggest there may be an optimal EPEC genomic 

content that is required for the greatest virulence.

Distribution of EPEC virulence-associated genes

The expanded genome phylogeny described here identified a previously unrecognized 

phylogenetic distribution of EPEC isolates; however, it was unclear whether these 

differences extended to the known EPEC virulence factors. In addition to the T3SS encoded 

by the LEE pathogenicity island5,25, present in all genomes sequenced in this study, there 

were additional virulence-associated secretion systems detected in the isolates sequenced in 
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this study (Supplementary Table 1). Among these regions was a type II secretion system 

(T2SS) and a type VI secretion system (T6SS), both of which exhibited phylogroup- and 

lineage-specific distributions (Supplementary Table 1). Investigation of the sequence 

diversity of previously characterized T3SS effectors demonstrated that the effectors 

exhibited greater similarity by phylogenomic lineage than by clinical outcome 

(Supplementary Fig. 2).

Phylogenetic analysis of the bfpA nucleotide sequences present in each of the 61 bfpA+ 

genomes sequenced in this study, with 11 reference bfpA alleles20,26 and 31 bfpA alleles 

from previously sequenced EPEC genomes18, demonstrated that the majority of the bfpA 
genes belonged to one of three main phylogenetic groups as defined by Blank and 

colleagues26 (Supplementary Fig. 3a). Each of the phylogenetic groups of bfpA contains 

isolates from diverse phylogenomic lineages and clinical outcomes (LI, NSI and AI). This is 

in contrast to the intimin gene, eae, from the LEE pathogenicity region, which exhibits 

greater phylogenomic lineage specificity (Supplementary Fig. 3b). This difference suggests 

that bfpA, and by extension the entire bfp operon and possibly the entire EAF plasmid, have 

been lost and acquired multiple times by E. coli isolates belonging to diverse EPEC 

phylogenomic lineages.

Interestingly, all of the LI isolates analysed in this study were found to be bfpA+ by PCR, as 

previously described18, with the exception of isolate 100414, which was bfpA− (Table 1 and 

Supplementary Table 1). However, on detailed examination of the genome sequence, EPEC 

isolate 100414 was determined to encode a bfpA orthologue with 72% nucleotide identity to 

bfpA of the E2348/69 EAF plasmid, pMAR222. The 100414 bfpA allele exhibited greater 

phylogenetic similarity to a bfpA-like sequence from the LEE-negative EAEC isolate 

101-121 (Supplementary Fig. 3a).

Identification of EPEC genes associated with different clinical outcomes

To identify whether there are genes that are more prevalent among the 70 EPEC from 

different clinical presentations, we used large-scale BLAST score ratio (LS-BSR) 

analysis27,28 to analyse the whole genome content. The LS-BSR analysis places predicted 

homologous genes from each genome into gene clusters that have ≥90% nucleotide 

identity29. For the 70 genomes analysed in this study, 12,964 gene clusters were identified 

and 1,080 gene clusters were present in all 70 genomes analysed (LS-BSR ≥ 0.9). These 

gene clusters represent the conserved EPEC core genome. This is a more conservative 

approach than was previously used to define the E. coli species core genome and so the 

absolute number of genes is smaller than the E. coli core genome defined previously21,30.

A comparison of gene cluster prevalence in LI genomes versus AI genomes demonstrated a 

significant correlation (P < 0.05) of 367 gene clusters (Table 3 and Supplementary Table 2). 

Among the gene clusters represented in a greater number of LI than AI genomes were genes 

of the EAF plasmid, flagellin, an allele of the T3SS effector NleG, as well as many 

hypothetical and phage-associated genes (Supplementary Table 2). There were 111 clusters 

that were significantly more prevalent in LI genomes or in NSI genomes (Table 3). Among 

the genes that were more prevalent among the LI genomes were many that encoded 

hypothetical proteins, putative transcriptional regulators, a putative T3SS effector EspJ and 

Hazen et al. Page 5

Nat Microbiol. Author manuscript; available in PMC 2016 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



putative phage-associated genes (Supplementary Table 2). Similarly, there were 118 gene 

clusters that were statistically more prevalent in NSI genomes versus AI genomes (Table 3).

Although we identified gene clusters with a significant correlation with one symptomatic 

group compared to another symptomatic group (Table 4 and Supplementary Table 3), there 

were no gene clusters that were detected in all of the LI genomes that were absent from all 

of the NSI and AI genomes. The absence of universal clinically associated genes may partly 

be a result of the vast genomic diversity of the isolates associated with each of the clinical 

outcomes (Fig. 1 and Supplementary Table 3). However, there were 428 gene clusters that 

were statistically (P < 0.05) more prevalent among the symptomatic (LI and NSI) compared 

to asymptomatic (AI) genomes, and 40 of these gene clusters had a P value of <0.005 (Table 

4 and Supplementary Table 4). These gene clusters that were more prevalent among 

symptomatic compared to asymptomatic group genomes included numerous hypothetical 

proteins and phage and plasmid-associated genes (Supplementary Table 4). When the 

distribution of these 428 gene clusters was compared by hierarchical cluster analysis, the 

EPEC isolates formed three main groups that included all of the genomes, except three 

isolates that were outliers (Fig. 2). Group I contained nine of the ten EPEC8 isolates and the 

only EPEC8 isolate that was not within group I was part of group III and associated with an 

asymptomatic outcome (Fig. 2). Thus, all of the EPEC isolates of group I were associated 

with symptomatic outcomes (five LI and four NSI). Meanwhile, group II contained 18 

isolates, all belonging to E. coli phylogroup B2. Seven of these isolates (39%) were 

associated with symptomatic outcomes, while the other 11 (61%) EPEC isolates were from 

asymptomatic outcomes (Fig. 2). The largest group was group III, which contained 40 

isolates, including 31 (78%) from symptomatic outcomes and nine (22%) from 

asymptomatic outcomes (Fig. 2). The EPEC isolate genomes of group III primarily belonged 

to phylogroups B1 and A, with the exception of four EPEC9 isolates and seven EPEC4 

isolates from phylogroup B2 (Fig. 2).

To investigate whether there were similar trends observed when comparing only the tEPEC 

isolates, we excluded the nine aEPEC isolates. Comparison of the tEPEC from the three 

different clinical outcomes (LI versus NSI, LI versus AI and NSI versus AI) identified fewer 

gene clusters that were significantly (P < 0.05) associated with one clinical outcome over 

another than were identified when comparing all 70 EPEC genomes (see Table 3 and 

Supplementary Table 3 for a clinical presentation and Table 4 and Supplementary Table 5 for 

symptomatic versus asymptomatic comparisons). These findings suggest there is an 

increased genomic diversity associated with the aEPEC isolates.

Hierarchical cluster analysis of the presence of the 258 gene clusters significantly associated 

with only tEPEC of symptomatic or asymptomatic outcomes separated the tEPEC isolates 

into two similarly sized groups (Supplementary Fig. 4). tEPEC group I contained 34 

isolates, including 20 (59%) from symptomatic (LI or NSI) outcomes and 14 (41%) from 

asymptomatic outcomes (Supplementary Fig. 4). Meanwhile, tEPEC group II contained 27 

genomes; 24 (89%) from symptomatic outcomes and only three (11%) from asymptomatic 

outcomes (Supplementary Fig. 4). Within each of these tEPEC groups the isolates were 

present in subgroups based on phylogenomic lineage. There were 20 gene clusters that were 

present in all of the genomes of tEPEC group I that were absent from all genomes of tEPEC 
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group II (Supplementary Fig. 4 and Supplementary Table 5) including gene products 

predicted to be involved in propanediol utilization (Supplementary Table 5), which has been 

implicated in Salmonella for its role during survival in the host31,32.

EPEC-specific genes associated with different clinical outcomes

To identify genes that were associated with EPEC isolates of different clinical outcomes, 

while taking into account the considerable underlying genomic diversity of these isolates, 

we performed LS-BSR analysis using a decreased clustering threshold of 80% nucleotide 

identity to combine potential alleles. Commensal genomes were included (E. coli HS 

(NC_009800.1), K-12 (NC_000913.3) and SE11 (NC_011415.1)) in the analysis as a metric 

for counter selection. This approach provided the opportunity to identify genetic features 

that were present only in the EPEC, regardless of phylogenomic lineage. For this analysis 

there were 12,196 total gene clusters. Of those, there were 6,474 gene clusters (53%) that 

were present in one or more of the EPEC genomes that were absent (LS-BSR < 0.8) from all 

of the commensal isolates. Using this EPEC-only data set and examining all 70 EPEC 

isolate genomes, the number of gene clusters that were significantly (P < 0.05) associated 

with one clinical outcome over another ranged from 39 to 198 (Table 3 and Supplementary 

Table 6). Similarly, when comparing only the 61 tEPEC genomes, the number of genes 

associated with genomes of one clinical outcome over another was lower, ranging from 7 to 

134 (Table 3 and Supplementary Table 7). Furthermore, the number of genes significantly 

associated with symptomatic (LI and NSI) compared to asymptomatic (AI), or lethal (LI) 

compared to non-lethal (NSI and AI) genomes was decreased (Table 4 and Supplementary 

Table 8). The number of gene clusters associated with symptomatic or asymptomatic 

genomes was 246 when comparing all 70 EPEC isolates (Table 4, Supplementary Table 8 

and Supplementary Fig. 5) and 141 when comparing only the 61 tEPEC isolates (Table 4, 

Supplementary Table 9 and Supplementary Fig. 6).

Many of the gene clusters that were associated with one clinical outcome were annotated as 

hypothetical proteins (Supplementary Table 4). To examine the potential function of the 

predicted peptides, the gene clusters were examined for protein domains identified in 

membrane-associated or secreted proteins, which would suggest they might be directly 

involved in surface expression or survival. Of the 39 to 246 gene clusters that were identified 

as significantly associated with one clinical outcome in the analysis of all 70 EPEC (Tables 

3 and 4), the number of gene clusters with protein domains of secreted or surface-associated 

proteins ranged from 11 to 50 (Supplementary Table 10). Similarly, of the 7 to 141 gene 

clusters significantly associated with one clinical outcome in the analysis of only the tEPEC 

genomes (Tables 3 and 4), the number of gene clusters containing membrane-associated or 

secreted protein domains was low, ranging from 2 to 31 (Supplementary Table 10). Among 

the gene clusters that were significantly more prevalent in symptomatic compared to 

asymptomatic genomes were hypothetical proteins, a putative yfdA, an acetyltransferase, a 

putative pyridoxamine 5-phosphate-dependent dehydrase, a glycosyl transferase family 

protein, and plasmid conjugal transfer-associated proteins (Supplementary Tables 8 and 9). 

These analyses provide targets for the functional characterization of these gene products in 

pathogenesis.
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Discussion

The whole-genome sequencing and phylogenomic analysis of 70 EPEC isolates from 

children enrolled in GEMS2,3 demonstrated that E. coli clinical isolates identified as EPEC 

based only on their virulence factor content exhibit considerable genomic diversity. 

Phylogenomic analysis demonstrated that 61% (43/70) of the EPEC isolates examined 

occupy previously undescribed phylogenomic lineages. This study may have identified 

newly circulating EPEC in the GEMS sites, but may also highlight the dynamic evolutionary 

processes that are at work in E. coli pathogens. Of note, a recent study on EPEC 

demonstrated a shift in the epidemiology from tEPEC to aEPEC isolates1, but this study 

focused on the tEPEC isolates associated with an adverse outcome. The current study is not 

meant to be a comprehensive genomic view of all the tEPEC collected with GEMS, but a 

focused attempt to identify genetic factors associated with the isolates from the most severe 

outcomes.

The EPEC genome comparisons demonstrated that the degree of genomic difference was 

greater when comparing the extremes of the clinical presentation, LI to AI genomes, than it 

was when comparing LI to NSI, or NSI to AI (Table 2). This emphasizes the finding from 

the phylogenomic analysis that isolates associated with a particular clinical outcome can 

occur in distantly related EPEC phylogenomic lineages (Fig. 1). Thus, the smaller number of 

genomic differences identified between the lethal and non-lethal EPEC isolates suggests the 

differences in the illness severity caused by these isolates may have less to do with the 

bacterium and more to do with host factors including, but not limited to, co-morbidities, the 

micro-biome, diet, breast-feeding and access to medical care, among other factors. Overall, 

these findings suggest that there is not a single gene or genomic region that is responsible for 

particular EPEC isolates causing more severe clinical outcomes, but it may instead require a 

collection of genomic regions acting in concert, as well as responding to host factors that 

will result in more severe infection by EPEC. The gene clusters that are more prevalent in 

the genomes of EPEC from different clinical outcomes provide a genomic view of what 

potentially makes certain EPEC isolates more virulent. Among these were many genes with 

unknown functions, including some that contain predicted protein domains of membrane-

associated or secreted proteins that can be investigated for their contribution to the virulence 

mechanism of EPEC and potentially other pathogenic E. coli. A recent study by Hazen et 
al.33 describes the comparative transcriptome analysis of four prototype EPEC isolates: 

E2348/69 (EPEC1), B171 (EPEC2), C581-05 (EPEC4) and E110019 (prototype aEPEC 

isolate)33. That study identified that there is also transcriptional variation among these 

prototype isolates33. Further investigation is required to examine the transcriptional variation 

among the new EPEC lineages described in the current study. The combination of genomics 

and transcriptomics will provide further insight into the conserved and expressed EPEC 

features involved in virulence

Large-scale comparative genomic studies that assess the diversity of disease-causing bacteria 

associated with multiple types of clinical outcome, such as this, provide a framework for 

understanding the processes that underlie the evolution of pathogenesis. This study describes 

a number of phylogroup- and lineage-specific differences in the virulence factor and genome 

content, which suggests that EPEC isolates have continued to acquire genetic changes since 
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their initial acquisition of some of the pathovar-defining features. These studies can also 

provide insight into the ongoing evolution of the virulence mechanisms of disease-causing 

bacteria. The emergence of diarrhoea-causing EPEC and the severity of illness attributed to 

these isolates depend on a suite of genes that includes both lineage-specific virulence factors 

and genes encoded by plasmid and phage. These regions will provide fertile ground for the 

examination of EPEC pathogenesis and the development of a possible vaccine against EPEC 

in the future.

Methods

Bacterial isolates

The bacterial isolates analysed in this study, and the details of each of the genomes 

sequenced, are listed in Table 1 and also described in a companion study34. The EPEC (LEE

+/bfpA+/stx−) isolates analysed in this study were obtained from GEMS as previously 

described2,23. A total of 24 tEPEC isolates from lethal cases (LI) were obtained, 

representing all tEPEC isolates associated with a lethal outcome in GEMS2,23. The isolates 

from lethal outcomes were from only five sites of the seven in GEMS (The Gambia, Mail, 

Mozambique, Kenya and Pakistan), so there is an over-representation of isolates from 

Africa. A matching scheme using geography and clinical parameters of the subject was used 

to select one EPEC isolate from a non-lethal symptomatic case (NSI) and one EPEC isolate 

from an asymptomatic case (AI) representing controls for each tEPEC from a lethal case as 

previously described34. One NSI case and one AI case served as controls for two different LI 

cases, resulting in 23 EPEC from NSI cases and 23 EPEC from AI cases. A tEPEC isolate 

(bfpA+) was obtained from 20 of the NSI cases and 17 of the AI cases, with the remaining 

EPEC cases containing an aEPEC (bfpA−). The recent publication by Donnenberg et al.34 

describes the case-control aspect of this study and the comparison of the isolates that were 

directly matched based on patient and clinical parameters. In the current study we delve into 

the phylogenomic content of the isolates, irrespective of matching criteria and only consider 

the genotypic presentation of EPEC and the outcome of the infection.

Genome sequencing and assembly

Genomic DNA was isolated from each strain by growing a single colony that was PCR-

positive for the LEE-encoded gene escV and/or the EAF plasmid gene bfpA, overnight, in 

Luria-Bertani (LB) medium at 37 °C with shaking. The genomic DNA was isolated from the 

overnight culture using the GenElute Genomic kit (Sigma-Aldrich), then sequenced and 

assembled as previously described18,34.

Phylogenomic analysis

The 70 EPEC genomes sequenced in this study were compared with 37 previously 

sequenced E. coli and Shigella genomes by whole-genome phylogenomic analysis as 

previously described18,35.

Gene alignments and phylogenetic analyses

The individual gene phylogenies of eae and bfpA were generated as described previously18. 

The nucleotide sequences were aligned in MEGA536 using the ClustalW algorithm37. A 
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maximum-likelihood phylogeny was then constructed using the Kimura two-parameter 

model of distance estimation38 with 1,000 bootstrap replications.

A phylogenetic analysis of seven conserved housekeeping genes that have been used for 

MLST was generated for the isolates characterized in this study compared to a collection of 

previously sequenced EPEC and other E. coli isolates as previously described18,20. The 

EPEC1-4 reference sequences types (STs) included in the phylogeny are those identified by 

Lacher et al.20 while the EPEC5 and EPEC6 reference sequences were described by Tennant 

and co-workers.19

BSR analysis

The presence or absence of known virulence-associated genes in the genome sequences 

generated in this study was determined using BLAST score ratio (BSR) analysis, as 

described previously18,27,28. The protein-encoding genes that were considered present with 

significant similarity had BSR values of ≥0.8, while those with BSR values <0.8 but ≥0.4 

were considered to be present but divergent.

The level of similarity of protein-encoding genes was compared across genomes in this 

study using a large-scale BLAST score ratio (LS-BSR) analysis as previously 

described18,28,29. The gene clusters were assigned using a stringent nucleotide identity 

threshold of ≥90% (Data Set S1), or using a more inclusive nucleotide identity threshold of 

≥80% (Data Set S2). The LS-BSR analysis performed using the more inclusive clustering 

threshold of ≥80% included the 70 genomes in this study and three commensal genomes: E. 
coli HS (NC_009800.1), K-12 (NC_000913.3) and SE11 (NC_011415.1). The predicted 

protein function of each gene cluster was determined using an ergatis-based39 in-house 

annotation pipeline40.

Hierarchical cluster analysis41 of the LS-BSR gene clusters associated with particular 

clinical outcomes was performed using Pearson correlation with average linkage using 

MeV42. The gene clusters compared were considered either present (blue) with an LS-BSR 

of ≥0.9 (with 90% clustering threshold) or ≥0.8 (with 80% clustering threshold) or absent 

(white) when <0.9 or <0.8.

Statistical analysis

Statistical significance of the prevalence of predicted gene clusters among genomes 

associated with different symptomatic groups was determined using the Pearson's chi-square 

test with Yates’ continuity correction when the number of genomes was five or more, or the 

Fisher's exact test when the number of genomes in one or both groups being compared was 

less than five, calculated using R v. 3.1.143. P values of <0.05 were considered statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phylogenomic analysis of the 70 EPEC isolates associated with clinical outcomes of 
differing severity compared with select previously sequenced AEEC genomes and a reference 
collection of 25 diverse E. coli and Shigella isolate genomes
The whole-genome assemblies were aligned using Mugsy44 as previously described18. The 

regions of sequence that aligned in all genomes were concatenated into a single 820,355-bp 

sequence for each genome, and the concatenated sequences were used to generate a 

maximum-likelihood phylogeny with 100 bootstrap replications, which was constructed 

using RAxML v.7.2.845, and visualized using FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/

software/figtree/). Bootstrap values of ≥80 are designated on the tree by a filled circle. 

Genomes examined in this study that were obtained from lethal cases (LI) are indicated in 

orange, those from non-lethal symptomatic (NSI) cases are indicated in green and isolates 

from asymptomatic (AI) cases in blue. The presence of bfpA is indicated by a star symbol. 

The four novel EPEC phylogenomic lineages identified in this study are indicated by an 

asterisk.
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Figure 2. Identification of genes associated with symptomatic and asymptomatic EPEC isolates
The plot is a hierarchical cluster analysis of the 428 LS-BSR gene clusters that were 

significantly (chi-square test or Fisher's exact test, P < 0.05) more prevalent in genomes of 

symptomatic (LI and NSI) compared to asymptomatic (AI) cases for all 70 EPEC genomes 

analysed. The LS-BSR gene clusters, generated using a clustering threshold of 90% 

nucleotide identity, that were significantly (chi-square test or Fisher's exact test P < 0.05) 

associated with genomes of symptomatic compared to asymptomatic cases, were compared 

by hierarchical clustering41. Hierarchical clustering with Pearson correlation and average 

linkage was performed using MeV42. Each column represents a genome, and each row is an 

LS-BSR gene cluster. The gene clusters that were present with an LS-BSR value of ≥0.9 are 

indicated in blue, and the gene clusters that were absent (LS-BSR value of <0.9) in white. 
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Red boxes indicate three groups of genomes, designated I, II and III, and red asterisks 

identify the nodes that separate the genomes into the three groups. The colour-coded 

rectangles at the top of the plot denote the phylogenomic lineage, and the colour-coded 

squares indicate the clinical outcome of each isolate. The colour coding of each symbol is 

given in the key at the top of the figure. A star symbol denotes the presence of bfpA in each 

genome.
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Table 3

Number of gene clusters identified using LS-BSR that are significantly correlated with one clinical outcome 

when compared to another clinical outcome.

Clinical outcomes
* No. of genomes No. of gene clusters

Lineage-specific
†
 LS-BSR ≥ 0.9 EPEC-specific

‡
 LS-BSR ≥ 0.8

<0.005 <0.05 <0.005 <0.05

All genomes

LI vs AI

    Total 47 20 367 12 198

    LI 24 19 227 11 134

    AI 23 1 140 1 64

LI vs NSI

    Total 47 1 111 0 39

    LI 24 0 31 0 14

    NSI 23 1 80 0 25

NSI vs AI

    Total 46 7 118 4 67

    NSI 23 5 63 1 27

    AI 23 2 55 3 40

Typical EPEC genomes only

LI vs AI

    Total 41 11 238 2 134

    LI 24 11 167 2 96

    AI 17 0 71 0 38

LI vs NSI

    Total 44 0 39 0 7

    LI 24 0 9 0 5

    NSI 20 0 30 0 2

NSI vs AI

    Total 37 7 176 0 87

    NSI 20 4 89 0 24

    AI 17 3 87 0 63

*
Clinical outcomes are classified as lethal (LI), non-lethal symptomatic (NSI) and asymptomatic (AI)

†
as part of a lineage-specific gene comparison, genes with ≥90% nucleotide identity were grouped together into gene clusters, and the gene clusters 

were identified as more prevalent in genomes of one clinical outcome over another by the percentage of genomes of each group that contained the 
gene cluster with significant similarity (LS-BSR ≥ 0.9)

‡
as part of an EPEC pathovar-specific comparison, genes with ≥80% nucleotide similarity were grouped together into gene clusters and the gene 

clusters were identified as more prevalent in genomes of one clinical outcome over another by the percentage of genomes of each group that 
contained the gene cluster with significant similarity (LS-BSR ≥ 0.8) that were not present in three previously characterized E. coli commensal 
genomes (K-12, SE11, HS).
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Table 4

Number of gene clusters identified using LS-BSR that are significantly correlated with genomes of a particular 

clinical outcome.

Clinical outcomes
* No. of genomes No. of gene clusters

Lineage-specific
†
 LS-BSR ≥ 0.9 EPEC-specific

‡
 LS-BSR ≥ 0.8

<0.005 <0.05 <0.005 <0.05

All genomes

Symptomatic vs asymptomatic

    Total 70 40 428 24 246

    LI+NSI 47 25 258 12 109

    AI 23 15 170 12 137

Lethal vs non-lethal

    Total 70 38 308 7 135

    LI 24 12 170 7 122

    NSI+AI 46 26 138 0 13

Typical EPEC genomes only

Symptomatic vs asymptomatic

    Total 61 31 258 15 141

    LI+NSI 44 8 151 3 58

    AI 17 23 107 12 83

Lethal vs non-lethal

    Total 61 11 202 2 86

    LI 24 5 103 2 71

    NSI+AI 37 6 99 0 15

*
The symptomatic clinical outcomes are classified as lethal (LI) and non-lethal symptomatic (NSI) and non-lethal are the NSI and asymptomatic 

(AI)

†
genes with ≥90% nucleotide identity were grouped together into gene clusters, and the gene clusters were identified as more prevalent in genomes 

of one clinical outcome over another by the percentage of genomes of each group that contained the gene cluster with significant similarity (LS-
BSR ≥ 0.9)

‡
genes with ≥80% nucleotide similarity were grouped together into gene clusters, and the gene clusters were identified as more prevalent in 

genomes of one clinical outcome over another by the percentage of genomes of each group that contained the gene cluster with significant 
similarity (LS-BSR ≥ 0.8) that were not present in three previously characterized E. coli commensal genomes (K-12, SE11, HS).
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