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Available data suggest that vitamin D plays a role in controlling inflammation in the lungs. However, to date vitamin D-induced
production of cathelicidin has not been shown to have an effect on the burden of either viruses or bacteria. Future work should
continue to determine the effects of vitamin D-regulated mechanisms in the lung and the possible role of cathelicidin against
different pulmonary pathogens in vivo.

In this issue of Infection and Immunity, Niederstrasser and col-
leagues report that there were no effects of vitamin D deficiency

on the susceptibility of mice to pulmonary infection with Strepto-
coccus pneumoniae or Pseudomonas aeruginosa (1). The authors
suggest that, because of differences in the responses of mice and
humans to vitamin D, mice might not be useful for studying the
role of vitamin D in human lung infection (1). This conclusion is
based on two assumptions: (i) regulation of cathelicidin is the
critical factor underlying possible anti-infective properties of vi-
tamin D, and (ii) vitamin D protects against a diverse array of
pulmonary infections in humans.

VITAMIN D AND CATHELICIDIN

The antibacterial peptide cathelicidin is induced by the active
form of vitamin D [1,25(OH)2D] in human but not mouse cells
(2). The murine equivalent of cathelicidin lacks a vitamin D re-
sponse element and therefore is refractory to addition of
1,25(OH)2D (2). In addition, human macrophage cells express the
gene for the 1-alpha hydroxylation that produces 1,25(OH)2D
from its vitamin D precursor [25(OH)D] (3). In vitro, human
macrophages can produce 1,25(OH)2D, which induces cathelici-
din that in turn inhibits growth of Mycobacterium tuberculosis (3).
Human macrophages have been shown to produce 1,25(OH)2D
in patients with sarcoidosis (4). However, extrarenal macrophage
production of 1,25(OH)2D can lead to hypercalcemia, which has
been observed in patients with mycobacterial diseases, including
those caused by M. tuberculosiss, Mycobacterium leprae, and My-
cobacterium avium (5). The hypercalcemia and presumed local
production of 1,25(OH)2D have been treated with glucocortico-
ids, which suppress macrophage activation (5). It may be that
macrophages normally produce local 1,25(OH)2D during an im-
mune response but that hypercalcemia occurs due to extrarenal
production of 1,25(OH)2D in the setting of excessive immune
activation and overexpression of the vitamin D 1-alpha hydroxy-
lating enzyme.

Cathelicidin has been shown to have direct antibacterial, anti-
fungal, antiviral, and immunoregulatory properties when added
to infected cells and cultures in vitro (6). It kills bacteria by dis-
rupting bacterial membranes and blocks viral entry by interacting
with viral proteins, suppressing viral entry and/or replication (6).
Cathelicidin can both inhibit the growth of and increase the viru-
lence of P. aeruginosa via mutation, resulting in chronic infection
(7). In addition, it modulates the host immune response by induc-
ing production of chemoattractants and cytokines (6). Cathelici-
din may also be associated with immune-mediated diseases like
rheumatoid arthritis and psoriasis (6). Although the contribution

of cathelicidin to the host response to different pathogens in vivo is
still not well understood, it could be beneficial for both microbial
clearance and immune regulation but detrimental if it induces
pathogen mutation or contributes to immune system-mediated
disease.

VITAMIN D AND THE IMMUNE SYSTEM

The effects of vitamin D and 1,25(OH)2D on immunity include
regulation of the innate and adaptive immune responses. In mac-
rophages, 1,25(OH)2D induces interleukin-10 (IL-10) produc-
tion and inhibits IL-12 production (8). Dendritic cells treated with
1,25(OH)2D become tolerogenic and induce fewer T cells to pro-
liferate both in vitro and in vivo (9, 10). 1,25(OH)2D inhibits
gamma interferon (IFN-�), tumor necrosis factor alpha (TNF-�),
IL-2, and IL-17 production and induces regulatory T (T reg) cells
that produce IL-10 (11, 12). Thus, the effects of vitamin D inhibit/
suppress type 1-mediated immunity (11, 12). Type 1 immunity
and IFN-�/IL-17 are important for host defense against M. tuber-
culosis and influenza virus (11, 12), and 1,25(OH)2D-induced
production of T reg cells and IL-10 production are associated with
poorer outcomes in human infection with M. tuberculosis (13).
Thus, the ability of vitamin D and 1,25(OH)2D to inhibit Th1/
Th17 responses and induce T reg cells might result in more severe
infection with M. tuberculosis.

Animal models of infection have generated mixed results on
the role of vitamin D in host defense. Because of the inhibitory
effects of 1,25(OH)2D on Th1/Th17 responses, it might be pre-
dicted that pathogens which require a Th1/Th17 response for re-
sistance would be more severe in 1,25(OH)2D-treated and less
severe in vitamin D-deficient or vitamin D receptor (VDR)-
knockout (KO) mice. This was not the case for either Candida
albicans or herpes simplex virus, each of which was unaffected by
1,25(OH)2D treatment (14). VDR-KO mice were slower to clear
Salmonella and Listeria monocytogenes than wild-type (WT) mice
(15, 16). Feeding mice a vitamin D-deficient diet was associated
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with increased barrier dysfunction, dysbiosis of the microbiota,
and more intestinal inflammation following Citrobacter roden-
tium infection (17), whereas administration of 1,25(OH)2D de-
creased the Th17 response and increased C. rodentium shedding
on day 10 postinfection (18). Dietary vitamin D treatment in mice
was beneficial for resolving inflammation but did not alter their
M. tuberculosis bacterial burdens (19). The experiments per-
formed by Niederstrasser et al. demonstrated that vitamin D de-
ficiency had no effect on acute infection and/or bacterial burdens
3 to 5 days postinfection (1). As such, the main effect of vitamin D
in mice seems to be as an immune system regulator that may or
may not affect the bacterial (viruses have not been well studied)
burden in vivo.

VITAMIN D AND HUMAN PULMONARY INFECTION

The bulk of the evidence that vitamin D status is linked to host
resistance to pulmonary infections in humans is associative and
comes from observational studies (reviewed in references 20 and
21). Given that it is difficult to design effective interventions to test
whether vitamin D supplementation would be beneficial in pro-
tecting humans from respiratory infections, it is not surprising
that studies so far have yielded mixed effects (21). A disparate
group of pathogens, including viruses and bacteria, have been
studied in clinical interventions that range from acute (influenza/
colds) to chronic (tuberculosis) infection (21). The mechanisms
that control a virus, such as influenza virus versus an intracellular
organism, like M. tuberculosis, or an extracellular organism, like P.
aeruginosa, are different. In fact, the immune response is not al-
ways protective and can be detrimental. For example, during the
2009 H1N1 influenza epidemic, young individuals who mounted
too strong an immune response were the sickest and the most
likely to be admitted to hospital critical care units (22). In one
human study, vitamin D supplementation inhibited IFN-� and
accelerated recovery in patients with M. tuberculosis by suppress-
ing immune responsiveness (23). These and other data support
the idea that the importance of vitamin D status in humans might
be a function of its ability to dampen inflammation stemming
from the host response and prevent inflammation-related injury.

Animal models have been incredibly useful for understanding
the effects of vitamin D on the communication between cells in
vivo. Mice have been good models to dissect the functioning of the
immune system, and this includes our understanding of the
mechanisms by which vitamin D regulates immunity. Compara-
tive analyses of the effects of 1,25(OH)2D on human and mouse
cells have been performed. The inhibitory effects of 1,25(OH)2D
on T cell production of IL-17, IFN-�, and IL-2 are identical in
human and mouse cells (11, 12, 24, 25). The induction of FoxP3�

T reg cells by 1,25(OH)2D has also been demonstrated to occur in
human and mouse T cells (11, 12, 24, 25). Some pathways are not
identical; for example, the 1,25(OH)2D-induced production of
cathelicidin occurs only in human but not mouse macrophages
(2). Conversely, there are limitations to studying purified human
cells in isolation and in vitro that do not apply to mouse cells.
Nonetheless, overall data from animal models largely confirm the
available data in humans that support a role for vitamin D and
1,25(OH)2D in resolving inflammation following infection. The
role of cathelicidin induction by vitamin D in bacterial/viral bur-
dens and/or immune function in vivo is as yet unclear.

CONCLUSIONS

The scientific community needs to use all of the available tools to
continue to determine the mechanisms by which vitamin D regu-
lates host immune responses to pathogens and to translate the
findings to improving outcomes in humans. Transgenic mice that
express the human cathelicidin gene and regulatory elements (vi-
tamin D response element) are being proposed as a way to utilize
mice to demonstrate the in vivo role of vitamin D-induced cathe-
licidin following infection. At present, there is strong evidence in
humans and animal models that suggests that improving vitamin
D status might be beneficial for improving outcomes of lung in-
fection with a variety of microbes. It may be that vitamin D will
have different effects depending on the nature of the host response
and the relevant pathogen. The study by Niederstrasser et al. dem-
onstrates that in mice neither the innate immune response nor
early clearance of either P. aeruginosa or S. pneumoniae is affected
by vitamin D status (1). Future work should continue to deter-
mine the mechanisms of vitamin D action in the lung and the
potential role that cathelicidin plays in vivo in controlling patho-
gen burden, host immune response, and regulation of inflamma-
tion.
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