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Vitamin D (VitD) has a role in the regulation of calcium and phosphate metabolism and in addition impacts the activity of the
immune system. VitD deficiency might be linked to increased susceptibility to respiratory tract infection. The aim of the present
study was to characterize the impact of VitD deficiency on the susceptibility to bacterial infection in murine models. C57BL/6N
mice were fed a diet with or without VitD for 10 weeks. The VitD-deficient or -sufficient mice were infected with Pseudomonas
aeruginosa or Streptococcus pneumoniae. The colonization and inflammatory response in the lung were analyzed at defined time
points. The serum 25-hydroxy-VitD concentration was significantly lower in mice on the VitD-deficient diet. In infection experi-
ments with Pseudomonas aeruginosa or Streptococcus pneumoniae, no differences could be observed in the numbers of viable
bacteria or in differential cell counts in the bronchoalveolar lavage fluids. Measurements of inflammatory cytokines (KC and
interleukin-1� [IL-1�]) did not show significant differences between the groups. In conclusion, VitD-deficient animals did not
show significantly increased susceptibility to infection or an altered course of infection. The immune systems of humans and
mice likely respond differently to VitD. Murine models are likely not appropriate for drawing conclusions on the role of VitD in
human pulmonary host defense.

The increased incidence of respiratory infections during winter-
time has been recognized for many decades (1). The underly-

ing mechanisms are largely speculative. It appears reasonable that
limited exposure to sunlight during this period of the year con-
tributes to the increased susceptibility to infection. It is possible
that vitamin D (VitD) could be involved in this phenomenon
because the metabolism of this bioactive molecule is highly depen-
dent on exposure of the skin to sunlight (2).

VitD is photosynthesized in the skin or is taken up from food
and has to undergo metabolic activation (3). 7-Dehydrocholes-
terol is the precursor of cholecalciferol, and its conversion into
cholecalciferol depends on UVB exposure in the skin. In the liver,
cholecalciferol is hydroxylated into calcifediol [25-hydroxyvita-
min D3; 25(OH)D3] by the 25-hydroxylase enzymes (gene names
CYP27A1 and/or CYP2R1). In the kidney, calcifediol is then
hydroxylated at position 1 by the mitochondrial cytochrome
P450 enzyme 25-hydroxyvitamin-D-1�-hydroxylase (gene
name CYP27B1) and becomes calcitriol [1,25-dihydroxyvita-
min D3; 1,25(OH)2D3].

Epidemiological and mechanistic studies show that the VitD
metabolism is relevant for the development of pulmonary disease
(3–5). This extends the earlier view that VitD is solely responsible
for the regulation of calcium and phosphate metabolism. VitD
deficiency is associated with respiratory tract infections such as
tuberculosis (6, 7), bronchiectasis (8), or pneumonia (9, 10). Also,
chronic obstructive pulmonary disease (COPD) and asthma are
associated with low serum concentrations of VitD (11–13).

Data from recent years showed that structural cells of the lung
and macrophages are able to metabolize VitD derivatives and that
VitD is involved in the regulation of pulmonary host defense and
inflammation. Macrophages express VitD-metabolizing enzymes
as well as the VitD receptor (VDR) and respond to VitD exposure
(14, 15). In airway epithelial cells, VitD induces the expression of
the antimicrobial peptide cathelicidin (16, 17). VitD deficiency in

mice causes alterations in the structure of the lung with decreased
functional capacity (18), and deletion of the VDR leads to prema-
ture emphysema (19). Surprisingly, a recent paper showed that
dietary VitD deficiency did not result in a frank change of the
pulmonary response to lipopolysaccharide (LPS) in a mouse
model (20).

The aim of the present study was to determine whether VitD
deficiency results in a breach of pulmonary host defense. To ad-
dress this question, we applied murine models of VitD deficiency
and pneumonia with Gram-positive Streptococcus pneumoniae
and Gram-negative Pseudomonas aeruginosa. Both pathogens are
commonly found in cystic fibrosis and COPD, where low VitD
serum concentrations correlate with disease severity (21–23).

MATERIALS AND METHODS
Bacterial species. Pseudomonas aeruginosa PAO1 was cultured on LB agar
plates (Roth, Karlsruhe, Germany) overnight and transferred to 35 ml LB
medium (Roth, Karlsruhe, Germany) for cultivation for 2 h at 37°C. The
bacteria were centrifuged at 1,885 � g for 10 min, and the pellet was
washed with phosphate-buffered saline (PBS). The suspension was ad-
justed to an optical density at 600 nm (OD600) of 1.00. For infection
experiments, the suspension was diluted 1:10 with PBS to reach a concen-
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tration of 1.3 � 106 to 4.95 � 106 CFU/animal. For heat inactivation (h.i.),
the undiluted solution was incubated for 5 min at 95°C and stored in
aliquots at �20°C (3.56 � 107 CFU/animal). Streptococcus pneumoniae
D39 was grown in THB medium (Roth, Karlsruhe, Germany) to an OD600

of 0.5. The bacteria were centrifuged at 1,885 � g for 10 min, and the pellet
was washed with 35 ml PBS. The pellet was dissolved in 4 ml PBS (3.2 �
105 to 2.94 � 106 CFU/animal). S. pneumoniae and P. aeruginosa are
common representatives of Gram-positive and -negative bacterial infec-
tions in humans, respectively.

To induce a persistent (chronic) infection, we used the alginate-over-
producing strain P. aeruginosa NH57388A (24). The bacteria were grown
in Trypticase soy agar II with 5% sheep blood (BD Bioscience, Heidelberg,
Germany) for 2 days. The suspension was diluted to an OD600 of 0.4, and
6 ml was centrifuged at 14,000 rpm at 4°C for 30 min. The supernatant was
incubated at 80°C for 30 min to inactivate bacteria. The cotton-like alg-
inate was separated and washed once with ice-cold ethanol and three
times with NaCl 0.9%. The alginate was dissolved in 1.5 ml of 0.9% NaCl
and stored at 4°C. The pellet of bacterial cells was then dissolved in 300 �l
alginate solution.

Animal experiments. C57BL/6N mice were purchased from Charles
River (Cologne, Germany). The animals were used at the age of 8 weeks
and were fed with a control (containing 500 IU VitD/kg of body weight) or
25(OH)D3-deficient diet (Altromin, Lage, Germany) for 10 weeks (ani-
mals termed here “VitD deficient” or “VitD depleted”). Animals were
housed at the animal facility of Saarland University. All animal experi-
ments were approved by the Landesamt für Soziales, Gesundheit und
Verbraucherschutz of the State of Saarland according to the national
guidelines for animal treatment. Mice were maintained under a pathogen-
free condition.

To determine the influence of VitD on the susceptibility to infection,
the mice were inoculated with h.i. or viable bacteria, and PBS was used as
a control. The mice were anesthetized with a mixture of ketamine (7
mg/kg of body weight; Bayer, Leverkusen, Germany) and xylazine (105
mg/kg of body weight; Bayer) and infected intranasally with 40 �l of the
bacterial solution or PBS alone. The mice were euthanized at 6 h, 24 h, 3
days, or 5 days postinfection by an overdose of ketamine (35 mg/kg of
body weight) and xylazine (525 mg/kg of body weight). Blood was taken
directly from the heart, mixed with a drop of EDTA, and centrifuged for
10 min at 10,000 � g. The plasma was collected and stored at �80°C. The
trachea was cannulated, and the lungs were rinsed three times with 1 ml
PBS to obtain bronchoalveolar lavage fluid (BALF). To determine the
number of viable bacteria in the bronchoalveolar compartments, serial
dilutions of the BALF were plated on agar plates and incubated overnight.
The BALF was centrifuged for 10 min at 300 � g, and the supernatants
were stored at �80°C. The cell pellet was dissolved in an appropriate
volume of PBS, and a differential cell count was done on cytospins after
cell staining with Diff-Quick (Medion Diagnostic, Gräfelfing, Germany).
The lungs were removed, and one lung was directly frozen into liquid
nitrogen and stored at �80°C. The left lung was homogenized in 1 ml PBS.
Serial dilutions were plated on agar plates.

Determination of 25(OH)D3 concentration in mouse serum. The
levels of serum 25(OH)D3 were measured by the central laboratory of the
Saarland University Medical Center by chemiluminescence using the Li-
aison 25-OH vitamin D total assay (DiaSorin Inc., Stillwater, MN, USA).

Measurement of inflammatory mediators. The concentrations of the
inflammatory mediators KC (murine functional homologue to CXCL8/
interleukin-8 [IL-8]) and IL-1� were determined by enzyme-linked im-
munosorbent assay (ELISA) according to the manufacturer’s instructions
(R&D Systems, Minneapolis, MN, USA) using a Tecan Ultra 384 ELISA
reader and Magellan software (Tecan, Mainz, Germany).

Statistical analysis. Values are displayed as means � standard errors
of the means (SEM). The data were analyzed using GraphPad Prism 6
(GraphPad Software Inc., La Jolla, CA). Comparisons were analyzed by
the t test (two-sided) between two groups or by analysis of variance

(ANOVA) for more than two groups. Results were considered statistically
significant for P values less than 0.05.

RESULTS
Dietary 25(OH)D3 depletion leads to reduced serum VitD con-
centrations in a murine model. To investigate the influence of
VitD on the immune system, we generated a VitD-deficient
mouse model. Eight-week-old mice were fed with the control or
the VitD-deficient diet as described in Materials and Methods.
The average levels of 25(OH)D3 in serum were 30.8 (�2.1) ng/ml
in the control group and below the detectable minimum of 4
ng/ml in the VitD-deficient mice except for two measurements
(4.21 ng/ml and 15.7 ng/ml).

To investigate whether VitD depletion results in changes of the
gross phenotype, we determined the body weight, BALF differen-
tial counts, and BALF cytokine levels. The medians of body weight
did not differ significantly between the two groups (Fig. 1A). The
numbers of leukocytes in the BALF (Fig. 1B to D) and the levels of
KC and IL-1� were not altered in the VitD-depleted animals (Fig.
1E and F).

VitD deficiency has no impact on the course of acute infec-
tion with P. aeruginosa PAO1. Next, we aimed to determine if
VitD depletion leads to an altered disease course in the early stages
of acute infection. VitD-deficient and control mice were exposed
to h.i. or viable P. aeruginosa PAO1 and euthanized after 6 h or 24
h. The application of h.i. bacteria resulted in an increase of the
total BALF cell number (Fig. 2A), neutrophils (Fig. 2B), and mac-
rophages (Fig. 2C) after 6 h and 24 h (Fig. 2A to C). The levels of
KC and IL-1� in BALF and lungs were elevated 6 h after applica-
tion (Fig. 2D to F). No differences in these parameters could be
detected between the control and the VitD-deficient groups (Fig. 2).

To investigate whether the course of pneumonia is worse in
VitD-deficient animals, mice were infected with viable P. aerugi-
nosa PAO1. The numbers of BALF cells, the levels of inflammatory
mediators, and the numbers of viable bacteria were determined.
Infection with P. aeruginosa PAO1 resulted in increased numbers
of BALF total cells, neutrophils, and macrophages and increased
levels of KC and IL-1� (Fig. 3A to G) in both groups. Also, this
model did not uncover a significant difference between the VitD-
sufficient and -deficient groups (Fig. 3).

VitD deficiency has no impact on the course of subacute in-
fection with P. aeruginosa. To investigate if a chronic infection
with P. aeruginosa is able to uncover a breach in host defense in the
VitD-deficient mice, we applied two models of long-term infec-
tion. In the first model, we infected the control and the VitD-
depleted mice with viable P. aeruginosa PAO1 (8.4 � 106 CFU/
mouse) or PBS. After 3 days, most bacteria were cleared from the
lungs (Fig. 4A). The numbers of leukocytes and the levels of KC
and IL-1� were elevated after infection (Fig. 4B to G). In all data
sets, no significant differences between the VitD-depleted and the
control group were found (Fig. 4).

In a different pneumonia model, the mice were infected with P.
aeruginosa NH57388A, an alginate-overproducing strain associ-
ated with subacute pulmonary infections in murine models (24).
The mice were infected intranasally with 1.316 � 107 CFU/mouse
and analyzed after 5 days. The changes of body weight were not
different between the two groups (data not shown). After 5
days, a significant number of bacteria were found in the lung
homogenate (Fig. 5A) with no differences between the experi-
mental groups. In the BALF, no differences in the number of
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leukocytes and the levels of KC and IL-1� (lung homogenate)
could be found between the VitD-sufficient and -deficient
groups (Fig. 5B to F).

VitD depletion has no impact on the course of acute infection
with S. pneumoniae D39. VitD depletion had little effect on mod-
els of infection with Gram-negative bacteria. Next, we aimed to
investigate whether the response to Gram-positive bacteria de-

pends on VitD status. S. pneumoniae D39 was used in two different
doses to reflect different intensities of infection, and the outcomes
after 24 h were analyzed. No significant differences could be found
in the numbers of viable bacteria between the groups (Fig. 6A).
Also, the numbers of inflammatory cells and the levels of cytokines
KC and IL-1� were not different between the VitD-depleted and
control animals (Fig. 6B to G).
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DISCUSSION

The main finding of the current study was that VitD depletion
does not cause a significant breach of the host defense against
pulmonary bacterial infections in mice.

We applied a mouse model of VitD starvation induced by feed-
ing the animals with a low-VitD diet. To exclude any influence of
low VitD serum levels on lung structure (18), we started feeding
the low-VitD diet to animals older than 6 weeks, in which alveo-
larization was completely finished (25). Animals on this diet had
less than 80% of the serum VitD level of mice on the control diet
(31 ng/ml versus 4 ng/ml), which is in a range achieved by other
groups using a VitD-deficient diet (26, 27). VitD depletion did not
cause a gross phenotype, as shown by the absence of significant
alterations of the body weight or pulmonary inflammation, as
determined by measuring BALF cells and cytokine levels. We used
Gram-positive and -negative bacteria to account for any dose-
dependent effects and also applied acute and subacute models of
pneumonia.

We could not identify a significantly increased susceptibility of
the VitD-deficient animals to infection with Gram-positive and
-negative bacteria. The numbers of viable bacteria were similar
between the groups. We also applied h.i. bacteria to characterize
the inflammatory responses, which were also found to be similar
in VitD-deficient and -sufficient animals. This was surprising as
data from clinical investigation and preclinical models indicated
that VitD augments host defense through various mechanisms.
Observational clinical studies showed that VitD is involved in in-
flammatory and infectious lung disease (3–5). Low serum concen-
trations of VitD metabolites were identified in patients with tu-
berculosis (6, 7), bronchiectasis (8), or pneumonia (9, 10, 23).
Data from intervention trials with VitD as an investigational drug

provided mixed results, with several studies providing positive
outcomes in patients with pneumonia (28), sepsis (29), tubercu-
losis (30), or cystic fibrosis (31). These data underline that VitD
has a complex impact on pulmonary immunity in patients.

Preclinical studies also indicate that the role of VitD in lung
host defense is complex. VitD derivatives are able to decrease the
release of inflammatory cytokines from macrophages, neutro-
phils, and epithelial cells (32–36). In a hamster model, the appli-
cation of VitD leads to reduced neutrophil recruitment and
blunted inflammation (32, 37). VitD deficiency resulted in an
impairment of host defense and increased inflammation after
challenge with Aspergillus fumigatus compared to mice with el-
evated VitD levels (38). Also, recent studies in mice show that
VitD depletion leads to structural changes in the developing
lung (18), increased susceptibility to cigarette smoke-induced
emphysema (27), and decreased muscle function after cigarette
smoke exposure (26). In contrast, VitD deficiency in mice did
not cause frank modification of the inflammatory response af-
ter the application of LPS (20). In the present study, we were
also unable to detect a major impact of VitD deficiency on
susceptibility to bacterial infection. Several factors might cause
the lack of increased susceptibility to infection in this animal
model.

1. The infection models might not be appropriate, as we have
used human pathogens in a murine model.

2. VitD is not related to pulmonary host defense in general.
Based on the literature cited above, it is unlikely that VitD
has no modulatory role in host defense. The underlying
mechanisms are likely complex, as VitD regulates a multi-
tude of genes and epigenetic mechanisms important for
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host defense (39). VitD also acts together with several other
regulatory mediators or hormones, which also modulate
immunity (40).

3. The host defense and immune response of lung cells are

not regulated by VitD. Our models focused on the early
stage of an immune response, even when the subacute
models were applied. Preclinical models focusing on
adaptive immune mechanisms showed consistent effects
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of VitD on the development of asthma (41) or on the
activity of lymphocytes (42). Interestingly, also struc-
tural cells of the lung are known to respond to VitD (4,
17, 43).

4. The regulation of host defense by VitD is complex and
involves regulatory mechanisms, some of which might be
species specific. Murine cells likely respond differently to
VitD than do human cells. One reason might be the dif-
ferences in the binding site of the VDR in the promoter
region of immune genes (44, 45). In mice, VitD defi-
ciency results in increased production of parathyroid
hormone (PTH) or PTH-related peptide, which also in-
duces innate host defense reactions (40). These counter-
actions might mitigate the effect of VitD deficiency. Ad-
ditionally, the VitD metabolisms are likely different
between human and mouse.

In conclusion, VitD deficiency did not cause a breach of pul-

monary host defense in murine models of pneumonia. As dis-
cussed above, numerous reasons might account for this finding.
Based on the results from clinical and preclinical studies, a more
detailed knowledge of the complex action of VitD on the host
defense system is needed. There is a discrepancy between the
mouse models used in the present study and clinical findings.
Mouse models appear to be inappropriate to study the role of VitD
in host defense of the human lung.
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