
Extracellular Bacterial Proteases in Chronic Wounds:
A Potential Therapeutic Target?

Louise Suleman*

Department of Musculoskeletal Biology, Institute of Health and Life Science, University of Liverpool, Liverpool,

United Kingdom.

Significance: Bacterial biofilms are considered to be responsible for over 80%
of persistent infections, including chronic lung infections, osteomyelitis, peri-
odontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are
colonized with bacteria that reside within a biofilm. The exaggerated proteo-
lytic environment of chronic wounds, more specifically elevated matrix me-
talloproteinases, is thought to be one of the possible reasons as to why chronic
wounds fail to heal. However, the role of bacterial proteases within chronic
wounds is not fully understood.
Recent Advances: Recent research has shown that bacterial proteases can
enable colonization and facilitate bacterial immune evasion. The inhibition of
bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has
resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is
thought to be a key pathogen in chronic wound infection, and therefore, the
disruption of these biofilms, potentially through the targeting of P. aeruginosa
bacterial proteases, is an attractive therapeutic endeavor.
Critical Issues: Disrupting biofilm formation through the inhibition of bacterial
proteases may lead to the dissemination of bacteria from the biofilm, allowing
planktonic cells to colonize new sites within the wound.
Future Directions: Despite a plethora of evidence supporting the role of bac-
terial proteases as virulence factors in infection, there remains a distinct lack
of research into the effect of bacterial proteases in chronic wounds. To assess
the viability of targeting bacterial proteases, future research should aim to
understand the role of these proteases in a variety of chronic wound subtypes.
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SCOPE AND SIGNIFICANCE
This review highlights our

current understanding of bacterial
proteases as facilitators of bacterial
infection and immune evasion and as
potential players in chronic wound
pathogenesis. The therapeutic tar-
geting of bacterial proteases and
its viability as a potential treatment
option in the management of chronic
wounds shall be discussed.

TRANSLATIONAL RELEVANCE

Chronic wounds are characterized
by delayed wound closure, persistent
inflammation, and an amplified se-
cretion of matrix metalloproteinases
(MMPs). The colonization of micro-
organisms and the formation of a
biofilm within a wound are thought
to reduce wound closure and perpet-
uate inflammation. Bacterial pro-
teases have been shown to target
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components of host immunity, creating a more fa-
vorable environment for the bacteria to reside. The
inhibition of specific bacterial proteases may result
in the disruption of biofilms and the promotion of
wound closure.

CLINICAL RELEVANCE

Bacterial biofilms have been strongly associ-
ated with a number of infections, including chronic
lung infections, osteomyelitis, periodontitis, and
healthcare-associated infections. Biofilms are of
great clinical importance primarily due to their
strong association with increased resistance to an-
timicrobial therapies, and therefore, the effective
treatment of these infections poses a great chal-
lenge. The search for alternative bacterial targets
for therapeutic use is underway. The use of bacte-
rial proteases as a diagnostic marker or as a method
of biofilm disruption through their inhibition could
be a welcome aid in chronic wound management.

OVERVIEW

Chronic wounds, including diabetic foot ulcers,
pressure ulcers, and venous leg ulcers, pose a con-
siderable economic burden, costing the National
Health Service (NHS) an estimated £2.3–£3.1 billion
per year.1 These types of wounds are susceptible to
colonization by numerous bacterial species (see Fig.
1). Investigation into the microbial profile of such
wounds, as chronic venous leg ulcers, has revealed

the most commonly isolated bacterial species to in-
clude Staphylococcus aureus (93.5%), Enterococcus
faecalis (71.1%), Pseudomonas aeruginosa (52.2%),
coagulase-negative Staphylococci (45.7%), Proteus
species (43.1%), and anaerobic bacteria (39.1%).2 To
gain a more comprehensive understanding of the
bacterial species within chronic wounds, such mo-
lecular techniques as pyrosequencing, denaturing
gradient gel electrophoresis (DGGE), and full
ribosome shotgun sequencing have allowed the
identification of Staphylococcus, Pseudomonas,
Peptoniphilus, Enterobacter, Stenotrophomonas,
Finegoldia, and Serratia species in diabetic foot ul-
cers, venous leg ulcers, and pressure ulcers.3

There is ever-emerging evidence to suggest that
the bacterial species within a wound reside within a
biofilm. James and colleagues examined the pres-
ence of biofilms in both acute and chronic wounds,
using scanning electron microscopy. They discov-
ered a significant difference in the presence of bio-
films between chronic and acute wounds, with 60% of
chronic wounds containing a biofilm compared to just
6% in acute wounds ( p < 0.001). Peptide nucleic acid-
based fluorescence in situ hybridization has been
used to determine the structural organization of
bacteria within a chronic wound, ultimately showing
the aggregation of bacteria into microcolonies within
an alginate matrix, with very few planktonic
cells present.4 Biofilms are a major health concern,
primarily due an increased recalcitrance to antimi-
crobial therapies compared to bacteria within a

Figure 1. Schematic representation the development of a biofilm within a wound. (I) Bacteria, either present on the skin or contamination from an external
source, reversibly attach to areas of slough or necrotic tissue. (II) Bacteria on the surface of the wound proliferate and become irreversibly attached through
the use of bacterial appendages that anchor the bacteria to the tissue. (III) Colonization occurs when attached bacteria proliferate and produce extracellular
polymeric substances (EPS), which is thought to protect the bacteria from external disruption. (IV) The mature biofilm, surrounded in EPS, is resistant to the
use of antimicrobials. The release of virulence factors, including bacterial proteases, helps protect from a host immune response. Parts of the mature biofilm
can break away from the main biofilm, a process known as dispersal. Ultimately, the dispersal of bacteria from the biofilm can lead to dissemination, whereby
these bacteria attach and colonize new sites, perpetuating infection. To see this illustration in color, the reader is referred to the web version of this article at
www.liebertpub.com/wound
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planktonic state.5 According to the National In-
stitute of Health (United States), over 80% of per-
sistent microbial infections within the body involve
biofilms. Prevalent examples of biofilm-associated
infections include chronic lung infections, period-
ontitis, endocarditis and osteomyelitis.6–10 Bjarn-
sholt et al. hypothesized that the failure of a chronic
wound to heal is due to the presence of P. aeruginosa
biofilms.11 Indeed, both in vitro and in vivo studies
have demonstrated the deleterious effects of P. aer-
uginosa on wound closure.12–14 The secretion of
proteases from many species of bacteria is an essen-
tial process for bacterial growth and virulence.
Therefore it is important to consider the impact of
secreted bacterial proteases within biofilm-infected
chronic wounds and whether targeting these prote-
ases as a means of therapeutic intervention may be a
fruitful venture.

DISCUSSION
Bacterial proteases

A brief introduction. Bacterial proteases em-
body a large and diverse group of proteases that are
ubiquitously produced by all microorganisms, pos-
sessing a variety of physiological and biochemical
functions.15 The intracellular expression and
extracellular secretion of proteases in both Gram-
positive and Gram-negative bacteria are fun-
damental contributors to infection through the
turnover of unfolded proteins in the host environ-
ment and the proteolysis of regulatory proteins
upon environmental stimuli. Not dissimilar to
mammalian proteases, bacterial proteases can be
categorized into serine-, metallo-, cysteine-, and
aspartic proteases. The synthesis of bacterial pro-

teases begins within the cell and is an inactive pro-
enzyme form, which becomes activated following
extracellular autocatalytic cleavage.16 Secreted ex-
tracellular proteases from bacterial species can act
as toxins or virulence factors, and some simply play
a role in the degradation of proteins (see Table 1).

Skin colonization and infection. There is
emerging evidence to support the role of bacte-
rial proteases in the attachment and penetration
of skin. The Gram-positive anaerobe Finegoldia
magna, a commensal microorganism commonly
associated with skin microbiota, secretes two vir-
ulence factors that facilitate the attachment and
penetration of the epidermal and dermal layers of
the skin. In vitro studies have shown that the
F. magna adhesion protein, Finegoldia magna ad-
hesion factor binds with the keratinocyte marker
galectin-7, while the extracellular serine protease
SufA degrades collagen-IV, a major protein of the
basement membrane, and collagen-V.17 S. aureus
staphylokinase (Sak), has been associated with the
activation of plasminogen into plasmin, which in
turn degrades fibrin clots and components of the
extracellular matrix and activates latent MMPs.18

Later studies by Kwiecinski et al. demonstrated
the ability of transgenic S. aureus strains with high
Sak expression (LS-1spa-sak) and moderate Sak
expression (LS-1sak) to penetrate keratinocyte
monolayers, fibrin clots, and reconstituted basal
membranes in vitro.19 Furthermore, immunocom-
promised wild-type and human plasminogen
transgenic mice subcutaneously injected with
S. aureus LS-1spa-sak and LS-1EP (no Sak ex-
pression) showed comparable systemic infection,
demonstrating that the activation of plasminogen

Table 1. Major secreted extracellular bacterial proteases of Pseudomonas aeruginosa and Staphylococcus aureus,
their substrate specificities, and associated biological processes

Organism
Bacterial
Protease

MEROPS
Family Protease Class Substrate Associated Process References

P. aeruginosa Elastase A (LasA) M23 Metallo- Fibrinogen, elastin ECM destruction 16,52

Elastase B (Las B) M4 Metallo- Elastin, collagen III,
collagen IV, MMP-1/MMP-9
(proenzyme), elastase B

ECM destruction, MMP proteolysis,
autoproteolytic processing

16,53

Alkaline protease (AprA) M10 Metallo- Fibrinogen, gelatin, casein,
hemoglobin, cytokines

Complement inactivation,
host immune evasion

16,54,55

Protease IV S1 Serine- Plasminogen, fibrinogen,
complement protein C3

Complement inactivation 16,56

S. aureus Aureolysin M4 Metallo- Plasminogen, complement protein C3 Complement inactivation 16,23,57

Staphopain A (ScpA) C47 Cysteine- Elastin ECM destruction 16

Staphopain B (SspB) C47 Cysteine- Fibrinogen, fibronectin, elastin ECM destruction, complement
inactivation

16,57

Staphylococcal serine
protease (SspA)

S1 Serine- Actin, collagenase, IgG1
heavy chain, serum albumin,
vimentin, casein

Host immune evasion,
ECM degradation

16,57,58

ECM, extracellular matrix; MMP, matrix metalloproteinase.
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by Sak does not cause the spread of infection.
However, the bacterial-driven degradation of es-
sential components of the basement membrane
does not go unnoticed. The bacterial proteases P.
aeruginosa elastase B (Las B), P. aeruginosa al-
kaline protease (AprA), S. aureus aureolysin, and
S. aureus staphylococcal serine protease (SspA)
were shown to cleave the C-terminal laminin G-
domain-like modules of laminin a chains, a major
glycoprotein of the basement membrane. However
the cleavage of these laminin modules resulted in
biologically active peptide fragments, which were
shown to have antimicrobial properties and induce
wound closure through the increase in keratinocyte
migration and proliferation.20

Bacterial proteases and host immunity. In order
for a pathogen to successfully invade the host and
cause persistent infection, the pathogen must be
able to evade host immune responses. Extra-
cellular bacterial proteases have displayed the
ability to evade host immune responses and target
immune cell mediators. The first line of defense
against invading microorganisms involves the in-
filtration of neutrophils and monocytes, which are
able to effectively engulf pathogens. Despite this,
the S. aureus cysteine protease staphopain B
(SspB) is able to enhance its pathogenesis through
the cleavage of CD11b, an essential component in
phagocytosis, ultimately leading to phagocyte cell
death through necrosis and apoptosis.21 S. aureus
cysteine proteases have also been implicated in
the cleavage of a pulmonary surfactant protein A,
which has been linked to a reduction in innate
immune responses against lung infection such as
neutrophil-driven phagocytosis.22

Bacteria can also use secreted proteases to
degrade components of the complement system.
Laarman et al. showed that the S. aureus me-
talloprotease aureolysin could effectively prevent
complement-mediated phagocytosis through the
cleavage of the C3 protein complex, facilitating
immune evasion.23 Furthermore, P. aeruginosa
elastase can inactivate components of the comple-
ment system and complement-derived phagocytic
factors.24 P. aeruginosa is a prominent example of
a microorganism that can successfully evade host
immune responses. Early studies by Horvat and
Parmely demonstrated the inhibitory effect of
P. aeruginosa AprA on T-cell-derived interferon-c
(IFN- c), reducing the antiviral capacity and im-
munomodulatory activity of IFN- c.25 P. aeruginosa
LasB can effectively inactivate host antimicrobial
peptides (AMPs), more specifically AMP LL-37, an
important component of host innate immunity.26

Specific bacterial proteases can also interfere with the
host’s biological communication networks through
the cleavage or inactivation of host growth factors and
cytokines.27,28

Impact of bacterial proteases in wound healing.
Currently, there is no available research that in-
vestigates the impact of bacterial proteases on
wound closure. Kirker et al. tested the effects of the
conditioned medium of chronic wound-derived
S. aureus in planktonic and biofilm form, on the
in vitro wound closure of human epidermal kera-
tinocytes, which resulted in a significant reduction
in keratinocyte wound closure, decreased cell via-
bility, and increased apoptosis.13 Furthermore, la-
ter studies by the same research group showed that
the presence of methicillin-resistant S. aureus
(MRSA) planktonic-conditioned medium not only
caused a significant reduction in human dermal fi-
broblast wound closure in vitro but also induced the
release of a number of proinflammatory cytokines,
including interleukin-6 (IL-6) and IL-8, growth
factors, including vascular endothelial growth
factor and transforming growth factor- beta,
and the MMPs, MMP-1, and MMP-3.12 Impor-
tantly, the treatment of human dermal fibroblasts
with the MRSA biofilm-conditioned medium caused
similar effects in fibroblast wound closure, how-
ever, there was a more prominent release of tumor
necrosis factor-a. This simple, yet informative study
emphasizes the differential effects of the soluble
products of bacteria in planktonic and biofilm forms
on host responses.

Elevated protease levels within chronic wounds,
more specifically matrix metalloproteases (MMPs),
have been well-documented.29–31 The secretion of
bacterial proteases within a wound may contribute
to the exaggerated proteolytic environment of
chronic wounds through the activation of MMPs (see
Fig. 2). P. aeruginosa proteases have been shown to
cleave and activate host MMPs in a model of cor-
neal infection.32 In addition, a mouse model of
corneal infection immunized against P. aeruginosa
AprA resulted in the reduction of host proteases,
including MMP-2 and MMP-9.33 This study high-
lighted the importance of P. aeruginosa AprA in
the activation of host MMPs and the excessive
tissue destruction evident in corneal infections.

Bacterial proteases as diagnostic
markers in chronic wounds

Bacterial proteases are often secreted into the
surrounding environment and therefore present an
opportunity to utilize these proteases as diagnostic
markers. There is a small amount of evidence to
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suggest that chronic wound-derived P. aeruginosa
secrete bacterial proteases. One of the first research
articles to acknowledge protease-producing bacteria
isolated from chronic wounds was published in
2001, whereby P. aeruginosa from chronic leg ulcers
showed varying levels of P. aeruginosa elastase,
AprA, and an unidentified 100 kDa protease.34

Wysocki et al. then went on to identify 18 different
chronic wound-derived bacterial species (10 Gram-
positive and 8 Gram-negative) that displayed pro-
teolytic activity. The proteolytic activity of these
bacterial isolates was not found to be consistent in
any of these species after repeated isolation.35

However, it is important to note that in this study,
no quantitative data were presented to determine
the varying levels of protease production between
species. Another study by Wildeboer et al. sought to
determine a correlation between the protease ac-
tivity and bacterial load in chronic wounds using
fluorescent-labeled peptide substrates. Although
there was no correlation with most species identi-
fied in the wound and protease activity, the signal
detection of two substrates strongly correlated
with P. aeruginosa numbers.36 This study high-
lights a potential use of these substrates as the
basis for a diagnostic tool in the identification of P.
aeruginosa colonization in chronic wounds. Zdzalik
et al. aimed to identify a link between specific S.
aureus-derived extracellular proteases and various
types of infection through the investigation of
prevalent S. aureus extracellular protease genes
derived from cases of wound infection, pneumonia,
sepsis, cystic fibrosis, skin infection, and bone in-

fection to name a few.37 In this study, the authors
did not determine any correlation in gene expres-
sion patterns with specific types of infection, how-
ever, most of the S. aureus proteases investigated
were expressed and secreted during the course of
infection.

Detection of bacterial proteases. The proteo-
lytic activity of extracellular secreted proteases can
be detected by the use of substrates such as colla-
gen, gelatin, and casein, using a variety of tech-
niques. Probably, the most common and basic
method to assess the proteolytic activity in a labo-
ratory setting is the incorporation of these sub-
strates into microbiological agar, whereby the
presence of extracellular proteases results in a
zone of clearance in the agar. The use of substrates
conjugated to an azo dye such as azocasein or azo-
coll provide a more quantitative approach, in which
the presence of proteases within a sample will
cleave the substrate, releasing the conjugated dye.
This can then be detected by using a spectropho-
tometer. However, this methodology lacks speci-
ficity; therefore complex biological samples with
both host- and bacterial-derived proteases will
be detected. A more specific method of bacterial
protease detection is the use of fluorescent- or
colorimetric-labeled peptide probes as demon-
strated by Wildeboer et al. in the detection of
P. aeruginosa proteases.36 The use of specific pep-
tide substrates allows the measurement of both
qualitative and quantitative data. Despite the ex-
cellent specificity of commercially available peptide

Figure 2. Schematic representation of the potential contribution of bacterial proteases to the proteolytic environment of chronic wounds. The presence of
bacterial biofilms, particularly Pseudomonas aeruginosa, may contribute to the excessive production of proteases in chronic wound pathology, through the
release of extracellular bacterial proteases. Furthermore, the presence of a P. aeruginosa biofilm within the wound may induce the release of matrix
metalloproteinases (MMPs) from resident dermal fibroblasts. It is unknown whether fibroblast-derived MMPs effect the production of extracellular bacterial-
derived proteases (indicated by dashed grey arrow). To see this illustration in color, the reader is referred to the web version of this article at www
.liebertpub.com/wound
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substrates, complex clinical samples consisting of
numerous proteases from both host and microor-
ganisms can still result in nonspecific proteolytic
cleavage, creating concern for their potential use as
diagnostic tools.

Existing and potential treatment strategies
and their effectiveness against bacterial
proteases

Wound dressings. The discovery of elevated
levels of MMPs within chronic wounds sparked
the production of wound dressings comprising
superabsorptive polymers that act to effectively
regulate the overproduction of proteases residing
in wound exudate.38 Likewise, the incorpora-
tion of collagen-I substrates into wound dress-
ings has been shown to effectively sequester not
only the mammalian gelatinases MMP-2 and
MMP-9 but also Clostridium histolyticum bac-
terial collagenase.39

Photodynamic therapy. Photodynamic therapy
(PDT) is the application of a photoactive dye fol-
lowed by irradiation, which leads to cell death in
the presence of oxygen. The application of PDT
has been used in the treatment of cancerous
skin lesions and cancerous tumors of the head,
neck, lung, and esophagus.40 The concept of
PDT to treat nonhealing chronic wounds and
eradicate bacterial biofilms has gained much
attention.41 Interestingly, an in vitro study by
Kömerik et al. demonstrated the effectiveness of
PDT against P. aeruginosa proteases, whereby
there was a significant reduction in P. aerugi-
nosa proteases following exposure to red light in
the presence of toluidine blue.42 PDT may be a
viable option in the treatment of biofilm-infected
wounds through microbial cell death, reduction
in bacterial proteases, and the promotion of
wound closure.43,44

Bacterial proteases as therapeutic targets
The developing prevalence of antibiotic-resistant

microorganisms, particularly in the context of
healthcare-associated infections and their man-
agement, has propelled research into the discovery
of new, effective treatment strategies and novel
antimicrobials. The therapeutic targeting of pro-
teases by pharmacologically attractive compounds
has been successfully used in the treatment of
many diseases, including hypertension, human
immunodeficiency virus, and hepatitis C virus
(HCV). For instance, pharmacologically approved
serine protease inhibitor boceprevir (Victrelis;
Merck) reversibly binds to and inhibits the

HCV nonstructural 3 active site, preventing viral
replication and thus sustaining the virologic re-
sponse in patients with previously untreated,
chronic HCV infection.45,46 Despite this, the phar-
macological targeting of bacterial proteases in
the context of bacterial infection has not been fully
exploited.

Current research in biofilm-infected wounds.
Many of the secreted bacterial proteases are in-
volved in bacterial virulence or growth, and there-
fore, the inhibition of these proteases may disrupt
biofilm formation or increase biofilm susceptibility
to antimicrobials.47 Indeed, P. aeruginosa prote-
ases have been shown to regulate biofilm forma-
tion, and therefore, the inhibition of these
proteases in vitro has resulted in the disruption of
the biofilm. P. aeruginosa LasB has been investi-
gated as a target of protease inhibition. A novel
and potent inhibitor of LasB, N-mercaptoacetyl-
Phe-Tyr-amide, has been developed and shown to
reduce P. aeruginosa biofilm growth, and when
combined with additional antimicrobials, such as
ciprofloxacin and gentamicin, can fully eradicate
the biofilm in vitro.48 Similarly, the deletion of
LasB in P. aeruginosa PA01, referred to as a Lasb
deletion mutant strain, has been shown to exhibit
decreased bacterial attachment and microcolony
formation. However, microcolony formation in the
LasB deletion mutants was restored following
exogenous rhamnolipid supplementation, there-
fore it was hypothesized that LasB may promote
biofilm formation through rhamnolipid-mediated
regulation.49

The inhibition of other bacterial proteases,
however, may not necessarily result in the dis-
ruption of the biofilm. Research by Loughran et al.
identified that S. aureus aureolysin and, to a
lesser extent, the proteases staphopain A and SspB
actually promote the dispersal of S. aureus bio-
films.50

SUMMARY

While there is a clear role for bacterial pro-
teases in the mediation of infection, the investi-
gation of these proteases within chronic wounds
has been somewhat marginalized. Research into
the extracellular secreted proteases of P. aeru-
ginosa, more specifically LasB, has revealed a
regulatory role of this protease in biofilm devel-
opment and therefore making LasB an attractive
target not only for diagnostic purposes but also
as an antibacterial target. Like many of the an-
tibiofilm strategies that have been employed in
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medicine, the disruption of the bacterial
biofilm simply leads to its dispersal,
therefore allowing planktonic bacteria
to colonize other sites. Therefore, it is
important to consider the use of anti-
microbials in addition to biofilm dis-
ruption to discourage new colonization
sites.

While the specific targeting of bacterial
proteases associated with key pathogens
such as P. aeruginosa may help weaken
bacterial virulence, it is imperative that
more research into the detection of these
proteases in a variety of chronic wound
types is performed. Indeed, no two chronic
woundsare thesame,and, in thecontext of
microbial burden, the variability of micro-
bial profiles in varying wound types has
been demonstrated.3,51 Therefore, in addition to the
varying conditions of wounds, factors such as a nu-
trient availability and the interactions between
multiple species of microorganisms may alter spe-
cific protease production. Nevertheless, the use of
bacterial proteases to control infection processes will
provide interesting research in the field of microbi-
ology and chronic wounds.
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Abbreviations and Acronyms

AprA ¼ alkaline protease
AMP ¼ antimicrobial peptide

DGGE ¼ denaturing gradient gel
electrophoresis

ECM ¼ extracellular matrix
HCV ¼ hepatitis C virus

IFN-c ¼ interferon-gamma
IL-6 ¼ interleukin-6

LasA ¼ elastase A
LasB ¼ elastase B

MRSA ¼ methicillin-resistant
Staphylococcus aureus

MMPs ¼ matrix metalloproteinases
PDT ¼ photodynamic therapy

ScpA ¼ staphopain A
SspA ¼ staphylococcal serine

protease
SspB ¼ staphopain B

Sak ¼ staphylokinase
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