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Abstract
Objectives: Early-life intelligence has been shown to predict multiple causes of death in populations around the world. This 
finding suggests that intelligence might influence mortality through its effects on a general process of physiological deterio-
ration (i.e., individual variation in “biological age”). We examined whether intelligence could predict measures of aging at 
midlife before the onset of most age-related disease.
Methods: We tested whether intelligence assessed in early childhood, middle childhood, and midlife predicted midlife bio-
logical age in members of the Dunedin Study, a population-representative birth cohort.
Results: Lower intelligence predicted more advanced biological age at midlife as captured by perceived facial age, a 
10-biomarker algorithm based on data from the National Health and Nutrition Examination Survey (NHANES), and 
Framingham heart age (r = 0.1–0.2). Correlations between intelligence and telomere length were less consistent. The asso-
ciations between intelligence and biological age were not explained by differences in childhood health or parental socioeco-
nomic status, and intelligence remained a significant predictor of biological age even when intelligence was assessed before 
Study members began their formal schooling.
Discussion: These results suggest that accelerated aging may serve as one of the factors linking low early-life intelligence to 
increased rates of morbidity and mortality.
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Intelligence in early adulthood and middle age is an impor-
tant risk factor for early death, predicting risk of premature 
mortality better than many other commonly assessed risk 
factors, including blood pressure, dyslipidemia, and body 
mass index (Batty, Shipley, Gale, Mortensen, & Deary, 
2008). A  recent meta-analysis of 16 independent studies 
concluded that a 1 SD advantage in intelligence test scores 

assessed within the first two decades of life is associated 
with a 24% lower risk of death over a follow-up period 
of 17–69  years (Calvin et  al., 2011). This body of work 
forms the backbone of “cognitive epidemiology,” a new 
field which seeks to document and explain the ways in 
which intellectual differences influence health and longev-
ity (Deary, 2010). Among the key developments in this field 
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are findings that low intelligence is associated not just with 
premature death, but also with a range of health condi-
tions, beginning with obesity and the metabolic syndrome 
in the first half of the life course, followed by type 2 diabe-
tes and heart disease in later life, and dementia in old age 
(Arden, Gottfredson, & Miller, 2009; Batty et  al., 2008; 
Belsky et  al., 2013; Der, Batty, & Deary, 2009; Wrulich 
et al., 2013).

The challenge for cognitive epidemiology now is to iden-
tify why low childhood intelligence is associated with such a 
diverse array of negative health outcomes. One possibility is 
that associations between intelligence, disease, and mortality 
arise because less intelligent people actually “age” faster than 
their more intelligent peers. The concept of accelerated aging 
arises from observations that age-related chronic diseases are 
preceded by a gradual accumulation of damage to multiple 
organ systems that begins in the first half of the life course 
(Ben-Shlomo & Kuh, 2002). Consequently, if children with 
lower intelligence are aging faster, evidence of this accelera-
tion should be detectable even before the onset of chronic 
diseases that ultimately cause death.

One way to observe accelerated aging before the onset 
of disease is to examine measures of “biological age.” 
Measures of biological age capture the progressive dete-
rioration in physiological functioning that transforms the 
physical and cognitive fitness of healthy adulthood into 
frailty characterized by increasing vulnerability to injury, 
disease, and death (Butler et al., 2004). Examples of such 
measures include specific biomarkers such as leukocyte 
telomere length (LTL), as well as composite indices that 
synthesize information from multiple biomarkers, like the 
Framingham heart age. Importantly, these measures can be 
taken at any chronological age, and can therefore help to 
identify individuals who are aging more rapidly than their 
peers even at younger ages before pathology presents.

We tested the hypothesis that low intelligence predis-
poses to accelerated aging using four measures of biological 
age: perceived facial age, a 10-biomarker algorithm devel-
oped using data from the National Health and Nutritional 
Examination Survey (NHANES III; Levine, 2013), an esti-
mate of cardiovascular disease (CVD) risk translated into a 
measure of “vascular age” using data from the Framingham 
group (D’Agostino et  al., 2008), and LTL. We examined 
data from the Dunedin Study of a complete birth cohort. 
The Dunedin Study measured intelligence beginning in 
early childhood, when cohort members were 3 years old. 
Biological age was assessed at midlife, when cohort mem-
bers were aged 38  years—before the onset of most age-
related disease.

Whereas associations between certain components (e.g., 
lung function, C-reactive protein) of our two composite 
measures of biological age have been explored in relation 
to intelligence in previous studies (Batty, Deary, Schoon, & 
Gale, 2007; Calvin, Batty, Lowe, & Deary, 2011; Richards, 
Strachan, Hardy, Kuh, & Wadsworth, 2005), we chose to 

examine these markers as constituents of larger composites 
(where appropriate) because doing so allows for capture of 
the concurrent age-related decline of multiple biomarkers 
across a variety of bodily systems (the sign of advancing 
biological age) as well as more accurate prediction of mor-
tality (D’Agostino et al., 2008; Levine, 2013). In addition, 
our composite measures are less susceptible to “noise” gen-
erated by transient fluctuations in individual markers due 
to temporary illness or stochastic variation, and minimize 
the influence of non-error sources of variation seen in spe-
cific markers while aggregating the common variance cut-
ting across markers, further enhancing construct validity.

To strengthen the inference that low intelligence con-
tributes to accelerated aging, we also tested whether the 
association between intelligence and biological age could 
be accounted for by early-life exposures known to decrease 
intelligence as well as increase the risk of ill health and dis-
ease. For example, preterm birth and low birth weight are 
risk factors for low IQ (Newcombe, Milne, Caspi, Poulton, 
& Moffitt, 2007), age-related diseases (Barker, Osmond, 
Golding, Kuh, & Wadsworth, 1989), and early mortality 
(D’Onofrio et  al., 2013). Thus, infants who suffer more 
perinatal problems may later display both reduced intel-
ligence and accelerated aging, creating the false impres-
sion of a causal relationship. Similarly, childhood illness 
may interfere with a child’s performance on cognitive tests 
as well as influence later measures of aging. We therefore 
included statistical adjustments for perinatal complications 
and childhood ill health to address these possibilities.

Research designs aimed at untangling socioeconomic 
status (SES) and intelligence suggest that physical health 
appears to be more closely associated with intellectual 
ability than socioeconomic privilege, at least in adoles-
cence (Lubinski & Humphreys, 1992). However, previous 
research also suggests that children’s early SES influences 
their intelligence (Von Stumm & Plomin, 2015), and 
that socioeconomically advantaged children may ben-
efit from resources that promote healthy aging (Strand 
et al., 2010). To control for a possible confounding effect 
of some Study members’ early economic privilege, we 
thus included an additional statistical adjustment for 
childhood SES.

Finally, education is also likely to affect intelligence 
test scores (Brinch & Galloway, 2012). However, because 
the effects of intelligence and educational attainment are 
reciprocal over the life course, it is difficult to disentangle 
their effects in observational studies. Consequently, instead 
of using a statistical covariate to control for educational 
attainment, we exploited our prospective design to exam-
ine whether biological age could be predicted by intelli-
gence tested prior to the start of Study members’ formal 
schooling. This exceptionally early measure of intelligence 
provides us with a significant advantage over previous 
research, which has typically assessed intelligence in early 
adolescence or young adulthood (Calvin et al., 2011).
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Methods
Sample
Participants are members of the Dunedin Multidisciplinary 
Health and Development Study, a longitudinal investigation 
of health and behavior in a complete birth cohort. Study 
members (N = 1,037; 91% of eligible births; 52% male) 
were all individuals born between April 1972 and March 
1973 in Dunedin, New Zealand who were eligible for the 
longitudinal study based on residence in the province at age 
3, and who participated in the first follow-up assessment 
at age 3.  The cohort represents the full range of SES in 
the general population of New Zealand’s South Island and 
is primarily white. Assessments were carried out at birth 
and at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and, most 
recently, 38 years, when 95% of the 1,007 Study Members 
still alive took part. At each assessment wave, each Study 
member is brought to the Dunedin research unit for a full 
day of interviews and examinations. There were 30 deaths 
in the cohort between assessment waves at ages 3 and 38; 
however, in each case the cause of death was not due to 
age-related disease. By age 38, only 11 Study members had 
been diagnosed with an age-related condition such as type 
II diabetes, myocardial infarction, or stroke. The Otago 
Ethics Committee approved each phase of the Study and 
informed consent was obtained from all Study members.

Measures of Intelligence

Intellectual assessments were conducted in early childhood 
(ages 3 and 5), middle childhood (ages 7, 9, and 11), and 
again at midlife (age 38). Correlations among our 3 meas-
ures of intelligence ranged from 0.577 (early childhood and 
midlife) to 0.791 (middle childhood and midlife).

Early-childhood intelligence
At age 3, we measured intelligence using two measures of 
verbal comprehension: the Peabody Picture Vocabulary Test 
(PPVT; Dunn, 1965) and the Receptive Language Scale from 
the Reynell Developmental Language Scales (RDLS; Reynell, 
1969). On the PPVT, the child is asked to point to one of four 
pictures in response to a stimulus word; in this way, a meas-
ure of verbal comprehension is made. On the RDLS, verbal 
comprehension is assessed by presenting the child with toys 
and asking him or her to respond to questions. At age 5, we 
measured participants’ intelligence using the Stanford–Binet 
Intelligences Scales (Terman & Merrill, 1960), which involve 
a variety of tasks set out in age levels from age two to supe-
rior adult level centering largely on language comprehension 
and expression. We then averaged standardized versions of 
Study members’ ages 3 and 5 intelligence test scores to create 
a single measure of intelligence in early childhood.

Middle-childhood intelligence
At ages 7, 9, and 11, we report results from the Wechsler 
Intelligence Scale for Children—Revised (WISC-R; 

Wechsler, 1974), using participants’ total scores averaged 
over the three assessment points to represent intelligence in 
middle-to-late childhood.

Midlife intelligence
At age 38, we report results from the Wechsler Adult 
Intelligence Scale, 4th Edition (WAIS-IV; Wechsler, 2008).

Midlife Aging Outcomes

We used clinical biomarkers alongside other sources of 
information to create four measures of age 38 biological 
age. Physical examinations were conducted during the age 
38 assessment day at the Dunedin Study Research Unit, 
with 4-hour postprandial blood draws between 4:15 and 
4:45 pm. Table 1 shows the correlations among these four 
outcome measures.

Perceived facial age
Perceived facial age is an assessment of how old a person 
appears relative to his or her chronological age, reflecting 
tissue integrity. We chose to include this measure in our 
analyses because perceived age is widely used as a general 
indicator of health by clinicians, and is correlated with 
early mortality and telomere length (Christensen et  al., 
2009). Because there is no consensus regarding which 
approach is the best measure of perceived age, we used two 
methods. First, age range was assessed by a panel of four 
undergraduate raters blind to Study members’ actual ages. 
Raters were presented with standardized (non-smiling) 
facial photographs of Study members divided into sex-
segregated slideshow batches containing approximately 50 
photos, viewed for 10s each. Raters were randomized to 
viewing the slideshow batches in either forward progres-
sion or backwards progression and used a Likert scale to 
categorize each Study member into a 5-year age range (i.e., 
from 20–24 years old up to 65–70 years). Scores for each 
Study member were averaged across all raters (α = 0.71; 
range: 25–29 to 53–57). The second measure, relative age, 
was assessed by a different panel of four undergraduates. 
These raters were told that all photos were of people aged 
38  years old. Raters then used a 7-item Likert scale to 
assign a “relative age” to each Study member (1 = “young 
looking”, 7 = “old looking”). Scores for each Study mem-
ber were averaged across all raters (α = 0.72; range: 2–6). 
Because age range and relative age were highly correlated 
(r = 0.73), we standardized and averaged both variables to 
create a composite measure of perceived age at 38  years 
(N = 956).

Biomarker algorithm
Calculating human biological age is a relatively recent enter-
prise and there is disagreement about methods (Mitnitski & 
Rockwood, 2013). Our goal was to borrow and implement 
the most validated approaches. Recently, Levine (2013) 
used data from a nationally representative, cross-sectional 
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sample of adults aged 30–75 years (NHANES III) to com-
pare the ability of five Biological Age algorithms to pre-
dict mortality. Results showed that Klemera and Doubal 
(2006) method performed the best (i.e., it predicted mortal-
ity, did so significantly better than chronological age, and 
accounted for the association between chronological age 
and mortality). We chose to include this measure in our 
analyses because it predicts mortality better than any single 
biomarker considered in isolation.
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regression lines of chronological age regressed on m num-
ber of biomarkers, where x is the value of biomarker j 
measured for an individual in the Dunedin cohort. For 
each biomarker j, the parameters k, q, and sBA are esti-
mated from a regression of chronological age on the 
biomarker using data from NHANES III. Parameters k, 
q, and sBA, represent the regression intercept, slope, and 
root mean squared error, respectively, from the age and 
biomarker-specific regression models. CA represents 
chronological age (38 for all Dunedin cohort members). 
Biomarkers used to calculate biological age in the Dunedin 
cohort are the same as those used in Levine’s (2013) origi-
nal analysis. (Levine analyzed a panel of 21 biomarkers 
in the NHANES III sample and included the 10 that were 
significantly correlated with chronological age at r > 0.1 in 
the biomarker algorithm.) The biomarkers are: C-reactive 
protein, glycated hemoglobin, total cholesterol, forced 
expiratory volume, systolic blood pressure, serum creati-
nine, serum albumin, serum urea nitrogen, serum alkaline 
phosphatase, and cytomegalovirus optical density. We 
excluded Study members who did not consent to phlebot-
omy or were pregnant at the time of assessment, leaving us 
with data from 904 Study members (Biomarker algorithm 
age range = 28.33–61.01 years).

Framingham heart age
Heart age is an estimate of vascular age based on the 
Framingham CVD risk score, a single multivariable func-
tion that predicts risk of developing all CVD and its con-
stituents. We chose to include Framingham heart age in 
our analyses because the score is commonly used by physi-
cians to communicate cardiovascular disease risk to their 
patients. The 10-year CVD risk for each Study member 
was computed using sex-specific factors collected at the 
age 38 assessment phase including: total cholesterol, HDL 
cholesterol, systolic blood pressure, treatment for hyper-
tension, diabetes status, and smoking status. Framingham 
CVD risk was then translated to Heart age using the Heart-
age calculators made available by the Framingham group 
(D’Agostino et  al., 2008). We excluded Study members 
who did not consent to phlebotomy, were pregnant at the 
time of assessment, or were missing any of the individual 
variables, leaving us with data from 900 Study members 
(Framingham heart age range = 22–85 years).

Mean relative LTL
Telomeres, the protective caps at the end of chromosomes, 
gradually erode in somatic tissues with each division of the 
cell. We chose to include this measure in our analyses because 
both animal and human studies show a link between tel-
omere length and early mortality (Deelen et al., 2014), and 
because telomere erosion can be observed in midlife when 
most people are still healthy, leading some to liken telomere 
length to a “biological clock” that captures cellular aging 
across the lifespan (Lopez-Otin, Blasco, Partridge, Serrano, 
& Kroemer, 2013). Leukocyte DNA was extracted from 
the blood of non-Maori ancestry Study members at age 38 
using standard procedures (for cultural reasons, DNA from 
Study members of Maori ancestry are not transported to 
the United States for analysis). Study members’ DNA was 
stored at −80°C until assayed to prevent degradation of the 
samples. LTL was measured using a validated quantitative 
PCR method, as previously described, which determines 
mean telomere length across all chromosomes for all cells 
sampled (Shalev et  al., 2014). This method involves two 

Table 1. Correlations Between Age 38 Aging Outcomes

Perceived facial age NHANES biomarker algorithm Framingham heart age Telomere length

Perceived facial age 1
956

NHANES algorithm 0.197*** 1
904 904

Framingham heart age 0.217*** 0.530*** 1
900 900 900

Telomere length −0.076* −0.059 −0.061 1
829 822 820 829

Note: N for each correlation in italics. NHANES = National Health and Nutrition Examination Survey (III).
 *p < .05. **p < .01. ***p < .001.
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quantitative PCRs for each subject, one for a single-copy 
gene (S) and the other in the telomeric repeat region (T). All 
DNA samples were run in triplicate for telomere and sin-
gle-copy reactions—that is, six reactions per Study member. 
We excluded Study members who only gave buccal swabs 
and/or are of Maori ancestry, leaving us with data from 
829 Study members.

Additional Variables

Perinatal complications
We created a composite index of perinatal complications 
for each Study member by combining prenatal information 
drawn from hospital records with findings from a physi-
cal examination performed shortly after birth. The obstetric 
complications assessed in this Study have been described 
previously (Shalev et  al., 2014), and include maternal 
diabetes, glycosuria, epilepsy, hypertension, eclampsia, 
antepartum hemorrhage, accidental hemorrhage, placenta 
previa, having had a previous small baby, gestational age 
younger than 37 weeks, birth weight less than 2.5 kg, small 
for gestational age, major or minor neurologic signs, Rh 
incompatibility, ABO incompatibility, non-hemolytic hyper-
bilirubinemia, hypoxia at birth (idiopathic respiratory dis-
tress syndrome or apnea), and low Apgar score at birth. 
Based on evidence that the effects of adverse conditions are 
cumulative (Molfese, 2013), each condition was weighted 
equally and summed to yield an obstetric complications 
index. 650 Study members (63%) had 0 perinatal compli-
cations, 271 (26%) had 1 perinatal complication, and 116 
(11%) had 2 or more.

Childhood ill health
Information about Study members’ childhood medical status 
was gathered every 2 years via standardized medical assess-
ments and parent reports. Examinations included assessment 
by a neurologist, motor tests, and otological and opthal-
mological assessments. Parents were interviewed about 
milestones, accidents and poisonings, loss of conscious-
ness, infections, and disease. In addition, home visits were 

conducted by a Health Department nurse, and a pediatrician 
conducted a general medical examination at the research 
unit. We compiled a “medical portfolio” for each child from 
birth to age 5 years, which was independently evaluated by 
two staff members who were blind to all other information 
about Study members. Each child’s health was coded on a 
5-point scale (1 = “poor”, 5 = “excellent”), with inter-rater 
agreement = 0.85. Using this method, 686 children (66%) 
were rated as having health that was either “very good” or 
“excellent”.

Childhood SES
When Study members were born, we recorded parental SES 
on a scale that places occupations into one of six categories 
(1 = unskilled laborer, 6 = professional) based on education 
and income associated with that occupation in data from the 
New Zealand census. If both parents were employed, we used 
the higher occupation (M = 3.46, SD = 1.36).

Results
Consistent with literature identifying low intelligence as a 
risk factor for premature mortality (Calvin et al., 2011), the 
30 Study members in our cohort who were deceased by age 
38 scored about one half of a standard deviation below sur-
viving cohort members on our measure of early-childhood 
intelligence, although this difference was not significant 
(d = 0.42, p = .15). Cohort members with present data for 
each of the four aging outcomes were representative of the 
1,007 living cohort members with respect to early child-
hood intelligence (all p’s ≥ 0.22).

Does Intelligence Predict Study Members’ Rate 
of Aging?

At midlife, Study members with lower intelligence were 
biologically “older” than their same-age peers with higher 
intelligence (Table 2). Study members with higher intelli-
gence had younger-looking faces, scored younger on the 

Table 2. Correlations Between Intelligence Assessed throughout the First Half of the Life Course and Biological Age at Age 38

Intelligence measures and age of 
assessment

Measures of Aging

Perceived facial age NHANES biomarker algorithm Framingham heart age Telomere length

Early childhood (ages 3–5) −0.160*** −0.164*** −0.182*** 0.030
Middle childhood (ages 7–11) −0.161*** −0.149*** −0.142*** 0.073*
Midlife (age 38) −0.163*** −0.173*** −0.175*** 0.059
 Verbal comprehension −0.172*** −0.140*** −0.166*** 0.042
 Perceptual reasoning −0.101** −0.158*** −0.104** 0.026
 Working memory −0.117*** −0.110** −0.090** 0.075*
 Processing speed −0.098** −0.124*** −0.189*** 0.054

Note: Weschler Adult Intelligence Scale, 4th Edition (WAIS-IV) indices listed in italics. There were no significant sex differences in the associations between intel-
ligence and biological aging. NHANES = National Health and Nutrition Examination Survey (III). 
*p < .05. **p < .01. ***p < .001.
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NHANES biomarker algorithm measure, had “younger” 
cardiovascular systems, and, to a lesser extent, longer telom-
eres. Results were similar regardless of whether intelligence 
was assessed concurrently with the biological age measure 
(when Study members were 38 years old), in middle child-
hood (when Study members were 7–11  years old), or in 
early childhood (when Study members were 3–5 years old). 
Effect sizes were comparable for perceived facial age, our 
biomarker algorithm, and heart age (r = 0.142–0.182), but 
were more modest for telomere length (r = 0.030–0.073).

Because smoking is one of the constituent items used 
to calculate Framingham heart age and may influence our 
other outcome variables, we repeated these analyses using 
pack-years smoked as a covariate (a pack-year represents 
the number of cigarettes consumed during a year spent 
smoking 20 cigarettes per day). This adjustment left the pat-
tern of results largely unchanged (Supplementary Table A).

Can the Association Between Early-Life 
Intelligence and Biological Age be Explained 
by Differences in Study Members’ Early 
Environments?

It is possible that the association between intelligence and 
biological age is driven partly by early educational experi-
ences. Our data allowed us to investigate this possibility in 

two ways. First, we were able to examine Study members’ 
intelligence in early childhood, before they began formal 
schooling. Study members with lower intelligence at these 
early assessments were biologically older at midlife (Table 2). 
(Some Dunedin cohort members were enrolled in preschool 
by age 5, but this did not increase their tested intelligence; 
Silva, 1981.)

Second, the correlations between biological age and the 
components of intelligence that are more affected by schooling 
(e.g., verbal skills) were roughly equivalent to the correlations 
between biological age and the components of intelligence 
that are less affected by schooling (e.g., processing speed) 
(Table 2). This pattern also suggests that the intelligence-aging 
association is not simply a spurious artifact of education.

Is the Link Between Early-Life Intelligence and 
Aging Partly Attributable to Initial Differences in 
Early-Life Health or Early-Life SES?

Children with more perinatal complications performed 
significantly worse on early childhood intelligence tests 
(r = −0.131) and displayed more signs of aging (Table 3). 
Children with ill health in childhood showed a similar pat-
tern, scoring lower on intelligence tests (r  =  0.221) and 
“older” on measures of biological age (Table 3). Conversely, 
children born into upper-class families tended to perform 

Table 3. Correlations between Early Childhood Intelligence and Aging Measures Assessed at Age 38, Controlling for Potential 
Childhood Confounds

Childhood confounds and age of assessment

Measures of aging

Perceived facial age NHANES biomarker algorithm Framingham heart age Telomere length

Perinatal complications (birth) 0.110*** 0.104** 0.052 −0.092**
Childhood Ill health (ages 3, 5) −0.124*** −0.072* −0.108** 0.012
Childhood SES (birth) −0.155*** −0.091** −0.102** −0.014

Early childhood intelligence (ages 3, 5) −0.160*** −0.164*** −0.182*** 0.030
in subsamples
  With no history of perinatal complications 

(birth)
−0.171*** −0.177**** −0.225*** 0.002

  With “very good” or “excellent” childhood 
health (ages 3, 5)

−0.106** −0.164*** −0.170*** 0.030

 Born to middle-class families (birth) −0.146** −0.177*** −0.245*** 0.021

controlling for
 Perinatal complications (birth) −0.147*** −0.152*** −0.177*** 0.020
 Childhood ill health (ages 3, 5) −0.140*** −0.154*** −0.167*** 0.028
 Childhood SES (birth) −0.111** −0.159*** −0.164*** 0.025
 All three potential confoundsa −0.097** −0.158*** −0.163*** 0.016

Note: Top panel: Correlations between potential childhood confounds and aging measures assessed at age 38. Middle panel: Correlations between early childhood 
intelligence and aging measures assessed at age 38 calculated in three restricted subsamples of Study members. Bottom panel: Correlations between early child-
hood intelligence and aging measures assessed at age 38 calculated in the full cohort, adjusted for perinatal complications, childhood ill health, and childhood 
SES. aStandardized betas from a general linear model using early childhood intelligence to predict each aging measure controlling for all three potential confounds. 
NHANES = National Health and Nutrition Examination Survey (III); SES = socioeconomic status.
*p < .05. **p < .01. ***p < .001. 
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better on intelligence tests than children from lower class 
families (r = 0.334), and scored “younger” on our measures 
of biological age (Table 3).

To determine whether the associations between intelli-
gence and aging outcomes are artifacts due to differences in 
our set of childhood confounds that pre-dated intellectual 
assessment, we first estimated associations between intel-
ligence in early childhood and each of the midlife aging 
outcomes in two “utopian” subsamples (cf. Murray, 1998), 
one excluding all Study members with any history of peri-
natal complications whatsoever, and another including only 
Study members with “very good” or “excellent” childhood 
health. Despite reducing the sample size by almost half, 
Study members with lower intelligence in these healthy 
groups still tended to show signs of more advanced biologi-
cal age (Table 3). In addition, we repeated our analyses in a 
subset of Study members who grew up in middle-class fami-
lies (whose breadwinners had occupations such as building 
inspector, aircraft mechanic), excluding low-SES families 
(whose breadwinners had low-skill occupations such as 
foodpacker), as well as high-SES families (professional occu-
pations such as dentist), thus precluding confounding by 
SES inequalities. The association between childhood IQ and 
our aging indicators again remained unaltered (Table 3).

As a further test, we again calculated correlations 
between Study members’ intelligence in early childhood 
and their scores on each midlife aging measure in the 
full cohort, but this time controlling for Study members’ 
histories of perinatal complications, childhood ill health, 
and childhood SES. Associations between early child-
hood intelligence and midlife biological age were largely 
unchanged (Table 3). Taken together, these findings sup-
port our hypothesis that the association between early 
life intelligence and aging cannot be directly attributed 
to differences in childhood health or SES that preceded 
intelligence test administration.

Discussion
In this longitudinal study of a birth cohort, we found that 
lower intelligence manifest as early as the preschool years 
(ages 3–5) was predictive of more advanced biological age 
measured more than three decades later. When followed up at 
age 38, Study members with lower intelligence looked older, 
scored as biologically older on a 10-biomarker algorithm 
reflecting metabolic, hepatic, renal, cardiovascular, pulmo-
nary, and immune functioning, and had older cardiovascular 
systems—but not necessarily shorter telomeres. Moreover, 
our results suggest that the associations between intelligence 
and midlife biological age did not arise from early-life health 
problems or early socioeconomic disadvantage, and can be 
seen even when intelligence is assessed before the start of 
Study members’ formal education.

While previous studies have established a link between low 
intelligence and increased morbidity and mortality (Calvin 
et al., 2011; Der et al., 2009; Whalley & Deary, 2001), our 

study provides an initial demonstration that lower early-life 
intelligence may actually accelerate the aging process—and 
that evidence of this acceleration can be observed even in 
people assessed before the onset of most age-related disease. 
This finding suggests that accelerated aging may be one of 
the mechanisms linking low early-life intelligence to an array 
of negative, age-related health outcomes.

Our study has several methodological strengths. First, 
we tested intelligence repeatedly at different developmental 
stages and with different instruments, beginning as early 
as age 3. We found that the magnitude of the association 
between intelligence and biological age remained consistent 
across all assessment ages, possibly reflecting the long-term 
stability of intelligence throughout the life course. Second, 
our study included four distinct measures of accelerated 
aging: perceived facial age, biomarker-assessed biological 
age, heart age, and telomere length. Although smoking his-
tory is one of the variables used to calculate Framingham 
heart age, we were able to show that the associations 
between intelligence and our aging indicators were inde-
pendent of this well-established risk factor. And third, the 
extraordinary retention rate of the Dunedin Study (with 
95% of surviving Study members participating in the most 
recent assessment wave at age 38) allows us to largely avoid 
problems that commonly limit the generalizability of find-
ings from longitudinal studies, such as selective attrition on 
the basis of intelligence (Salthouse, 2014).

Nevertheless, we acknowledge limitations. First, although 
we were able to rule out plausible artifactual explanations 
for why intelligence is associated with biological age (i.e., 
differences in early education, childhood health, and child-
hood SES), our data did not allow us to determine whether 
this association is causal. Second, our results were drawn 
from a single, largely Caucasian cohort born in the 1970s, 
and thus may not generalize to other populations. However, 
our results are consistent with findings connecting intelli-
gence to health and mortality in other cohorts born in dif-
ferent time periods and in different countries (Arden et al., 
2009; Wrulich et al., 2013).

Third, because we could examine only cross-sectional dif-
ferences in biological age at midlife rather than change from 
an early-life baseline, it is possible that our midlife aging 
measures reflect stable individual differences rather than 
individual differences in change. In other words, less intel-
ligent people may score higher on aging measures because 
they were biologically “older” from early life, rather than 
because they aged more rapidly. This hypothesis will need 
to be explored by studies with repeated measurements of 
aging indicators taken across the life course. Nevertheless, 
our observation that early-life intelligence predicts biologi-
cal age independent of baseline differences in childhood 
health argues against the notion that intellectual differences 
predict biological age simply because less intelligent chil-
dren are at greater risk of exhibiting poor health from birth.

A fourth limitation, illustrated in Figure 1, is that the 
association between early-life intelligence and biological 
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age had a relatively small effect size in the population as 
a whole (r = 0.1–0.2). For example, Study members who 
scored more than 1 SD above or below the cohort mean 
for early childhood intelligence differed in NHANES bio-
logical age by about 1 year (Figure 1). Although a year’s 
difference in biological age may not seem consequential 
for individuals in their late 30s, this difference may have 
greater practical significance in late life, as risk of mortal-
ity increases exponentially with age. Furthermore, because 
biological aging measures have stronger associations with 
mortality than chronological age, individual differences in 
biological age should exert more dramatic effects on age-
related disease and mortality than equivalent differences 
in chronological age, particularly when such outcomes are 
considered at the population level.

Consistent with previous studies examining associations 
between telomere length and childhood intelligence (Harris, 
Martin-Ruiz, von Zglinicki, Starr, & Deary, 2012; Pearce 
et al., 2012), telomere length showed the weakest associa-
tion with intelligence in our cohort. Interestingly, telomere 
length also showed only weak associations with our three 
other aging measures, which adds to existing evidence sug-
gesting that the relationship between telomere length and 
“normal” aging parameters such as physical, sensory, and 
cognitive functioning is controversial (Sanders & Newman, 
2013). The relatively weak associations between telomere 
length and intelligence seen here may also be due to differ-
ences in aggregation among our four outcome measures: 
Unlike perceived facial age, NHANES biomarker age, and 
Framingham heart age (which all combine either multiple 
variables or multiple ratings from independent observers), 
telomere length reflects a single indicator.

The reason(s) why early-life intelligence predicts bio-
logical age at midlife remain unclear. The literature con-
necting intelligence to health outcomes suggests at least 
four nonexclusive possibilities: First, the association 
between intelligence and biological age may arise because 
more intelligent people typically gain access to better 
health care, which may retard the aging process. Second, 
more intelligent people may obtain access to safer occupa-
tional and residential environments, which may, in turn, 
decrease their exposure to potentially age-accelerating 
conditions such as chronic job stress, dangerous working 
conditions, environmental toxins, and/or interpersonal 
violence. Third, intelligence may contribute to slower 
aging through several health-related behaviors such as 
sleep, physical activity, and dietary choices (Deary, Weiss, 
& Batty, 2010). And finally, intelligence may function as a 
measure of “brain health,” which reflects overall somatic 
integrity (Deary, 2012). Proponents of this last view have 
suggested that highly intelligent people age more slowly 
because of genetic factors such as a decreased mutation 
load (Arden et al., 2009) or pleiotropy at genetic loci asso-
ciated with both higher intelligence and a longer lifespan 
(Dubal et al., 2014).

Aging is increasingly conceptualized as a unitary phe-
nomenon that increases one’s risk of multiple age-related 
diseases simultaneously. Although life expectancy is 
increasing, people are living more years with disability 
from age-related conditions in 2010 than they were two 
decades ago (Murray et al., 2012). Identifying behavioral 
and psychological risk factors for accelerated aging thus 
constitutes a significant public health interest. Along with 
research demonstrating that early-life educational inter-
ventions can affect later health (Campbell et  al., 2014), 
our study suggests the hypothesis that early-life cognitive 
enhancement interventions may help to decrease or delay 
age-related morbidity.

Supplementary Material
Please visit the article online at http://gerontologist.oxford-
journals.org/ to view supplementary material.
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Figure 1. The association between early childhood intelligence and bio-
logical age as measured by the NHANES biomarker algorithm.  The histo-
gram depicts the normal distribution of Study members’ early childhood 
intelligence scores, whereas the scatter plot and regression line show 
the association between early childhood intelligence and age 38 biologi-
cal age as measured by the NHANES biomarker algorithm. The dots and 
standard error bars show average biological age for Study members 
with early childhood intelligence scores falling <−1.5, −1.5 to −1, −1 to 
−0.5, −0.5 to 0, 0–0.5, 0.5–1, 1–1.5, and > 1.5 SDs relative to the mean. 
NHANES = National Health and Nutrition Examination Survey (III).
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