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ABSTRACT

Highly specific direct genome-scale expression dis-
covery from two biological samples facilitates func-
tional discovery of molecular systems. Here,
expression data from cDNA arrays are ranked and
curve-fitted. The algorithm uses filters based on the
derivatives (slopes) of the curve fits. The rules are set
to (i) filter the largest number of artifactual ratios from
same-to-same datasets and (ii) maximize discovery
from direct comparisons of different samples. The
unsupervised discovery is optimized without lower-
ing specificity. The false discovery rates are signifi-
cantly lower than other methods. The discovered
states of genetic expression facilitate functional dis-
covery and are validated by real-time RT–PCR. Better
quality improves sensitivity.

INTRODUCTION

Several genomes have recently been sequenced and the
development of DNA microarrays has facilitated genome-
scale expression profiling (1,2). In a single assay, the
transcriptional differences between phenotypes are measured
(3–6). Furthermore, the idea that the global transcriptional
response constitutes molecular phenotypes has only recently
received attention (3,5,7–14). In this model, phenotypes are
created by molecular systems in which single genes or
molecules belong to rich networks of molecular interactions
that include transcriptional regulation, signaling pathways,
protein–protein and protein–nucleic acid interactions
(15–18).

Current methods for microarray expression data analysis
require numerous samples and yield low specificity
(7,9,19,20). Thus, validation by other methods for measuring
gene expression has become the ‘gold standard’ (21–24).
However, biological samples are not always abundant, and
validation of all discovered genes is a very expensive and
time-consuming endeavor. The cost is prohibitive. The price
tag for validating all the genes discovered by genome-scale
expression profiling is in the order of tens of thousands of

dollars per question or experiment. The cost to the whole
biomedical community is astronomical.

Thus, a method that generates highly specific genome-scale
expression discovery from two samples is not only cost effec-
tive but also very desirable. To be effective, the false discovery
rate of such an algorithm should be ‘small enough’ to convey a
high degree of confidence that the ‘discovered’ genes are truly
differentially expressed between samples. This algorithm sets
the stage for functional genomics by facilitating the discovery
of molecular systems and the prediction of gene-to-gene inter-
actions, signaling pathways and protein states behind pheno-
types (25). The idea that quality controls sensitivity is rather
intuitive; one expects high quality images to yield a sharper
separation of true from false and to discover smaller expres-
sion ratios (higher sensitivity).

MATERIALS AND METHODS

Microarrays

Normal brain RNA is obtained by pooling RNA from human
occipital lobes harvested and pooled from four individuals
with no known neurological disease whose brains are frozen
less than 3 h postmortem. The quality of RNA is assayed by gel
electrophoresis and only high-quality RNA is processed. Total
RNA (5–10 mg) is reverse transcribed and the cDNA products
labeled by the amino-allyl method and hybridized to the 1.7K
and 19K cDNA microarrays purchased from the Ontario
Cancer Institute (Toronto, CA). The slides are scanned at
10 mm by a confocal scanner, (4000XL scanner; Packard
Bioscience, Meriden, CT). Spot signals are quantified by
the Imagene Software (Biodiscovery; Los Angeles, CA).

Real-time RT–PCR

Total RNA samples are analyzed by one-step, hot-start real-
time RT–PCR (Qiagen, Valencia, CA; Cepheid, Sunnyvale,
CA), and normalized to G3PDH as described elsewhere (26).
Primer pairs are generated for each of the 21 genes as well as
G3PDH (Supplementary Material).

Analysis

The mathematical analysis is performed using functions
written in Matlab (Mathworks, Natick, MA).
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RESULTS

Definitions

The ‘state of genetic expression’ of a spot in sample A versus
sample B assayed by cDNA arrays is measured by the ratio
of the background-subtracted intensities of Sample A/back-
ground-subtracted intensities of Sample B. A ratio > 1 (log2> 0)
implies up-regulation of the gene in sample A as compared to
sample B; a ratio < 1 (log2 < 0) implies down-regulation in A
as compared to B. We use the human 1.7K microarray chip to
define the terms ‘genes’, ‘spots’, ‘symmetrical’, ‘rank’ and
‘spot order’. These terms are also applicable to other micro-
arrays. The 1.7K microarray chip contains 1920 cDNAs or
controls, here referred to as ‘genes’, spotted in duplicates to a
total of 3840 ‘spots’. The term ‘symmetrical’ refers to the two
images, corresponding to the Cy3 and Cy5 fluorescent dyes,
generated from a single microarray slide. Probe switching (dye
swapping) refers to experiments where the Cy3 and Cy5 dyes
are switched between the two samples to be compared; they
are performed to annul confounding variables introduced by
heterogeneous fluorescence of the Cy5 and Cy3 molecules.

To model the dynamic range, background-subtracted spot
intensities are sorted in ascending order (y-axis) and plotted
to generate the ranking curve I(x) (Figure 1a). The x-axis of
Figure 1a is a listing of the spots of a 1.7K dataset ranked in
ascending order by their background-subtracted intensities;
the x-axis coordinate corresponding to a specific spot is
defined as its ‘Rank’. For instance, a spot whose rank is
3000 has a higher background-subtracted spot intensity
than all spots whose ranks are less than 3000. A micro-
array Spot Order (SO) is a listing of its spots sorted dby
their ranks. Figure 1b is a plot of the log-transformation
of the data in Figure 1a; it reveals a family of curves con-
sisting of three parts: (i) an initial segment where spot inten-
sities rise rapidly, (ii) a second almost ‘linear’ section
associated with small increments and (iii) an ‘exponentially
growing’ phase.

The datasets and rationale

The true negative datasets compare the same pool of brain
RNA to itself (same-to-same). The goal of the same-to-same

Figure 1. Curve fitting and normalization. Each spot generates two measurements of (i) the total intensity within the spot and (ii) the local background intensity
defined as the total intensity within a small rim surrounding the spot. (a) Is a plot of the background-subtracted spot intensities (y-axis) versus spot ranks (x-axis) of a
dataset acquired from the 1.7K-microarrays. (b) Red dashed line, is a log transformation of the dataset of (a). The dataset of (b) is curve-fitted to
Equation 4:
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where x refers to rank. (b, black line) shows the plot of Equation 4 that best fits the experimental dataset (red dashed). ns refers to the total number of spots in the array;
ns = 3840 for the 1.7K microarrays. Parameters (a1, . . . ,a19) vary between individual curves. (c) Is a plot of the derivative corresponding to curve shown in (b)
(Equation 1.2, Supplementary Material). (d) Shows the raw dataset (magenta dashed), curve-fit (blue) of the image symmetrical to the dataset shown in (b). (e)
Illustrates the normalization of the dataset of (d) to model the curve of (b); the y-coordinates of the ranks of SO2 are transformed to become equal to the y-coordinates
of equal ranks in SO1 (see Supplementary Material). The algorithm transforms the image with the lower CR to model the other. The cyan arrow points to the Inflection
Rank (IR). rmin refers to the rank where the curve of the derivative reaches a minimum (c). The orange arrow transects the x-axis at the CR. Non-Differentiable Spots
are those whose ranks are less than CR in both SO1 (b) and SO2 (d). Filter 1 excludes Non-Differentiable Spots.
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comparisons is to collect experimental noise (artifacts) inde-
pendent of biological heterogeneity. In this design, normalized
expression ratios „ 1 (log2 „ 0) are false positive (noise)
because the symmetrical images contain identical genetic
information. The artifactual measurements may be caused
by several factors including slide-to-slide differences,
variations in the reverse transcription reactions, hybridization,
labeling and laser. We perform 18 and 20 same-to-same
experiments to generate a total of 9 and 10 probe-switching
datasets using the human 1.7K and 19K microarrays,
respectively. The experiments are paired by consecutive
order. The goal of the algorithm is to filter the largest
number of same-to-same expression ratios. Ideally, the algo-
rithm is expected to filter all technical noise and discover
no gene as being differentially expressed in same-to-same
datasets.

The different-to-different datasets compare: (i) a menin-
gioma sample to brain in probe switching experiments using
1.7K microarrays and (ii) 10 meningioma samples to normal
brain using the 19K microarrays. The goal of the algorithm is
to discover the largest number of genes differentially expres-
sed between different samples. Ideally, all genes discovered
from different-to-different datasets will be truly differentially
expressed between meningioma and brain.

Curve fitting

The main objective of our curve fitting is to generate a differ-
ential equation that models the changes in slope versus rank.
Unlike smooth curves, experimental data show point-to-point
variations, which limit the accurate representations of the
slopes. Here, we apply a stochastic global fit approach to
construct a mathematical Equation 4 whose plots fit a smooth
curve through the data points in such a way that the points are
as ‘close’ to the curves as possible (R2 > 0.99; Figure 1b).
Equation 4 contains 19 parameters (a1, . . . , a19) that are optim-
ized within defined bounds to fit the heterogeneous members
of this family of curves (see Supplementary Material).
Equation 4 fits not only our data of 60/60 1.7K datasets,
200/200 human 19K datasets (38 400 spots on two separate
slides P1 and P2), but also all 266 curves resulting from the
133 publicly available arrays from the lymphoma study by
Alizadeh et al. (7) (R2 > 0.99; see Supplementary Material).
Each curve-fit generates a unique set of parameters (a1, . . . ,
a19) determined by the function lsqcurvefit (MATHLAB,
Optimization Toolbox), which uses the large-scale algo-
rithm to solve the non-linear curve-fitting problem in the
least-squares sense.

The complexity (19 parameters) of Equation 4 is not limit-
ing because of the speed of current computers. Other equations
of different forms may also be deduced. Nonetheless, having
constructed an equation that fits the curves, its derivative is at
hand (Equation 1.2, see Supplementary Material). Figure 1c
plots the curve of the derivative f 0(x). Because the smooth
curves of Equation 1.2 lack the fluctuations of biological
data, they generate important tools that will be applied to filter
technical noise and discover true states of genetic expression.

Normalization

Figure 1b and d show the datasets of two symmetrical images
(CY3 and CY5). Some of the false-positive ratios are expected

to be more than 1 and others less than 1. The idea that the
majority of the genes are not differentially expressed between
samples implies that the product of all the ratios is equal to 1.
This idea leads to the derivation of a local normalization
scheme, which transforms the curve of one dataset
(Figure 1d) to model the other (Figure 1b and Supplementary
Material).

The normalized curve is plotted in a graph having two
separate x-axes corresponding to SO1 and SO2 (CY3 and
CY5; Figure 1e). Each spot is ranked separately in the SO
of each image (SO1 and SO2). The normalized expression ratio
of a spot is computed as

Normalized intensity of its rank in SO2

Normalized intensity of its rank in SO1
1

Thus, if g(x) is the log-function of the normalized curve, and
if a and b are the symmetrical ranks of a single spot (see
Supplementary Material), then the

Normalized ratio =
eg að Þ

eg bð Þ = eg að Þ � g bð Þ 2

Mathematical properties of the curves

Next, we study the slopes of the normalized curves. The first
segment of the curve in Figure 1e rises rapidly; the rate of
increase is maximal at the point of inflection that corresponds
to the maximum of f0(x) in that segment (Figure 1c). The rank
(x-coordinate) of the point of inflection is defined as the
Inflection Rank (IR). The 1.7K chips include 256 ‘buffer’
spots containing no cDNA, which are expected to generate
the lowest intensities caused by non-specific binding of the
probes to glass or buffer. The y-coordinate at the IR corres-
ponds to a small background-subtracted intensity, ranging
from 50 to 150, most probably generated by non-specific
probe binding. Interestingly, because the datasets of Alizadeh
et al. (7) lack buffer spots, their curves show steep rise in the
slope of the first segment reaching the IR very quickly (see
Supplementary Material). We conclude that the majority of
intensities whose ranks are smaller than the IR are likely
caused by non-specific binding of the probe.

After reaching the inflection point, the curve of f0(x)
decreases to a minimum corresponding to a rank, rmin, then
increases again (Figure 1c and see Supplementary Material);
rmin is very close to 0. To illustrate the applicability of the
derivative, we study the specific example when the derivative
of the equation is equal to 0. Here, the line is parallel to the x-
axis. Because all background-subtracted intensities are equal,
spots whose symmetrical ranks correspond to that line cannot
be separated or differentiated based on their expression levels.
In this specific example, because the line includes the ranks of
about half the gene set and because overall gene expression is
expected not to differ between the two samples, the predom-
inant majority of genetic measurements whose ranks map to
that line are expected to be false.

The numbers that follow pertain to the datasets acquired
from the 1.7K microarrays; the same applies to the 19K micro-
arrays after changing the total number of spots from 3840 to
192 000 per slide. If g(x) is the log-function of the normalized
curve, the Cutoff Rank (CR) is defined as a rank within the
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interval [rmin,3840] such as

g0 CRð Þ = doptimal �
g 3840ð Þ

3840
3

When completed, the algorithm computes doptimal as a value
within the interval [0.3, 0.4]. doptimal is computed empirically
to optimize sensitivity without lowering specificity (see
Computing CR below). The algorithm computes an individual
doptimal for each dataset.

The CR maps to the junction of the second and third parts of
the curve. Differentiable Spots are defined as those having
at least one symmetrical rank larger than the CR. Non-
Differentiable Spots are defined as those whose ranks are
smaller than the CR in both symmetrical CY3 and CY5
images. Non-Differentiable Spots are filtered because their
measurements may either be caused by non-specific probe
binding to glass or buffer and/or a fall within the linear
part of the curve where the slope is close to 0.

Filter 1

The same-to-same 19K and 1.7K datasets contain a total of
192 000 and 17 280 ratios, respectively. Histograms of

unfiltered same-to-same ratios reveal that most log2 „ 0
fall within the interval [�1,1]. However, they range from �10
to 10 and a large number are outside [�1,1] (Figure 2a).

Filter 1 (F1) is applied to individual ‘spots’ and is defined by
the following rules.

F1 filters a spot by transforming its expression ratio to 1
(log2 = 0):

(i) If the spot is Non-Differentiable (see Figure 1) or
(ii) If its background intensity lies outside the mean – 2SD of

the background intensities of all spots.

F1-resistant spots must have at least one symmetrical rank
larger than the CR. A spot, whose ranks are both less than
the CR, is filtered.

Noise factor

Histograms of same-to-same datasets reveal the presence of
F1-resistant noise with variable variance about the origin
(Figure 2b and c). The notion that overall expression does
not differ between two samples stipulates that the ranks of
the predominant majority of spots in symmetrical SOs are
similar. This idea should be especially true in same-to-same
datasets where the symmetrical images contain identical
genetic information. To study rank variability, spots from

Figure 2. Linear correlation between the Noise Factor and SD of F1-resistant noise. (a) Shows a histogram of the unfiltered log2 transformed normalized ratios of an
experiment where the Cy3 and Cy5 images correspond to the same RNA (technical noise). The histograms in (b and c) show F1-resistant false positive ratios from two
distinct same-to-same experiments; (a and c) correspond to the same dataset. The SD of the data in (b and c) are 0.1 and 0.36, respectively. (d and e) Show the scatter
plots of the symmetrical ranks of the experiments shown in (b and c), respectively. Red arrows transect the x-axis at the CRs. The degree of divergence (arrows) about
y= x differs between (d and e). The results suggest a relationship between the divergence of F1-resistant noise about the origin [(b and c) arrows] and the divergence of
symmetrical ranks about the line y = x [(d and e), arrows]. To study this idea, we define the Noise Factor (NF). Let (r1i, r2i) denote the coordinates of the
n spots whose ranks in symmetrical Spot Orders are larger than the CR, then

NF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 r1i � r2ið Þ2

n

s
� a

3840 � CRð Þ 5

where a is any scalar; here we use a = 10. The Noise Factor quantifies the degree of divergence about the segment of y = x that extends from the CR to 3840. (f) Is a
scatter plot of the Noise Factors versus SD of F1-resistant noise in the 18 sets of 1.7K symmetrical images (y = 2.75* x + 0.12, R2 = 0.823).

3810 Nucleic Acids Research, 2004, Vol. 32, No. 13



the same-to-same datasets are plotted by their ranks in SO1
(x-axis) and SO2 ( y-axis); as anticipated, the data scatter about
the line y = x (R2 > 0.9; Figure 2d and e). However, the degree
of divergence from y = x varies between arrays despite the fact
that each array compares the same RNA to itself (Figure 2d
and e). This observation suggests the hypothesis that the
degree of divergence of the symmetrical ranks about y = x
(Figure 2d and e) determines the ‘margin‘ or variance of F1-
resistant noise about the origin (Figure 2b and c).

To study this idea, we define the Noise Factor that quantifies
the degree of divergence of the ranks in symmetrical SOs
about the segment of y = x that extends from the CR to
3840 (Figure 2d and e). Figure 2f reveals a linear correlation
between the Noise Factor and the SDs of F1-resistant noise.
The findings identify the Noise Factor as an important quality
parameter. Thus, datasets whose Noise Factors are small (‘bet-
ter quality’) are not likely to contain ‘large’ F1-resistant false-
positive ratios (see Figure 2b and d). On the other hand, large
F1-resistant ratios in ‘lower quality’ images may be inaccurate
(see Figure 2c and e).

Filter 2

Next we set out to eliminate F1-resistant noise from same-to-
same datasets regardless of the quality of the images. Probe-
switching experiments generate 2 Noise Factors and 2 SDs,
each corresponding to a set of symmetrical images. Because
each microarray slide contains genes spotted in duplicate, the
experiments generate four replicate ratios for each gene.

In the glioma study, we devised a noise model and a filter, f4,
and showed that f4 generates a false negative rate of only 1.6%
(26). f4 is applied to four replicate ratios and includes a rule,
named f0, that requires all four replicate log2 (ratios) of
resistant genes to be of the same sign and different from 0.
We have also shown that the overwhelming majority of f4-
resistant noise vectors project onto the eigen space at distances
from the origin that are within three SDs from the mean.
Hence, we define the second filter.

Filter 2 (F2) is applied to F1-resistant ‘genes’ and is defined
by the following rules:

An F1-resistant gene is filtered by transforming its
expression ratio to 1 (log2 = 0) unless all four replicate log2

(ratios) are

(i) Of the same sign and different from 0 (consistently
showing up- or down-regulation; same rule as f0) and

(ii) At distances from the origin larger than 3· the largest
SDs of the probe-switching experiments.

The algorithm outputs the mean values of the four replicate
log2 (ratios) of F2-resistant genes.

Computing CR

Our goal is to find the optimal value of CR that maximizes
sensitivity without lowering the specificity of discovery.
Figure 3a–c shows the effects of varying d (see Equation 3)
on the false discovery rate when the algorithm is applied to the
analysis of the 10 and 9 same-to-same 19K and 1.7K datasets,
respectively. The results reveal that the specificity is high for
values of d within the interval [0.3, 0.4] (Figure 3b and c).
Thus to optimize both sensitivity and specificity, the algorithm

varies d within the interval [0.3, 0.4] to determine a doptimal,
which discovers the largest number of genes (Figure 3d).
An individual CR is computed from the doptimal of each
dataset.

The algorithm is effective in filtering noise

Of all 9 probe-switching, same-to-same experiments using the
1.7K human microarrays, only 1 of the total of 17 280
(9*1920) genes is resistant to both F1 and F2 (Table 1). Chang-
ing the first rule of F2 to requiring only 3 log2 measurements
instead of all 4 to be of the same sign, results in an 8-fold
increase in the number of false positive genes. The complete
algorithm is then applied to the data of the 10 probe-switching,
same-to-same experiments (brain-Cy3 and same brain-Cy5)
using the 19K chips. Only 1 of the 192 000 genes is resistant to
both F1 and F2 (Table 1). The complete algorithm is also
applied to analyze four same-to-same datasets of Rosenzweig
et al. (27). Each dataset includes 710 ‘genes’ spotted in dupli-
cates to a total of 1420 spots (see Supplementary Material).
The false discovery rate is 0 of 2840. Because the same-to-
same arrays have a heterogeneous quality (Figure 2), the find-
ings demonstrate the effectiveness of the algorithm in filtering
noise regardless of the quality of the dataset.

To evaluate the false discovery rates in different-to-different
datasets, we apply the algorithm to analyze the 19K datasets of
the 10 meningioma samples. Each array includes 128 ‘genes’ of
Arabidopsis. In these experiments, the Arabidopsis cDNA
genes serve as true negatives because both meningioma and

Figure 3. The CR is computed to optimize sensitivity without lowering
specificity. To study the effects of varying d on the false discovery rates,
the complete algorithm is applied to the same-to-same 19K (a and b) and
1.7K (c) datasets (see Equation 3). (b) Plots the same data as (a) for d
between 0.2 and 0.5. (a–c) Illustrate the effects of varying d on the false
discovery rates. (b and c) Demonstrate that values of d within the interval
[0.3, 0.4] yield high specificity. Thus for each dataset, the algorithm varies
d within the interval [0.3, 0.4]. To illustrate the computation of doptimal, (d) plots
the number of discovered genes versus d for the 1.7K meningioma-to-brain
dataset. In this specific example, doptimal = 0.36 discovers the largest number of
genes. The algorithm computes a unique doptimal for each dataset.
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brain RNAs are spiked by an equal amount of Arabidopsis RNA
(1 ng). The false discovery rate of the algorithm is 0/1280. Thus,
the high specificity of the algorithm is also true in different-to-
different comparisons.

Discovered genetic expression states are validated

The algorithm discovers 21 genes from the 1.7K dataset com-
paring the meningioma sample versus brain (Table 1). Real-
time RT–PCR, a semiquantitative method for comparing gene
expression, confirms the states of genetic expression of all 21/
21 genes (Figure 4a). The G3PDH-normalized ratios (Figure
4a) are corroborated by the expression profiling of the dis-
covered genes in 10 other meningiomas using the 19K
microarray chips (Figure 4b).

When applied to the analysis of the 19K datasets
comparing 10 meningiomas to normal brain, the algorithm

discovers 364 as being consistently up- or down-regulated in
a minimum of 5/10 meningiomas. The discovered states of
genetic expression combined with current knowledge in
biological chemistry accurately predict activation of signal-
ing pathways and opposing molecular functions behind phe-
notypes. For example, the data predict activation of the Wnt,
ERK and Akt pathways in meningiomas and reveal oppos-
ing molecular functions behind the phenotype of enhanced
transcription, growth, remodeling of the cytoskeleton and
extracellular matrix, angiogenesis and immunological eva-
siveness (25).

Sensitivity is dependent on quality

To generate different-to-different datasets of heterogeneous
quality, the experiment, comparing a meningioma RNA versus
brain using the 1.7K microarrays, is repeated four times using
aliquots from the same meningioma and brain RNAs. Figure 5
reveals a negative correlation between the Noise Factor and
sensitivity; the higher the Noise Factor, the lower the number
of discovered genes. Therefore, the Noise Factor is a quality
parameter that predicts sensitivity.

High specificity as compared to other methods

To compare the specificity of the algorithm to others, we have
analyzed both the 1.7K and 19K same-to-same datasets by (i)
our algorithm and (ii) the TIGR MIDAS software (release
August 2003, http://www.tigr.org/software) (28,29) (see
Table 2). For the same-to-same 19K datasets, the false dis-
covery rates of our algorithm, standard MIDAS, and high
stringency MIDAS are 1/192 000, 1347/192 000 and 932/

Table 1. The mathematical algorithm is effective in filtering same-to-same

technical noise

Comparison Discovered
genes

No. of
genes

Microarray

Brain RNA versus brain RNA 1 192 000 19K
Brain RNA versus brain RNA 1 17 280 1.7K
Meningioma versus brain RNA 21 1920 1.7K

Only 1 of the total of 17 280 genes analyzed was not excluded in the 9 probe
switching experiments comparing normal brain RNA to itself (1.7K chip). In
addition, an only 1 of 192 000 genes analyzed in 10 probe-switching, same-to-
same experiments was not filtered (19K chip). The algorithm discovers 21 genes
out of 1920 from the comparison of meningioma versus brain.

Figure 4. The mathematical algorithm discovers highly specific states of genetic expression. Real-time RT–PCR validates all 21/21-discovered genes [(a) and
Supplementary Material]; the expression ratios (meningioma/normal brain) are capped at 50- and 0.02-fold. (b) Shows the log2 measurements discovered by the
algorithm from the profiling of a meningioma against normal brain by the 1.7K chips (Primary), and the log2 transformed normalized but unfiltered ratios in 10 other
meningiomas profiled by the 19K microarray chips also against normal brain (Additional Tumors 1–10). Here, colors other than green (log2 „ 0) indicate that all four
measurements consistently show either up- or down-regulation (rule f0).
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192 000, respectively (Table 2). For the same-to-same 1.7K
datasets, the false discovery rates of our algorithm, standard
MIDAS, and high stringency MIDAS are 1/17 280, 170/
17 280, and 91/17 280, respectively (Table 2).

To evaluate the sensitivity of the algorithm and compare it
to MIDAS, we study four independent spike-in 1.7K datasets
where 1 ng of Arabidopsis RNA was added to tumor RNA
but not brain RNA (26). Each dataset includes 64 ‘genes’ of
Arabidopsis cDNAs, which are expected to be true positives.
Figure 5 shows that sensitivity is dependent not only on the
analytical method but also on quality. Thus to dilute the effects
of slide-to-slide variations in quality on the sensitivity of the
analytical method, we report the best single-experiment sen-
sitivity computed from the four datasets. The algorithm, stand-
ard and high stringency MIDAS discover 26/64, 26/64 and 20/
64 Arabidopsis genes as differentially expressed, respectively.
Receiver operating characteristic (ROC) analysis is the stan-
dard approach to evaluate the sensitivity and specificity of
diagnostic procedures (30). The algorithm, standard and
high stringency MIDAS generate the empiric ROC areas
0.703, 0.698 and 0.654, respectively (Table 3). The accuracy
rates are 99.8, 98.8 and 99.2%, respectively.

DISCUSSION AND CONCLUSIONS

We conclude that the mathematical algorithm optimizes
sensitivity without lowering the high specificity of discovery
(Figure 3). Furthermore, sensitivity is a function of measur-
able quality parameters; specifically, sensitivity is negatively
correlated with the Noise Factor (Figure 5). For instance, the
array whose F1-resistant genes and Noise Factor are shown
in Figure 2b and d is more likely to discover smaller differ-
ences in gene expression than the datasets shown in Figure
2c and e. These results are similar to Raffelsberger et al.
who report that quality parameters have an impact on the
efficient detection of low level, regulated genes (31). This
paper does not address the question of accuracy of fold
changes in gene expression levels; however, the results
offer a solution to the problem of discovering highly specific
states of genetic expression directly from two biological
samples.

Fitting smooth curves through the data generates the differ-
ential equations that set the rules of F1 and the means to
compute CR (see Equation 3). We have chosen a global fit
approach and have shown that the curve-fits are statistically
significant for small and large datasets acquired in different
laboratories (R2 > 0.9). Other strategies for curve fitting that
generate differential equations include piece-wise polynomial
functions and least-squares approximation. Piece-wise curve
fitting partitions the input space into regions, each with its own
polynomial equation (spline) whose parameters are estimated
by least-square approximation. Each spline is fitted to a small
number of data points, while at the same time ensuring that
the joints between one part of the curve and another are
continuous (32).

The algorithm generates unbiased and unsupervised highly
specific, genome-scale expression discovery of states of
genetic expression between phenotypes. High specificity facil-
itates the analysis of genomic comparisons by microarrays
because the datasets contain both a predominant majority of
true negatives (genes not differentially expressed) as well as a
small fraction of true positives (differentially expressed
genes). The high degree of certainty facilitates functional dis-
covery of molecular systems by generating testable hypotheses
in gene-to-gene and gene-to-protein interactions. Perturba-
tions of the discovered genes may be designed to study the
dynamical behavior of the molecular system as a whole and to
discover new functions and novel targets for therapeutic inter-
ventions (11). The algorithm has numerous applications in
biology and medicine.

Figure 5. Sensitivity is negatively correlated with the Noise Factor. The x-axis
plots the Noise Factors of replicate 1.7K meningioma-to-brain datasets having
heterogeneous quality. The y-axis plots the number of discovered genes.

Table 2. High specificity as compared to others

Comparison Our
algorithm

Standard
MIDAS

High stringency
MIDAS

Array

Brain versus brain 1/192 000 1347/192 000 932/192 000 19K
Brain versus brain 1/17 280 170/17 280 91/17 280 1.7K

A comparative study of the false discovery rates and specificity of the algorithm,
standard MIDAS, and highly stringent MIDAS in analyzing microarray profil-
ing of the same-to-same RNA (brain versus brain). The standard configuration
applies: (i) Locfit (LOWESS) normalization (33,34), (ii) SD regularization (35),
(iii) low intensity filter, and (iv) flip dye consistency checking (33,35). The high
stringency configuration consists of the following operations in order: (i) Locfit
(LOWESS) normalization, (ii) iterative linear regression normalization (33),
(iii) iterative log mean centering normalization (36), (iv) ratio statistics normal-
ization and confidence interval checking (confidence range at 99%) (37), (v) SD
regularization, vi) low-intensity filter, (vii) slice analysis (33,34), and (viii) flip
dye consistency checking.

Table 3. ROC analysis

Sensitivity Specificity Empiric
ROC area

Accuracy
(%)

Algorithm 26/64 1/17 280 0.703 99.8
Standard MIDAS 26/64 170/17 280 0.698 98.8
High stringency MIDAS 20/64 91/17 280 0.654 99.2

ROC estimates a curve, which describes the inherent tradeoff between sensi-
tivity and specificity of a diagnostic test. The area under the ROC curve is
important for evaluating diagnostic procedures because it is the average sensi-
tivity over all possible specificities (38–40). J. Eng (n.d.). ROC analysis: web-
based calculator for ROC curves. Retrieved on June 10, 2004 from http://
www.rad.jhmi.edu/roc.
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