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ABSTRACT

Understanding DNA–protein recognition quantita-
tively is essential to developing computational
algorithms for accurate transcriptional binding site
prediction. Using a quantitative, multiple fluores-
cence, relative affinity (QuMFRA) assay, we determine
the binding specificity of 11 different position 6 vari-
ants of the Mnt repressor for operators containing all
16 possibledinucleotides atoperator positions 16 and
17. We show that the wild-type and all variant proteins
interact with the two positions in a non-independent
manner, but that a simple independent model pro-
vides a close approximation to the true binding affin-
ities. The wild-type His at amino acid 6 is the only
protein to prefer the AC sequence of the wild-type
operator, whereas most of the variant proteins prefer
TA. H6R is unique in having a strong preference for C
at position 16. A comparison of the quantitative bind-
ing data for all of the protein variants with a model for
recognition of the early growth response (EGR) zinc
finger family suggests that interactions of Mnt with
positions 16 and 17 are similar to interactions of
EGR with positions 1 and 2, respectively. This infor-
mation leads to an augmented model for the inter-
action of Mnt with its operator.

INTRODUCTION

Discovering the interactions that control gene expression in a
cell remains one of the important challenges in molecular
biology. Given a genome sequence it is now routine to identify
computationally the probable set of transcription factors (TFs)
because they fall into well-known protein families (1). There
are also a variety of computational methods that can be used to
identify likely transcription factor binding sites (TFBSs).
These typically employ some method to search for signific-
antly conserved sequence patterns in sets of genes that are
likely to be co-regulated, or in ‘phylogenetic footprinting’
methods that identify conserved sequences for specific

promoter regions among multiple species, or both (2). How-
ever, none of these approaches solves the problem of identify-
ing the regulon for each TF, the set of genes that are directly
regulated through binding at TFBSs for each specific TF. That
requires knowledge about the connections between the TFs
and the TFBSs, i.e. which TF binds to which TFBS.

There are some experimental approaches to making such
connections. For example, yeast one-hybrid assays can iden-
tify TFs that bind to a specific TFBS (3). ChIP-chip experi-
ments are a good, high-throughput method to identify the set of
promoters that are bound by a specific TF, and then identifying
common motifs among those promoters can reveal the TF–
TFBS connections (4). One might also use SELEX methods
with purified TFs (5) or apply them to promoter arrays to
identify those that are bound, and again apply pattern discov-
ery methods to find the TFBSs (6). While these methods are
relatively efficient, they can still fail and are still fairly labor-
ious and expensive. It would be much more efficient if there
were a computational method to connect TFs to TFBSs.

There is a long history of attempts to define a recognition
code for protein–DNA interactions (7). If such a code could be
found it would allow for the prediction of a TFBS pattern
given any TF sequence and some knowledge of its structure,
which is available for each of the TF families (1). Or, given a
TFBS, it would be possible to identify the TF in that genome
that is most likely to be the one that binds to it. However, a
variety of studies have shown that nature does not employ a
simple, deterministic code (7–10). But more complex codes
have been proposed and shown to be reasonable approxima-
tions, at least for some TF families (7,11–14). Currently, the
recognition models are limited by the available data, espe-
cially the lack of quantitative binding data for a sufficient
collection of binding sites. An efficient method to collect
quantitative binding data can help enormously in the quest
to develop good recognition models. At this point it is not
even clear how complicated such models need to be. Most
DNA binding site models assume that each position contri-
butes independently to the interaction (15). While clear
non-independent interactions have been observed for several
proteins (16,17), it has also been shown for those examples
that independent models can provide good approximations to
the true binding data (18). Whether this is generally true for
most TF protein families remains an open question. It is also
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not known if independence is a valid model for the protein side
of the interaction, and whether the contribution of each amino
acid contributes independently to the binding affinity. Some
evidence suggests that such a model may be valid, at least in
some cases (19), but again there is a lack of sufficient quanti-
tative data.

In this paper, we determine the quantitative specificity of
several variants of the Mnt repressor protein for a collection of
16 different binding sites, the complete set of dinucleotide
pairs at two operator positions. Mnt is a member of the
ribbon–helix–helix family of DNA binding proteins (20).
The histidine at position 6 (H6) of the Mnt repressor has
been shown to interact with positions 16 and 17 of the mnt
operator (Omnt) DNA (21–23). Using native Mnt repressor pro-
tein and mnt operator variants containing all possible changes at
positions 16 and 17, we previously showed that the interactions
of H6 of native Mnt repressor protein and these two base posi-
tions of the Omnt are non-independent (16) although an additive
model can be obtained that provides a good approximation to
the true binding affinities (18). We have also shown previously
that replacement of H6 with other amino acids changes the
preferred operator sequence, primarily at position 17 and
also at positions 16–19, consistent with amino acid 6 being
a ‘master residue’ that effects the binding at several operator
positions (22,23). In this paper, we quantify the effects of
several position 6 variants for all possible binding site
combinations at operator positions 16 and 17.

MATERIALS AND METHODS

Materials and reagents

Chemicals and reagents were purchased from either Sigma
Chemical Co. (St Louis, MO) or Fisher Scientific (Pittsburgh,
PA) unless specified. Taq DNA polymerase and 1· reaction
buffer used in PCR were from Promega (Madison, WI). Fluoro-
phore-labeled SK-1 oligo and unlabeled mnt wild-type and
mutant oligos were purchased from Integrated DNA techno-
logies (Coralville, IA). The sequences of these oligos were
listed in (16). Mnt proteins used in this study were constructed
and purified as described previously (23).

Fluorescent labeling of DNA

Double-stranded fluorophore-labeled wild-type and mutant
mnt operator (Omnt) DNAs were synthesized by PCR. The
reaction contained 200 nM of wild-type or mutant Omnt

oligo, 1· reaction buffer, 200 nM dNTPs, 500 nM of fluor-
ophore-labeled (FAM, HEX, TAMRA and ROX) SK primer,
500 nM of KS primer, 4 mM MgCl2, and 1 U of Taq DNA
polymerase in 100 ml reaction. The PCR was cycled 30 times
at 94�C for 1 min, 62�C for 1 min and 72�C for 1 min.

QuMFRA assay

The QuMFRA assays were performed similar to those
described in (16). Mnt proteins were incubated with the fluor-
escently-labeled wild-type Omnt and mutant Omnt PCR DNAs
in 1· binding buffer at room temperature for 1 h. The bound
and unbound fractions were separated by a 10% TBE poly-
acrylamide gel at 100 V for 1 h. The gel was then scanned by
Typhoon Variable Scanner (Molecular Dynamics, Sunnyvale,

CA) using excitation laser at 532 nm and various output volt-
ages and emission filters for different fluorophores (600 V and
536 nm for FAM, 475 V and 550 nm for HEX, 475 V and 580
nm for TAMRA, and 475 V and 610 nm for ROX). The four
fluorophores were detected by two scans using a built-in split-
ter. The fluorescence intensities of the labeled DNAs were de-
convoluted by the method described in (16) and the resultant
intensities provide the ratio of DNA amounts in the bound and
unbound bands. The relative equilibrium binding constants
(Kref) were calculated as the bound to unbound ratio of
each mutant Omnt DNA divided by the ratio of the wild-
type. The Kref of the wild-type Omnt is equal to 1 by definition.

Sequence logos

The sequence logos were created using a modified version of
the Makelogo program (24) in which the bases are not sorted
according to their frequency but rather as determined by the
user. The letter ‘M’ is added to indicate the amount of mutual
information between the two positions, with half of the total
placed above each position.

RESULTS AND DISCUSSION

Using 11 His-tagged variants of the Mnt protein described by
Silbaq et al. (23), we determined the binding affinity, relative
to the wild-type sequence, for all 15 possible variants at opera-
tor positions 16 and 17 using the QuMFRA assay described in
(16). Briefly, for a specific Mnt protein, each lane of an elec-
trophoretic mobility shift assay (EMSA) gel contains the wild-
type operator and three variants, each labeled with a different
fluorescent dye. De-convolution of the fluorescence intensities
at various wavelengths, for both the bound and unbound bands
of the gel, is sufficient to determine the relative affinity of the
four operators. Therefore, for a single protein, five EMSA
lanes are sufficient to determine the relative affinity to all
16 operator sequences. However, we repeated the measure-
ments at least 3 times for each protein–operator combination
to also determine the variability of the measurements. Supple-
mentary Table S1 contains the relative affinity measurements
and standard deviations for all of the 12 proteins, including the
native Mnt reported in (16), binding to each of the 16 opera-
tors. All of the other proteins contain His-tags on the C-
terminus, as described in (23). ‘H6’ is the wild-type protein
with the His-tag. Each of the other variant proteins has the
amino acid substitution listed following the H6 designation;
e.g. H6A has alanine substituted for histidine at position 6.
H6S, reported in Silbaq et al. (23), was not recovered in
sufficient quantity to be used in these analyses, but all of
the other variants were included.

Table 1 summarizes all of the relative affinity data as ‘spe-
cific binding constants’, Ks(b), which is the affinity for the
particular operator, b, divided by the average value of all
operators:

Ks bð Þ ”Kref bð Þ · N
P

b Kref bð Þ , 1

where N is the total number of operators considered, 16 in this
case. Ks(b) is a measure of the specificity of the protein for
some binding sites compared to others. For a completely non-
specific protein, Ks(b) = 1 for every sequence; for a protein that
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binds exclusively to one sequence, Ks(b) = 16 for that sequence
and 0 for all others. Ks(b) divided by N is the fraction of
sequence b that would be bound to the protein in an experiment
with DNA excess and all of the operators in equal concentra-
tion. We can treat those fractions as probabilities to calculate
the informational specificity (25,26), over all 16 operators, for
each protein variant. The informational specificity is

Ispec = 1=N�bKs bð Þlog2 Ks bð Þ: 2

The non-specific protein, described above, would have Ispec= 0,
and a protein with complete specificity for one sequence would
have Ispec = 4. In general, Ispec will be less than the ‘informa-
tion content’ of proteins because it is measured over a com-
plete set of binding sites, not just those that have sufficient
affinity to be selected in vivo or in vitro (25). Table 1 also
shows the Ispec for each protein. The wild-type protein has
about 1 bit total, similar to many of the variants. The His-
tagged wild-type protein has slightly decreased specificity,
consistent with SELEX results (23). A few proteins have
higher specificity, especially H6L and H6M. A few proteins
have less, especially H6N which is quite non-specific in its
binding compared to the others.

From the specific binding constants, one can also determine
the best additive model, the probabilities for each base at each
position that provides the best fit to the data while assuming
the positions contribute independently (18). Those probabil-
ities are provided for each protein in Supplementary Table S2.
For the wild-type proteins, these independent base probabil-
ities are very similar to those determined experimentally using
a different assay (25). We can then determine how different the
additive model is from the true binding affinities of each
dinucleotide variant. A convenient measure of that is the
mutual information between the two positions, which is the
amount of the total information that is not captured by the best
independent model (27). The mutual information between
positions 16 and 17 is

MI = �bbP b16b17ð Þlog2 P b16b17ð Þ=P b16ð ÞP b17ð Þ, 3

where P(b16b17) is the true probability distribution for all 16
dinucleotides at positions 16 and 17, and P(b16) and P(b17) are
the best independent base probability models for each position.
MI is also included in Table 1. As with the wild-type Mnt (16),
all of the protein variants show non-independence between the
positions. Also, as with Mnt (18), the amount of mutual infor-
mation is generally a small fraction, usually <10%, of the total
information. The proteins that are less specific show the great-
est fraction of the total information that is non-independent, as
was seen with several zinc-finger proteins (17,18). This close
approximation between the additive model and the true data
can also be seen by calculating the correlation coefficient
between the true probability values for each dinucleotide
with those predicted from the independent model. These cor-
relation coefficients are also shown in Table 1 (CC) and are all
above 0.9 except for the least specific protein, H6N. In fact,
most of the CC values are above 0.95. These results confirm
the conclusions of Benos et al. (18) that even when protein–
DNA interactions are not completely additive, such simple
additive models can still be quite good approximations to
the true binding probabilities.

Using the independent base probabilities at each position,
we can also calculate the informational specificity for each
position separately. A sequence logo is a convenient method
for displaying the specificity of a DNA binding protein (24).
Figure 1 shows the standard logo for each protein variant using
the independent base probabilities, and it also includes the
amount of mutual information which is displayed as the letter
M over each column in the logo (half of the total mutual
information is plotted over each position). A similar plot
has been used previously to show the mutual information in
conserved RNA structures, which are often quite large com-
pared to the information content of the individual positions
(28). These plots help to make several points.

(i) MI is small compared to Ispec except for the most non-
specific proteins. This is quite different from RNA bind-
ing proteins where the interaction may depend more on
the structure than the sequence and therefore have higher
mutual information than information content (28).

Table 1. Specific binding constants for Mnt variants

DNA positions Ks(b) of Mnt proteins
16 17 Mnt H6 H6A H6G H6I H6L H6M H6N H6Q H6R H6T H6V

A A 0.37 0.27 0.77 0.68 7.12 0.93 0.48 1.81 0.76 0.18 2.00 3.25
C 5.31 4.03 0.23 0.17 0.14 0.13 0.09 1.10 0.14 0.13 0.49 0.33
G 0.16 0.53 0.44 0.44 0.46 0.95 0.65 1.04 0.61 0.28 0.32 2.42
T 0.39 0.32 0.22 0.22 0.07 0.27 0.20 1.02 0.22 0.09 0.22 0.13

C A 1.70 1.58 3.64 1.91 1.49 0.83 0.56 1.83 1.34 4.50 1.97 2.33
C 3.13 2.77 2.17 0.58 0.15 0.32 0.26 0.76 0.73 1.86 0.53 0.57
G 0.58 0.33 0.71 0.40 0.23 0.14 0.33 0.55 0.76 1.81 0.72 0.57
T 0.48 0.43 0.42 0.78 0.07 0.19 0.19 0.74 1.83 2.17 1.04 0.19

G A 0.16 0.30 0.33 0.40 0.57 2.08 0.53 0.46 0.34 0.53 0.61 0.24
C 0.69 1.52 0.08 0.10 0.07 0.25 0.20 0.25 0.19 0.10 0.16 0.06
G 0.16 0.14 0.26 0.33 0.45 1.06 0.61 0.73 0.38 0.15 0.73 0.95
T 0.21 0.25 0.08 0.34 0.06 0.45 0.17 0.34 0.12 0.08 0.91 0.11

T A 0.32 0.78 5.44 6.29 4.18 6.52 9.41 1.97 4.86 3.23 3.18 3.63
C 2.02 2.41 0.25 0.41 0.12 0.19 0.36 0.41 0.64 0.23 0.33 0.13
G 0.16 0.15 0.71 2.25 0.75 1.31 1.62 2.30 2.46 0.59 2.35 0.99
T 0.16 0.19 0.22 0.68 0.08 0.38 0.34 0.69 0.61 0.08 0.44 0.10

Ispec 0.99 0.85 1.06 1.05 1.55 0.99 1.56 0.26 0.72 1.03 0.48 0.88
MI 0.09 0.07 0.13 0.05 0.06 0.09 0.13 0.07 0.13 0.10 0.13 0.11
CC 0.95 0.95 0.94 0.99 0.99 0.97 0.98 0.85 0.91 0.95 0.90 0.95
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(ii) Every protein without H6 prefers A at position 17, instead
of the wild-type C.

(iii) Most proteins prefer T at position 16, H6M quite strongly.
H6A prefers C and T almost equally, and H6I prefers A
and T almost equally.

(iv) Most of the proteins still interact primarily with position
17, although most show increased interaction with posi-
tion 16 compared to the wild-type protein. H6Q and H6R
both have stronger preferences at position 16. H6Q is the
equivalent to the N-terminus of the Arc protein, which
also prefers the sequence TA at the equivalent positions
(22,29). The result with H6R is a special case, as also seen
in the SELEX data (23), in that the primary interaction is
now with position 16 where a C is preferred. This is
consistent with our previous hypothesis (23) that the spa-
cing between the protein at amino acid 6 and the DNA at
position 17 is too small to accommodate an arginine, but
at the adjacent base pair there is a suitable geometry for a
strong interaction.

In general, the quantitative results we obtained in this study
are consistent with the binding sites selected in vitro using the
same set of proteins (23), although there are some significant
differences. These can be attributed to at least two sources. In

the SELEX study the entire binding site region was rando-
mized; while the inner section of the binding site, positions 7–
15, was highly conserved for all proteins, the outer positions,
3–6 and 16–19, were all variable and differed depending on the
protein used in the selection. In our study, where all of the
positions are constant except 16 and 17, the context is not
optimal for some proteins, and that may alter the preference
for these positions. For example, in the SELEX data, H6N was
highly specific for TA at positions 16 and 17, but it also had a
preference for TA at positions 18 and 19 where our construct
contains CT at those positions. Furthermore, those H6N
SELEX binding sites all had an overlapping site that may
have contributed to the affinity, and the results were compiled
from a fairly small sample. However, even in that case, we get
the same preferred sequence of TA; the specificity is just much
lower than we would have predicted based on the SELEX
results. In nearly every case, we get the same preferred
sequence in the two experiments, an exception being H6I
where SELEX gave a strong preference for TA, and we
now find a weak preference for AA over TA.

Based on the binding probabilities for all dinucleotides, we
can determine the similarity in the specificity between differ-
ent amino acids. Table 2 shows the correlation coefficient
between all pairs of amino acid probability vectors (i.e.
between the columns of Table 1). As one would expect
based on the logos in Figure 1, the wild-type protein has
quite different specificity than every other protein. It is negat-
ively correlated with all of them except for H6A and H6R
which have low positive correlations of 0.10 (or even some-
what lower with the native Mnt). On the other hand, all of the
other amino acids have positive correlations with each other,
consistent with the fact that they all bind to TA better than
average [i.e. Ks(TA) > 1], and they tend to have other pre-
ferences in common too. If one clusters all of the amino acids
with correlations above 0.9 (single link clustering), one group
emerges containing A, G, L, M and Q. None of the other amino
acids are linked to one another. If the threshold for clustering is
reduced to 0.8, then the group expands to include R, T and N,
and I and V form another group, but the wild-type H remains
alone. In fact, all amino acids except H merge into one cluster
at a cutoff of 0.73, but H does not until the cutoff is reduced to
0.1. Figure 2 is a diagram of the clusters, with the stronger
correlations (CC > 0.9) indicated by solid lines and the weaker
ones (0.8 < CC < 0.9) indicated by dotted lines. These groups
overlap but are not identical to those obtained with the SELEX
data (23). In particular, H was not so distinctive in the SELEX
experiments and grouped with A and T, where R was the most
distinctive with its strong preference for C at position 16. In
these quantitative studies, C is still preferred at 16, but the
overall probability distribution is more similar to the other
amino acids than in the SELEX data. Consistent with the
SELEX results, it is seen that amino acids with quite different
physical properties can have very similar preferences for bind-
ing sites, indicating that a specific base pair can be selected for
different reasons. For example, while it is not surprising that L
and M should have very similar specificities, it is unexpected
for G and Q to have such strong similarities to each other and
to L and M. This indicates that amino acids with distinct
characteristics can select the same base pairs, presumably
through interactions with different features. We suppose
that G, L and M probably selected T through hydrophobic

Figure 1. Logo representations (24) for the binding specificity of each Mnt
variant. ‘Mnt’ refers to the native protein; all of the other proteins have a His-tag
at their C-terminus. ‘H6’ is the wild-type protein with the His-tag and each
amino acid replacement is indicated by its name. The letter ‘M’ in the logos
refers to the mutual information between positions 16 and 17 for the protein,
with half of the total value placed at each position (see text).
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interactions with the T-methyl group, whereas Q can form
hydrogen bonds with the T–A base pair.

The term ‘recognition code’ refers to modeling the relation-
ship between the amino acid sequence of a TF and the base
sequence of a DNA binding site. With a perfect recognition
code one could quantitatively predict the binding specificity of
a TF from its amino acid sequence. However, all attempts to
uncover such a model have fallen well short of the goal. From
SELEX and phage-display selections for proteins of the early
growth response (EGR) family of zinc-finger transcription
factors, we developed a quantitative recognition code that
showed moderate success at predicting quantitative specificity
for a test set of proteins (12). This method took advantage of
the known pattern of interactions, which are that the amino
acids at positions �1, 2, 3 and 6 of the a-helix of the zinc-
finger protein, interact with positions 3, 4, 2 and 1, respec-
tively, of the binding site. For each of those amino acid: base
pair interactions (�1:3; 2:4; 3:2; 6:1) we obtained a 4 · 20
table of predicted binding energies, from which one can deter-
mine the relative affinity of each base pair for each amino acid,
according the model for zinc-finger–DNA interactions (12).
Each of the four amino-acid:base-pair interactions had a dis-
tinct relationship, as is expected from the distinct geometries
of their interactions. We can compare each of those tables with
the relative affinities we obtained for different variants of the
Mnt protein, using the best estimates of the independent base

contributions (Supplementary Table S2). Comparing the
results of our study, using the independent models for each
protein, we find that there is a strong correlation, 0.74, between
position 17 (using the complementary strand as the basis for
comparison) and position 2 of the binding sites for the zinc-
finger proteins. Based on our previous SELEX results, we
noticed that qualitatively the interaction of Mnt with operator
position 17 was more similar to the interaction of zinc-finger
proteins with position 2 of their binding sites than with either
positions 1 or 3 (23). We now see that quantitatively, over the
set of 11 amino acids in our set of Mnt variants, the correlation
between mnt operator position 17 with zinc-finger binding site
position 2 is much higher than for positions 1, 3 or 4, which are
all between �0.22 and 0.28 (Supplementary Table S3). How-
ever, we cannot simply use position 2 from the zinc finger sites
as a substitute for Mnt position 17; a correlation of 0.74 is not
nearly as high as we would like and, furthermore, the correla-
tion varies considerably for different amino acids. If we cal-
culate correlations for each amino acid across the probability
distributions of all four bases, there are several with very high
correlations, 0.89 to 0.99 for A, G, H, I, L, V, a few with more
moderate correlations, 0.67 to 0.78 for M, R, T, and two with
negative correlation, N, Q. All of the amino acids with weak
and moderate correlations show higher correlations between
mnt position 16 and zinc-finger position 1, where H6R has a
very high correlation of 0.94. Overall the correlation is only
moderate, 0.38 (Supplementary Table S3), but several amino
acids show high correlations between the mnt position 16 and
zinc-finger binding site position 1, including H6 which has a
correlation of 0.98. In zinc fingers His is not often used in
protein position 6, which interacts with base position 1, and it
does not show much specificity for different bases, only a
slight preference for A and C [on the complementary strand;
(12)]. This is exactly the case for the mnt operator position 16,
where there is a weak preference for A and C [Figure 1; (25)].
Therefore, we believe that, in addition to the contacts between
Mnt and its operator in the model of Raumann et al. (22), there
may be an interaction between the H6 from the other strand of
the b-ribbon with position 16. This would make the Mnt inter-
action with its operator more similar to the Arc interaction
with its operator, where the homologous Gln amino acids on
both b-strands interact with both positions 16 and 17 of the
operator (22,29). It also helps to explain how variants of H6
dramatically effect the specificity of both positions 16 and 17

Table 2. Correlations between binding probabilities for Mnt variants

Correlation coefficients of Mnt proteins
Mnt H6 H6A H6G H6I H6L H6M H6N H6Q H6R H6T H6V

Mnt 1.00 0.96 0.06 �0.14 �0.18 �0.26 �0.18 �0.03 �0.20 0.08 �0.21 �0.18
H6 1.00 0.10 �0.10 �0.19 �0.22 �0.13 �0.08 �0.17 0.10 �0.22 �0.19
H6A 1.00 0.91 0.44 0.75 0.79 0.58 0.78 0.83 0.75 0.68
H6G 1.00 0.47 0.91 0.95 0.61 0.93 0.67 0.84 0.66
H6I 1.00 0.50 0.46 0.61 0.42 0.19 0.68 0.82
H6L 1.00 0.96 0.48 0.83 0.40 0.74 0.63
H6M 1.00 0.50 0.90 0.44 0.75 0.60
H6N 1.00 0.65 0.42 0.83 0.73
H6Q 1.00 0.60 0.86 0.58
H6R 1.00 0.57 0.52
H6T 1.00 0.73
H6V 1.00

Figure 2. Similarities of the specificities for the amino acid variants. Amino
acids with correlations greater than 0.9 are linked by a solid line. Those with
correlations between 0.8 and 0.9 are linked by a dotted line.
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(22,23). How the protein variants interact with those positions
then also influences how the outer section of the operator
interacts with the protein, so that the change in specificity
extends to include positions 18 and 19 as well (23).

CONCLUSIONS

Using the QuMFRA assay (16) we have obtained the quanti-
tative specificity for a set of 11 variants of the Mnt repressor
protein for each of the 16 different operator sequences. By
examining all possible base combinations at two adjacent
positions we have shown that each protein interacts with
the two positions in a non-independent manner, but a simple
independent model provides a close approximation to the true
binding probabilities. In searching for recognition codes for
various protein families, it is important to know whether inde-
pendent models will suffice as more complex models are pos-
sible but require many more parameters to be estimated. For
Mnt, positions 16 and 17 were much more highly correlated
than any other pair of positions in the data from a SELEX
experiment (25), so the fact that they can be fit fairly well with
an independent model indicates that such a model should work
for the entire protein.

Assuming that independent contributions of the positions
works well in general, an efficient strategy to determine the
quantitative specificity of a protein for its entire set of high
affinity binding sites emerges. The protein can be used in a
SELEX experiment to obtain a collection of binding sites, all
with reasonably high affinity. There should be only a few
rounds of selection so that the sites still maintain considerable
variability. Each site should be similar enough to the consen-
sus that they are easily aligned, but an average of two to four
differences from the consensus will ensure a large sampling of
the high affinity sequence set. Then each selected site can be
assayed using QuMFRA to determine their quantitative rela-
tive affinities, and if desired one site can be used to determine
its absolute affinity thereby providing the absolute affinity to
every site in the collection. Assays on at least 50 sites could
easily be determined in a single gel, and the quantitative bind-
ing data could be used to calculate a quantitative specificity
model for the protein. Measuring the fit of the model back to
the quantitative model will also give an indication of whether
the independence assumption is reasonably accurate (15,18).
The whole SELEX experiment could then be repeated for
variants of the protein in order to develop a quantitative recog-
nition code for the protein family. One important unknown is
how well the independence assumption works for the protein
side of the interaction. So far most tests have assayed whether
changes in the positions of the DNA sites are approximately
independent, but equally important for developing general
recognition models is whether changes in the amino acids
of the protein contribute independently to the binding. It is
unlikely to be exactly true, but as with the DNA side, a good
approximation to independence would allow for simple mod-
els to provide reasonably accurate predictions of specificity for
other proteins. This would, in turn, help to uncover the regu-
latory networks in genome sequences by suggesting which TFs
are most likely to interact with which regulatory motifs, cur-
rently a major challenge in genome annotation and cellular
modeling.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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