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modeling temperature responses of leaf respiration
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Using an empirical approach, we report that the slope
of the short-term log-transformed leaf respiration (R)}-
temperature (T) curves declines with increasing leaf T
in a manner that is uniform across biomes (1); the re-
sults have utility for modeling carbon fluxes in terres-
trial biosphere models (TBMs). The use of an empirical
approach reflects the fact that, despite advances in
understanding of factors regulating R (2-4) and its
T-response (5), basic information on key determinants
of R remains lacking, hindering development of a
process-based model with utility for TBMs. Some,
including Adams et al. (6), view Arrhenius theory as
providing a way forward and argue that it is both
predictive and mechanistic. As noted (6), this ap-
proach provides equivalent predictive power as the
log-polynomial function (1), a finding that we do not
dispute, and that was recently noted in a separate
paper comparing several approaches to fitting short-
term T-function of R (7). We also agree that global con-
vergence in the shape of R-T curves is an indication that
respiratory regulation is likely to be common across
plants (6). Where we differ, however, is whether the
applied Arrhenius approach (6) is mechanistic. Arrhe-
nius theory is applicable to reactions catalyzed by single
enzymes that are substrate-saturated. For respiratory
metabolism in plants, neither assumption holds, be-
cause the respiratory system is made up of numerous,
highly-regulated reactions that are rarely substrate-sat-
urated (8). Thus, although activation energy (E,) values
of R, including temperature-dependent ones (9, 10),
provide estimates of the temperature coefficient of

the overall respiratory system, they can be viewed as
outputs of a statistical fit, because they do not neces-
sarily provide insights into the individual mechanisms
underpinning variation in R-T curves.

In the temperature-modified Arrhenius approach (9),
changes in the slope of log-transformed R-T curves
are achieved via adding a factor (8) to account for
T-dependent changes in the activation energy (i.e.,
T-sensitivity) estimated at O °C (Ep). Similarly, we (1)
provide estimates of the T-sensitivity at O °C, and how
the T-sensitivity of R declines with increasing leaf T (i.e.,
b- and c-parameters in the polynomial). Thus, in general
terms, b and Eq describe the T-sensitivity at 0 °C, with
cand & accounting for deceleration in R as leaves warm.
Congruence in the two approaches therefore reflects
their underlying operational similarities, raising the pos-
sibility that TBMs can indeed use either approach (1, 9).

Looking forward, development of a process-based
model to account for the complexity of taxa- and
environment-driven variations in R (11) remains a high
priority. Notable advances are clarifying individual and
collective mechanistic controls of R through models and
experiments (2-5). Ideally in the future, a truly mechanistic
approach based on these advances will emerge that
meets the TBM integration requirements of being
parameter-sparse, scalable, and spatially robust; how-
ever, current knowledge remains insufficient. Because of
this fact, we suggest that empirical-based second order
polynomials (1, 6, 9) fitted to globally relevant R-T curve
datasets (1) are an appropriate way for current TBMs to
model dynamic variations in short-term R-T curves.
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