
COMMENTARY

Energy-efficient neural network chips approach
human recognition capabilities
Wolfgang Maassa,1

The dream to create novel computing hardware that
captures aspects of brain computation has occupied
the minds of researchers for over 50 y. Driving goals
are to carry both the astounding energy efficiency of
computations in neural networks of the brain and their
learning capability into future generations of elec-
tronic hardware. A realization of this dream has now
come one step closer, as reported by Esser et al. (1).
The authors demonstrate that a very energy-efficient
implementation of an artificial neural network (i.e., of a
circuit that shares properties with networks of neurons
in the brain) achieves almost the same performance as
humans as shown on eight benchmark datasets for
recognizing images and sounds. It had previously
been shown that somewhat different types of deep
artificial neural networks can do this, but these re-
quired power-hungry computing hardware, such as
graphics processing units (2).

A characteristic feature of artificial neural networks
is that they cannot be programmed in terms of
instructions and variables, the way a traditional com-
puter can. Rather, their computations are determined
by a large set of numbers (parameters) that loosely
correspond to the strengths (weights) of synapses
between neurons in the brain and the excitabilities
(biases) of neurons (see the parameters “w” and “b” in
Fig. 1). Because these numbers have little meaning for
humans, especially not in a large neural network, they
are produced through an optimization algorithm that
adjusts them in an iterative process. This process aims
at minimizing the errors for a concrete computational
task, such as classifying visual objects in natural scenes.
The architectures and neuron models of artificial neural
networks are usually chosen to maximize the perfor-
mance of particular learning algorithms for particular
tasks, and not to make the artificial neural network more
similar to biological networks of neurons.

The first neural network models, proposed by
McCulloch and Pitts (3), were actually designed to
capture essential aspects of neural computation in
the brain. The underlying neuron model (Fig. 1A) is
today referred to as a McCulloch–Pitts neuron or
threshold gate. However, it turned out to be difficult

to design learning algorithms for networks consisting
of several layers of such neurons. This difficulty was
caused by the jump of the activation function f be-
tween binary outputs 0 and 1. Therefore, this neuron
model was replaced in the 1980s (4) by a sigmoidal
neuron model with analog outputs (Fig. 1B), where the
activation function f interpolates in a smooth differentia-
blemanner between 0 and 1. The simplest and still most
commonly used learning algorithm for this type of neu-
ral network is a gradient-descent optimization, which
minimizes the errors of the network outputs for a given
task. If the activation function of each neuron is differen-
tiable, one can also compute via the chain rule for neu-
rons that do not directly produce a network output, how
their parameters should be changed to reduce the er-
rors at the network output. The resulting layerwise ap-
plication of the chain rule, starting at the output neurons
and moving back toward the input layer, is the famous
“backprop” (backward propagation of errors) learning
algorithm. The transition of the neuron model from A
to B in Fig. 1 is actually also meaningful from the per-
spective of modeling biological neurons. These neurons
emit sequences of pulses [called action potentials or
spikes (Fig. 1C)], which they send via axons and synaptic
connections to other neurons. Because each spike is an
all-or-none event, it shares some features with the binary
output of a McCulloch–Pitts neuron. But neurons in the
brain tend to emit spikes in an unreliable manner. The
probability of producing a spike at a given time de-
pends, in standard models for a biological neuron, on
its synaptic inputs in a smooth manner.

Most approaches for emulating neurons in energy-
efficient hardware have favored neuron models with
discrete outputs, such as the McCulloch–Pitts neuron
(Fig. 1A) or the spiking neuron (Fig. 1C). Both of these
neurons can be emulated on the TrueNorth chip of IBM
(5). The breakthrough reported in Esser et al. (1) arose
from the discovery that the parameters of networks of
McCulloch–Pitts neurons can also be determined
through a variation of the backprop algorithm, despite
the nondifferentiability. This discovery came on the
shoulders of a better understanding of backprop and
its variations. One important aspect of all learning

aInstitute for Theoretical Computer Science, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, A-8010Graz, Austria
Author contributions: W.M. wrote the paper.
The author declares no conflict of interest.
See companion article on page 11441.
1Email: maass@igi.tugraz.at.

www.pnas.org/cgi/doi/10.1073/pnas.1614109113 PNAS | October 11, 2016 | vol. 113 | no. 41 | 11387–11389

C
O

M
M

E
N
T
A
R
Y

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1614109113&domain=pdf
mailto:maass@igi.tugraz.at
www.pnas.org/cgi/doi/10.1073/pnas.1614109113

algorithms is that it does not pay to fit their parameters too well to a
given set of training examples (i.e., target input/output pairs for the
network). This becomes understandable if one takes into account
that one does not want the neural network to perform well just on a
fixed set of training examples, but also on similar but new exam-
ples. For example in an application to visual object classification,
one wants the learning algorithm to force the neural network to
extract classification rules that also work for new images, rather than
allow it to implement rote learning for the classification of images in
the training set. This generalization capability is enhanced if one
forces the network to compress the information that it receives
through the training examples. One very successful type of infor-
mation compression is characteristic for convolutional neural net-
works, which form an important subclass of artificial neural networks.
There, one forces subsets of neurons to use the same parameters.
This works especially well for tasks such as visual processing,
where it makes sense to apply the same feature extraction to all
patches of an image. The implementation of convolutional neural
networks on the TrueNorth chip requires additional clever methods
for dealing with the limited fan-in of its neurons, and for the con-
version of multivalued sensory inputs to bits.

The learning algorithm of Esser et al. (1), which was indepen-
dently discovered by Courbariaux and Bengio (6), applies another
information compression trick proposed by Courbariaux et al.
(7) and Esser et al. (8): after all iterations of the backprop algorithm
are completed, one rounds the values of weights to just two or
three values. Obviously, binary or ternary weights can be stored
more efficiently on a chip than analog weights. The resulting loss
in computational precision is balanced to some extent by en-
hanced generalization capability through this additional informa-
tion compression. However, to make the backprop algorithm work
one needs to store and update somewhere else precise analog
weights during the iterative error reduction via gradient descent.
Therefore, the learning process itself cannot be carried out on the
chip in the approach of Esser et al. (1). Another clever trick from
Courbariaux et al. (7) and Esser et al. (8) is used to make the results
of this external backprop algorithm applicable to the McCulloch–
Pitts neurons on the chip, despite the nondifferentiability of their
activation function f: one replaces the true derivative of f, which
has a singularity at 0, by the derivative of a virtual smooth acti-
vation function. The resulting learning process for large and
deep networks of McCulloch–Pitts neurons works so well that

Fig. 1. Neuron models for artificial and biological neural networks. (A) The oldest neuron model in artificial neural networks and computer
science. It can be implemented very efficiently in hardware and is used for the results of Esser et al. (1). (B) The most common neuron model for
applications of backprop in artificial neural networks. (C) A spiking neuron model, which reflects more aspects of neurons in the brain.

11388 | www.pnas.org/cgi/doi/10.1073/pnas.1614109113 Maass

www.pnas.org/cgi/doi/10.1073/pnas.1614109113

Esser et al. (1) achieve close to state-of-the art performance on
several difficult benchmark datasets for classifying visual or auditory
inputs. In addition, the implementation on the TrueNorth chip is
so energy-efficient that it can also be installed in mobile devices.

Apart from its obvious commercial significance, this achieve-
ment also throws new light on an old problem in the theory of
computational complexity, more precisely on the computational
power of threshold circuits, which is the common name for
feedforward networks of McCulloch–Pitts neurons in theoretical
computer science. When one started a few decades ago to analyze
the computational power of different idealized circuit models for
parallel computation, one realized that the inclusion of threshold
gates—rather than just gates that compute AND, OR of arbitrarily
many bits in one step—substantially increases their computational
power. This finding provided a first hint that the summation of
thousands of input pulses on the membrane of a biological neuron
is a really powerful computation step. In fact, it has already turned
out to be quite difficult to prove for a concrete function that it
cannot be computed by polynomial size-threshold circuits of depth
2 with binary weights (9), and it is currently still conceivable that
depth 3 circuits of this type can even solve problems that are com-
plete for nondeterministic polynomial time (i.e., NP-complete). The
results of Esser et al. (1) provide new evidence that the computa-
tional power of threshold circuits is in fact very large. In addition,
their learning algorithm for threshold circuits provides the first prin-
cipled way to approximately “program” threshold circuits for spe-
cific computational tasks. An interesting open question is whether
one can reduce the fairly large depth of the resulting threshold
circuits for concrete tasks similarly, as has been demonstrated for
other types of deep neural networks (10).

The results of Esser et al. (1) also raise another scientific ques-
tion: To what extent do artificial neural network models that can be
efficiently implemented in current hardware capture computing
and learning principles of networks of neurons in the brain? The
TrueNorth chip can also be configured to emulate networks of a
simple type of spiking neuron model that emits pulses in continu-
ous time (Fig. 1C). However, at this point we do not have powerful
learning algorithms for networks of spiking neurons, nor do we
know which features of a spiking neuron enable brain-like compu-
tation and learning. The spike output of simple spiking neuron
models depends deterministically on their synaptic input, whereas
biological neurons behave like stochastic computing units. In addi-
tion, biological synapses and neurons should be thought of as tem-
poral filters, whose current output does not only depend on
their current input, but also on the recent history of their inputs.

Furthermore the brain uses many genetically and physiologically
different types of neurons and synapses that have more specialized
filtering and plasticity properties. Synaptic connections between
them form networks whose architecture differs in essential aspects
from that of common deep artificial neural networks. These facts
suggest that the organization of computations in networks of neu-
rons in the brain is quite different from that in most types of cur-
rently considered artificial neural network models (11).

One important functional property of brain networks is that
they can learn in an online manner, where new categories or
training examples can be introduced at later stages of a learning
process, without requiring a repetition of the whole learning
process and a reproduction of previously used training examples.
A learning algorithm like that in Esser et al. (1) cannot do that.
However, many online learning methods have been developed in
machine learning. Hence, online learning capability is a challeng-
ing but still feasible next goal for neuromorphic hardware. One
possible implementation approach is to add a plasticity processor
in a hybrid neuromorphic system (12).

The backprop algorithm is a supervised learning algorithm,
where a teacher (supervisor) needs to provide for each training
example the desired network output. This is needed to compute the
error of the network output: that is, the difference between the
desired and actual output. However, such extensive help from an
internal teacher is likely to be quite rare in the brain. After all, if some
neurons in the brain “know” already the target output for a compu-
tational task, the resulting learning process amounts to duplication
of a capability, rather than to its emergence. Exceptions are specific
types of learning tasks, such as the prediction of subsequent sensory
stimuli. There the environment provides the required teacher, simply
in the form of the actual subsequent sensory stimuli. A teacher is also
available in the brain for predicting sensory input from one sensory
modality in terms of inputs from other sensory modalities. But, for
many types of tasks, the brain has to engage different types of
learning methods that do not require a teacher, such as unsuper-
vised and reward-based learning (13). These other learningmethods
will also become essential if one wants to enable larger and more
versatile neuromorphic systems to acquire brain-like functional ca-
pabilities. We really would like to enable them to learn from obser-
vations and play, and to carry learned knowledge to new tasks.

Acknowledgments
The author’s research is supported by the Human Brain Project 650003 (FPA),
604102 (HBP), and 720270 (HBP SGA1) of the European Union.

1 Esser SK, et al. (2016) Convolutional networks for fast, energy-efficient neuromorphic computing. Proc Natl Acad Sci USA 113:11441–11446.
2 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444.
3 McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133.
4 McClelland JL, Rumelhart DE; PDP Research Group (1987) Parallel Distributed Processing (MIT Press, Cambridge, MA).
5 Merolla PA, et al. (2014) Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197):
668–673.

6 Courbariaux M, Bengio Y (2016) Binarynet: Training deep neural networks with weights and activations constrained to +1 or −1. arXiv:1602.02830v3.
7 Courbariaux M, Bengio Y, David JP (2015) Binaryconnect: Training deep neural networks with binary weights during propagations. Adv Neural Inf Process Syst
28:3123–3131.

8 Esser SK, Appuswamy R, Merolla PA, Arthur JV, Modha DS (2015) Backpropagation for energy-efficient neuromorphic computing. Adv Neural Inf Process Syst
28:1117–1125.

9 Hajnal A, Maass W, Pudlák P, Szegedy M, Turán G (1993) Threshold circuits of bounded depth. J Comput Syst Sci 46(2):129–154.
10 Ba J, Caruana R (2014) Do deep nets really need to be deep? Adv Neural Inf Process Syst 27:2654–2662.
11 Maass W (2016) Searching for principles of brain computation. Curr Opin Behav Sci 11:81–92.
12 Friedmann S, et al. (2016) Demonstrating hybrid learning in a flexible neuromorphic hardware system. IEEE Trans Biomed Circuits Syst. arXiv:1604.05080.
13 Marblestone AH, Wayne G, Kording KP (2016) Toward an integration of deep learning and neuroscience. Front Comput Neurosci 10:94.

Maass PNAS | October 11, 2016 | vol. 113 | no. 41 | 11389

