Skip to main content
. 2016 Sep 20;113(41):11441–11446. doi: 10.1073/pnas.1604850113

Table 3.

Summary of results

Dataset State of the art TrueNorth best accuracy TrueNorth 1 chip
Approach Accuracy Accuracy #cores Accuracy #cores FPS mW FPS/W
CIFAR10 CNN (11) 91.73% 89.32% 31492 83.41% 4042 1249 204.4 6108.6
CIFAR100 CNN (34) 65.43% 65.48% 31492 55.64% 4042 1526 207.8 7343.7
SVHN CNN (34) 98.08% 97.46% 31492 96.66% 4042 2526 256.5 9849.9
GTSRB CNN (35) 99.46% 97.21% 31492 96.50% 4042 1615 200.6 8051.8
LOGO32 CNN 93.70% 90.39% 13606 85.70% 3236 1775 171.7 10335.5
VAD MLP (36) 95.00% 97.00% 1758 95.42% 423 1539 26.1 59010.7
TIMIT Class. HGMM (37) 83.30% 82.18% 8802 79.16% 1943 2610 142.6 18300.1
TIMIT Frames BLSTM (38) 72.10% 73.46% 20038 71.17% 2476 2107 165.9 12698.0

The network for LOGO32 was an internal implementation. BLSTM, bidirectional long short-term memory; CNN, convolutional neural network; FPS, frames/second; FPS/W, fames/second per Watt; HGMM, hierarchical Gaussian mixture model; MLP, multilayer perceptron. Accuracy of TrueNorth networks is shown in bold.