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ABSTRACT

We report the presence of mitochondrial DNA (mtDNA) hyperdiversity in the marine
periwinkle Melarhaphe neritoides (Linnaeus, 1758), the first such case among marine
gastropods. Our dataset consisted of concatenated 16S-COI-Cytb gene fragments.
We used Bayesian analyses to investigate three putative causes underlying genetic
variation, and estimated the mtDNA mutation rate, possible signatures of selection
and the effective population size of the species in the Azores archipelago. The mtDNA
hyperdiversity in M. neritoides is characterized by extremely high haplotype diversity
(Hd = 0.999 £ 0.001), high nucleotide diversity (w = 0.013 +0.001), and neutral
nucleotide diversity above the threshold of 5% (7, = 0.0677). Haplotype richness is
very high even at spatial scales as small as 100 m?. Yet, mtDNA hyperdiversity does not
affect the ability of DNA barcoding to identify M. neritoides. The mtDNA hyperdiversity
in M. neritoides is best explained by the remarkably high mutation rate at the COI locus
(u =5.82 x 107> per site per year or = 1.99 x 10~* mutations per nucleotide site
per generation), whereas the effective population size of this planktonic-dispersing
species is surprisingly small (N, = 5,256; CI = 1,312-3,7495) probably due to the
putative influence of selection. Comparison with COI nucleotide diversity values in
other organisms suggests that mtDNA hyperdiversity may be more frequently linked
to high p values and that mtDNA hyperdiversity may be more common across other
phyla than currently appreciated.

Subjects Genetics, Marine Biology, Molecular Biology

Keywords mtDNA hyperdiversity, Haplotype diversity, Nucleotide diversity, Planktonic
dispersal, Effective population size, Selection, Mutation rate

INTRODUCTION

The term DNA hyperdiversity is usually applied to populations when neutral nucleotide
diversity at selectively unconstrained synonymous sites is >5% (Cutter, Jovelin ¢» Dey,
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2013), that is when two 100 bp protein-coding DNA sequences (mitochondrial or nuclear)
chosen randomly from a population sample differ on average at five or more synonymous
and neutral nucleotide positions. Nucleotide diversity in a sequence alignment is calculated
either from pairwise differences at all sites (77) or at segregating sites only (6) (Nei, 1987;
Nei & Miller, 1990; Watterson, 1975). Yet, 7 is often preferred because its estimation is less
sensitive to sequencing errors and DNA sequence length than 6 (Johnson ¢ Slatkin, 2008).
Nucleotide diversity is also calculated at synonymous sites (sn) to obtain an estimate
of neutral polymorphism reflecting the balance between mutation pressure and genetic
drift. This latter measure of 7rsy; is required to observe hyperdiversity. DNA hyperdiversity
is usually associated with fast evolving prokaryotes and viruses and less frequently with
eukaryotic organisms showing lower rates of evolution (Drake et al., 1998). Nevertheless,
mitochondrial (mtDNA) or nuclear (nDNA) DNA data retrieved from literature references
on 505 animal species, showed signatures of DNA hyperdiversity (7sn > 0.05) in 43% of
the species studied, i.e., 42% among 394 Chordata, 55% among 66 Arthropoda, 33%
among 24 Mollusca, 24% among 17 Echinodermata, and 100% among 3 Nematoda
(Table S1). Although these percentages most probably reflect strong sampling bias, DNA
hyperdiversity seems not uncommon in eukaryotes. Rates of mtDNA evolution are 10-30
times faster than nDNA and drive mitonuclear coevolution and speciation through strong
selection pressure (Blier, Dufresne ¢ Burton, 20015 Hill, 20165 Lane, 2009). Hyperdiverse
intraspecific mtDNA variation provides a greater density of polymorphic sites for selection
to act upon (Cutter, Jovelin & Dey, 2013), and possibly provokes higher speciation rate as
observed in birds and reptiles (Eo ¢ DeWoody, 2010). Studying mtDNA hyperdiversity
is hence interesting to better understand how evolutionary processes such as mutational
dynamics and selection that underlie mitonuclear coevolution contribute to speciation
(Burton ¢ Barreto, 2012).

mtDNA is a popular population genetic marker because of its variability and, as such,
is widely used for evolutionary studies at the species level (Féral, 2002; Wan et al., 2004)
and DNA barcoding (Hebert, Ratnasingham ¢» DeWaard, 2003). The main determinants
of animal mtDNA diversity are supposed to be mutation rate () and selection, while in
contrast to nDNA, effective population size (N, ) and ecology (life history traits) are expected
to be less important (Bazin, Glémin ¢ Galtier, 2006; Cutter, Baird ¢ Charlesworth, 2006;
Dey et al., 2013; Lanfear, Kokko & Eyre-Walker, 2014; Leffler et al., 2012; Nabholz, Glémin &
Galtier, 2009; Nabholz et al., 2008; Small et al., 2007). The higher nDNA diversity observed
in invertebrates vs. vertebrates, in marine vs. non-marine species, and in small vs. large
organisms, is probably therefore not in line with patterns of mtDNA diversity (Bazin,
Glémin & Galtier, 20065 Leffler et al., 2012). As the main determinants of animal mtDNA
diversity are supposed to be  and selection, mtDNA hyperdiversity is more likely to be
also explained by high u or selection on the mitochondrial genome, and we expect that the
relationship between N, and mtDNA diversity may be weakened. Still, at least in eutherian
mammals and reptiles mtDNA diversity seems to correlate with N, (Hague ¢ Routman,
2016; Mulligan, Kitchen & Miyamoto, 2006), so that an eventual influence of N, on mtDNA
hyperdiversity cannot a priori be neglected. Hence, in summary, mtDNA diversity may
be affected by amongst others: (1) mutations generating new alleles that increase mtDNA
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diversity, (2) diversifying and balancing selection that increase mtDNA diversity by favoring
extreme or rare phenotypes (Maruyama & Nei, 1981; Mather, 1955; Rueffler et al., 2006),
(3) other types of selection that decrease mtDNA diversity by eliminating disadvantageous
alleles (Anisimova & Liberles, 2012), and (4) fluctuations in N, since more mutations
arise in populations with larger N, (Kimura, 1983). Yet, far more empirical data are
needed to better understand the relative contribution of various determinants of mtDNA
hyperdiversity.

In the present work, we investigate three potential determinants of mtDNA hyperdi-
versity i.e., i, selection and N,, in the marine periwinkle Melarhaphe neritoides (Linnaeus,
1758) in the Azores archipelago. Melarhaphe neritoides is an intertidal gastropod that shows
signatures of mtDNA hyperdiversity (see data in Garcia et al., 2013). It is a small (shell up
to 11 mm) temperate species (Lysaght, 1941), in which the sedentary adults produce pelagic
egg capsules and long-lived planktonic larvae with high dispersal potential during 4-8 weeks
until settlement (Cronin, Myers & O’riordan, 2000; Fretter ¢ Manly, 1977; Lebour, 1935).
Melarhaphe neritoides is widely distributed throughout Europe (Fretter & Graham, 1980),
where it shows a remarkable macrogeographic population genetic homogeneity (inferred
from allozyme data) (Johannesson, 1992), though locally in Spain it displays huge amounts
of mtDNA COI diversity in terms of a large numbers of polymorphic sites (S = 16%), a very
high haplotype diversity (Hd = 0.998) and a very high nucleotide diversity (7 =0.019)
(Garcia et al., 2013). We studied mtDNA diversity of M. neritoides within the archipelago
of the Azores because this area provides a vast, though relatively isolated, setting to explore
geographic mtDNA variation at different spatial scales.

First, we formally describe and evaluate mtDNA hyperdiversity in M. neritoides, by
assessing diversity in three mtDNA gene fragments, viz. 16S ribosomal RNA (16S),
cytochrome oxidase ¢ subunit I (COI) and cytochrome b (Cytb) in substantial numbers
of individuals and locations. Second, we survey the literature to compare M. neritoides
mtDNA hyperdiversity with other littorinids, other planktonic-dispersing gastropods
showing high genetic diversity, and other hyperdiverse molluscs in general. Finally, we
explore the relationship between mtDNA diversity in M. neritoides and (1) p, (2) selection,
(3) N,, (4) population genetic structuring, and (5) phylogeny.

MATERIALS AND METHODS

Samples and DNA collection

A total of 610 specimens of M. neritoides were collected between 1992 and 2012 at six
localities in the Azores archipelago, Portugal, viz. Varadouro, Faial island (FAI), Faja
Grande, Flores island (FLO), Mosteiros, Sao Miguel island (MOS), Lajes do Pico, Pico
island (PIC), Maia, Santa Maria island (SMA), and Porto Formoso, Sao Miguel island
(SMI) (Fig. 1). These 610 specimens contribute to our analyzed data sets as follows (Table
S2): (1) dataset 1: 185 specimens from five islands sequenced for COI (614 bp), 16S
(482 bp) and Cytb (675 bp) to investigate mtDNA diversity and demographic history;
(2) dataset 2: 223 specimens from one island collected at a single spot of about 100 m?
at MOS and sequenced for COI (657 bp) and 213 among these sequenced for 16S (482
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Figure 1 Sampling sites (cross-shaped symbols) of M. neritoides in the Azores archipelago, Portugal.
FAI, Varadouro, Faial island; FLO, Faja Grande, Flores island; MOS, Mosteiros, Sao Miguel island; PIC,
Lajes do Pico, Pico island; SMA, Maia, Santa Maria island; SMI, Porto Formoso, Sao Miguel island.

bp), to assess microscale mtDNA haplotype richness; (3) dataset 3: 169 specimens from
four islands collected between 1992 and 1993, and 175 specimens collected in 2012 at the
same four localities, sequenced for COI (578 bp) to generate a temporal series of samples
over 20 years for estimating mtDNA p; (4) dataset 4: 212 specimens from five islands
sequenced for COI (605 bp), completed by one COI sequence of M. neritoides from the
United Kingdom retrieved from GenBank (AJ488608) and 86 COI sequences of seven
species from the three littorinid subfamilies Lacuninae, Laevilitorininae and Littorininae
(Reid, Dyal ¢ Williams, 2012) and one species of Pomatiidae available in GenBank, viz.
Bembicium auratum (Lacuninae) (AJ488606), Cremnoconchus syhadrensis (Lacuninae)
(AJ488605), Lacuna pallidula (Lacuninae) (AJ488604, KT996151), Laevilitorina caliginosa
(Laevilitorininae) (AJ488607), Littorina littorea (Littorininae) (AJ622946, HM884235,
HM884236, HM884248, KF643337, KF643416, KF643449, KF643454, KF643456,
KF643464, KF643631, KF643658, KF643697, KF643729, KF643906, KF644042, KF644180,
KF644262, KF644330), Peasiella isseli (Littorininae) (HE590849), Pomatias elegans
(Pomatiidae) (JX911283, JQ964789, GQ424199, EU239237, EU239238, EU239239,
FEU239240, EU239241) and Tectarius striatus (Littorininae) (DQ022012—-DQ022064),

to assess monophyly, possible phylogenetic structuring, and eventual cryptic taxonomic
diversity in M. neritoides.

Collected specimens were preserved at —20 °C until DNA analysis. Individual genomic
DNA was extracted from foot muscle following the standard protocol of either the
NucleoSpin® Tissue kit (Macherey-Nagel GmbH & Co. KG, Diiren, Germany) or the
DNeasy 96 Blood & Tissue kit (Qiagen GmbH, Hilden, Germany). Remaining soft body
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parts and shells have been deposited in the collections of the Royal Belgian Institute of
Natural Sciences, Brussels (RBINS) under the general inventory number IG 32962.

16S, COIl and Cytb amplification and sequence alignment

PCR amplification was carried out in a 20-pL reaction volume using standard Taq
DNA polymerase (Qiagen GmbH, Hilden, Germany) and universal primers LCO1490
(5-GGTCAACAAATCATAAAGATATTGG-3") and HCO2198 (5'-TAAACTTCAGGGT
GACCAAAAAATCA-3') for a 578-t0-657 bp region of COI (Folmer et al., 1994), universal
primers 16Sar (5-CGCCTGTTTAACAAAAACAT-3") and 16Sbr (5-CCGGTCTGAA
CTCAGATCACGT-3') for a482 bp region of 16S (Simon et al., 1994), and littorinid-specific
primers 14825 (5-CCTTCCCGCACCTTCAAATC-3") and 15554 (5'-GCAAATAAAAAG
TATCACTCTGG-3') for a 675 bp region of Cytb (Reid, Rumbak ¢ Thomas, 1996). The
PCR conditions for COI consisted of an initial denaturation at 95 °C for 5 min, 40 cycles
of denaturation at 95 °C for 45 s, annealing at 45 °C for 45 s, elongation at 72 °C for

1 min 30 s, and a final elongation at 72 °C for 10 min. The PCR conditions for Cytb
were the same except for the annealing step at 48 °C. The PCR conditions for 16S
were also the same except for the annealing step at 52 °C, 35 cycles instead of 40,

and final elongation for 5 min. PCR products were purified using Exonuclease I and
FastAP Thermosensitive Alkaline Phosphatase (Thermo Scientific, Erembodegem-Aalst,
Belgium). Sequencing reactions were performed directly on purified PCR products using
the BigDye® Terminator v1.1 Cycle Sequencing kit (Life Technologies, Gent, Belgium)
and run on an Applied Biosystems 3130x] Genetic Analyser automated capillary sequencer,
or outsourced to Macrogen (Rockville, MD, USA). Sample files were assembled, edited
and reviewed using ABI Prism® SeqScape® 2.5.0 (Applied Biosystems). The accuracy and
reproducibility of the PCR results were validated by triplicating COI and 16S amplifications
on a subset of 20 individuals, using standard Taq DNA polymerase for two replicates and
HotStar HiFidelity DNA Polymerase (Qiagen GmbH, Hilden, Germany) for one replicate.
Sequence alignments were made with ClustalW (Thompson, Higgins ¢ Gibson, 1994)
using default parameters in BioEdit 7.0.9.0 (Hall, 1999). All sequences were deposited in
GenBank (KT996151-KT997344). The morphology-based identification of M. neritoides
was validated through DNA barcoding by querying the 185 COI fragments from dataset 1
in the Barcode of Life Data systems (BOLD) (Ratnasingham ¢ Hebert, 2007).

mtDNA diversity

The three gene fragments were concatenated for the 185 specimens of dataset 1, using
Geneious 5.3.4 (http://www.geneious.com, Kearse et al., 2012). DNA diversity metrics
(Tables 1 and 2) were calculated with DnaSP 5.10.1 (Librado ¢ Rozas, 2009). Despite the
fact that 3242 specimens were sampled per site, there were no shared haplotypes between
sampling sites (H; = 0), i.e., all haplotypes were private (Table 1). Consequently, we
examined mtDNA haplotype richness at a microscale, i.e., within a sampling site. Dataset 2,
composed of identical fragment lengths across individuals, was used to compute individual-
based rarefaction curves for the COI and 16S fragments using EstimateS 8.2.0 (Colwell,
2006) in order to assess the relationship between the number of haplotypes observed (Hops)
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Table 1 mtDNA diversity metrics of Melarhaphe neritoides. Statistics describing the number of individuals (N), number of haplotypes (H),
number of private haplotypes (H,), number of shared haplotypes among sampling sites (H,), number of shared haplotypes within sampling site
(H,), DNA fragment length in base pairs (L), number of segregating sites (S) and its corresponding percentage of the fragment length into brackets,
haplotype diversity (Hd) % standard deviation, Jukes-Cantor corrected nucleotide diversity (;r) =+ standard deviation, Jukes-Cantor corrected nu-
cleotide diversity at synonymous sites (77,yy,) and Jukes-Cantor corrected nucleotide diversity at non-synonymous sites (7 non-syn)-

N

H

H, H H, L S Hd T Toym T non-syn
165-COI-Cytb 185 184 184 0 1 1,771 420 (24%)  0.999 £0.001  0.013£0.001  0.0677  0.0004
168 185 77 63 12 2 482 71 (15%) 0.81440.030  0.004+0.001 - -

COI 185 156 142 13 1 614 169 (28%)  0.996+0.002  0.018£0.001  0.0736  0.0001
Cytb 185 166 153 9 4 675 180 (27%)  0.998 £0.001  0.016 £0.001  0.0637  0.0006

and sample size, and compute the Chaol and Chao2 richness estimators (Chao, 1984; Chao,
1987). Given that COI and Cytb showed similar diversity levels (Table 1), only COI was
used for rarefaction analysis. A logarithmic trendline, best fitting the data, was applied to
each rarefaction curve to extrapolate Hyps for larger sample sizes.

Population genetic structure

The monophyly of M. neritoides was assessed, and p-distances were compared within and
among clades, in order to detect possible cryptic taxa and/or phylogenetic structuring
that might contribute to the overall mtDNA hyperdiversity. First, two species trees were
produced from dataset 4 using Bayesian inference (BI) and Maximum Likelihood (ML).
Seven Littorinidae species were added to the ingroup. The outgroup Pomatias elegans
belongs to a different family (Pomatiidae), but the same superfamily (Littorinoidea) as
M. neritoides. Two independent runs of BI were performed using MrBayes 3.2.2 (Ronquist
et al., 2012) hosted on the CIPRES Science Gateway (Miller, Pfeiffer ¢ Schwartz, 2010),
under a GTR + G nucleotide substitution model selected according to jModelTest 2.1.4
(Darriba et al., 2012), for 4.10° generations with a sample frequency of 100 and a 30%
burn-in. Convergence between the two runs onto the stationary distribution was assessed
by examining whether the potential scale-reduction factors was close to 1 in the pstat
file, standard deviation of split frequencies fell below 0.01 in the log file, and trace plots
showed no trend by examining the p files in TRACER 1.6 (Rambaut et al., 2014). The
final consensus tree was computed from the combination of both runs. ML analysis
based on the GTR+G model was conducted in MEGA 6.06 (Tamura et al., 2013), with
bootstrap consensus trees inferred from 1,000 replicates. Second, three methods of species
delimitation were used: (1) the Automatic Barcode Gap Discovery (ABGD, available

at http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) method (Puillandre et al.,
2012), (2) the Bayesian implementation of the Poisson tree Processes (bPTP, available
at http://species.h-its.org/ptp/) model (Zhang et al., 2013), and (3) the General Mixed
Yule Coalescent (GMYC, available at http://species.h-its.org/gmyc/) model (Fujisawa ¢
Barraclough, 2013; Pons et al., 2006). Finally, sequence divergence within and between
clades was assessed by calculating mean within-group p-distances for the four species
comprising more than one sequence (Littorina littorea, N = 19; M. neritoides, N = 213;
Pomatias elegans, N = 8; Tectarius striatus, N = 53), and mean between groups p-distances
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Table2 Overview of mtDNA diversity in other Littorinidae, various highly diverse planktonic-dispersers and hyperdiverse mollusc species. Taxa are listed by de-
creasing value of haplotype diversity.

Species Larval Sampling area N Locus L Hd T Reference
development
Other Littorinidae
Temperate species
Littorina saxatilis Mo d North Atlantic 453 ND1-tRNApro- 1,154 0.940 0.005 Doellman et al. (2011)
ND6-Cyth
North Atlantic 778 Cytb 607 0.905 0.009 Panova et al. (2011)

Tectarius striatus Mo p (unknown) Macaronesia 109 COI-Cytb 993 0.934 0.006 Van den Broeck et al.
(2008)

Littorina keenae Mo p (unknown) North Pacific 584 ND6-Cytb 762 0.815 0.003 Lee & Boulding (2007)

Littorina littorea Mo p (28-42 days) North Atlantic 488 COI 424 0.810 0.004 Calculated from data
in Wares et al. (2002),
Williams, Reid ¢ Little-
wood (2003), Williams &~
Reid (2004), Giribet et al.
(2006), Blakeslee, Byers
& Lesser (2008), Layton,
Martel ¢ Hebert (2014)

Littorina plena Mo p (64 days) NE Pacific 135 Cytb 414 0.775 0.006 Lee & Boulding (2009)

Littorina obtusata Mo d North Atlantic 46 COI 582 0.762 0.006 Calculated from data in
Wares & Cunningham
(2001)

NW Atlantic 31 COI 574 0.127 0.001 Calculated from data in

Layton, Martel ¢ Hebert
(2014)

Bembicium Mo d Indian Ocean 40 125 324 0.730 - Kennington, Hevroy ¢

vittatum Johnson (2012)

Austrolittorina Mo p (4 weeks) Australia 102 COI 658 0.541 0.002 Calculated from data

unifasciata in Colgan et al. (2003),
Williams, Reid ¢ Lit-
tlewood (2003), Wa-
ters, Mcculloch & Eason
(2007)

Littorina scutulata Mo p (37-70 days) NE Pacific 265 Cytb 414 0.389 0.003 Lee & Boulding (2009)

Littorina Mo d NE Pacific 229 Cytb 414 0.297 0.001 Lee & Boulding (2009)

subrotundata

Austrolittorina Mo p (4 weeks) New Zealand 40 COI 658 0.146 0.001 Calculated from data

antipodum in Williams, Reid & Lit-

tlewood (2003), Wa-
ters, Mcculloch ¢ Eason
(2007)

(continued on next page)
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Table 2 (continued)

Species Larval development Sampling area N Locus L Hd T Reference
Littorina sitkana Mo d NE Pacific 146 Cytb 414 0.093 0.001 Lee & Boulding (2009)
Tropical species

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 37 COI 1,251 1.000 0.009 Reid et al. (2006)

reticulata

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 92 COI 1,217 0.996 0.041 Reid et al. (2006)

vidua

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 14 COI 1,251 0.989 0.006 Reid et al. (2006)

trochoides C

Littoraria coccinea Mo p (unknown) Indian Ocean 45 COI 451 0.954 0.006 Silva et al. (2013)

glabrata

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 46 COI 1,251 0.943 0.009 Reid et al. (2006)

trochoides A

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 18 COI 1,251 0.935 0.004 Reid et al. (2006)

trochoides B

Bembicium nanum Mo p (weeks) Australia 54 COI 806 0.920 0.006 Ayre, Minchinton ¢ Per-
rin (2009)

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 21 COI 1,251 0.900 0.003 Reid et al. (2006)

trochoides E

Echinolittorina Mo p (3—4 weeks) Indo-Pacific 20 COI 1,251 0.884 0.003 Reid et al. (2006)

trochoides D

Cenchritis Mo p (4 weeks) Caribbean 77 COI 282 0.850 0.008 Diaz-Ferguson et al.

muricatus (2012)

Echinolittorina Mo p (3—4 weeks) Caribbean Sea 31 COI 431 0.750 0.004 Diaz-Ferguson et al.

ziczac (2012)

Echinolittorina Mo p (3—4 weeks) South Atlantic 496 COI 441 0.704 0.003 Calculated from Gen-

lineolata bank data KJ857561—
KJ858054 and Williams
& Reid (2004)

South Atlantic 442 Cytb 203 0.284 0.002 Calculated from Gen-

bank data KM210838—
KM211279

Littoraria scabra Mo p (unknown) Indo- Pacific 50 COI 527 0.690 0.003 Silva et al. (2013)

Littoraria irrorata Mo p (4 weeks) NE Atlantic 238 COI 682 0.546 0.004 Calculated from data

in Diaz-Ferguson et al.
(2010), Robinson et al.
(2010), Reid, Dyal &
Williams (2010)

(continued on next page)
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Table 2 (continued)

Species Larval development Sampling area N Locus L Hd T Reference

Other highly diverse planktonic-dispersing marine invertebrates

Glaucus atlanticus Mo p (lifelong) Worldwide 112 COI 658 0.996 0.014 calculated from data
in Churchill, Alejan-
drino & Valdés (2013),
Churchill, Valdés & O
Foighil (2014), Wecker et
al. (2015)

Pygospio elegans An p (4-5 weeks) North Sea 23 COI 600 0.996 0.014 Kesdniemi, Geuverink &
Knott (2012)

Argopecten irradi- Mo p (5-19 days) NW Atlantic 219 mtDNA 1,025 0.982 0.008 Marko & Barr (2007)

ans concentricus

Brachidontes Mo p (weeks) Mediterranean-Red Sea 34 COI 618 0.973 0.039 Terranova et al. (2007)

pharaonis

Ruditapes Mo p (2-3 weeks) NW Pacific 170 COI 644 0.960 0.010 Mao etal. (2011)

philippinarum

Cellana Mo p (4 days) Hawaii 109 COI 612 0.960 0.006 Bird et al. (2007)

sandwicensis

Holothuria nobilis Ec p (13-26 days) Indo-Pacific 360 COI 559 0.942 0.008 Uthicke ¢ Benzie (2003)

Tridacna maxima Mo p (9 days) Indo-Pacific 211 COI 484 0.940 0.023 Nuryanto & Kochzius
(2009))

Tridacna crocea Mo p (1 week) Indo-Malaysia 300 COI 456 0.930 0.015 Kochzius & Nuryanto
(2008))

Pachygrapsus Ar p (95 days) NE Pacific 346 COI 710 0.923 0.009 Cassone & Boulding

crassipes (2006)

Tripneustes gratilla Ec p (18 days) Indo-Pacific 83 COI 573 0.902 0.004 calculated from data in
Lessios, Kane ¢ Robert-
son (2003)

Holothuria polii Ec p (13-26 days) Mediterranean Sea 158 COI 484 0.873 0.005 Vergara-Chen et al.
(2010)

Nacella magellanica Mo p (unknown) SW Atlantic 171 COI 573-650 0.868 0.004 Aranzamendi, Bastida &
Gardenal (2011)

Bursa fijiensis Mo p (8 weeks) SW Pacific 59 COI 566 0.848 0.003 Castelin et al. (2012)

Acropora cervicornis Cn p (4 days) Caribbean 160 mtCR 941 0.847 0.006 Vollmer & Palumbi
(2007)

(continued on next page)
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Table 2 (continued)

Species Larval development Sampling area N Locus L Hd T Reference

Other hyperdiverse mollusc species

Pliocardia Mo p NW Pacific 3 mtDNA 513 1.000 0.256 James, Piganeau ¢ Eyre-

kuroshimana Walker (2016)

Bulinus forskalii Mo = = 12 mtDNA 339 1.000 0.167" James, Piganeau & Eyre-
Walker (2016)

Pyrgulopsis Mo d - 15 mtDNA 528 0.924 0.148 James, Piganeau & Eyre-

intermedia Walker (2016)

Euhadra brandtii Mo n/a - 14 mtDNA 558 0.989 0.098° James, Piganeau & Eyre-
Walker (2016)

Biomphalaria Mo d - 7 mtDNA 579 0.714 0.092 James, Piganeau & Eyre-

glabrata Walker (2016)

Achatinella Mo n/a - 69 mtDNA 675 0.992 0.078' James, Piganeau & Eyre-

mustelina Walker (2016)

Quincuncina Mo d - 5 mtDNA 453 1.000 0.067 James, Piganeau & Eyre-

infucata Walker (2016)

Pyrgulopsis Mo d - 7 mtDNA 657 0.952 0.066 James, Piganeau ¢ Eyre-

thompsoni Walker (2016)

Notes.

An, Annelida; Ar, Arthropoda; Cn, Cnidaria;; Ec, Echinodermata; Mo, Mollusca; d, direct larval development; p, planktonic larval development (pelagic larval duration given in parenthesis); n/a,
not applicable; N, number of individuals; L, locus length in base pairs; Hd, haplotype diversity; i, nucleotide diversity.

“missing data.
*m calculated at synonymous sites only (g ).

rIead



https://peerj.com
http://dx.doi.org/10.7717/peerj.2549

Peer

for all species pairs (Table 52), using MEGA. Additionally, COI sequence divergence within
M. neritoides was assessed by generating an intraspecific p-distances distribution from the
185 COI sequences included in dataset 1, using MEGA.

Dataset 1 was subjected to the program ALTER (http://sing.ei.uvigo.es/ALTER/, Glez-
Pefia et al., 2010) to convert the Fasta-formatted sequence alignment to a sequential
Nexus-formatted file, which then could be analyzed by NETWORK 4.6.1.2 (www.fluxus-
engineering.com, Bandelt, Forster ¢ Rohl, 1999) to reconstruct a median-joining haplotype
network. Population genetic structure in M. neritoides was qualitatively investigated with
the haplotype network which provides information about phylogeographic structure and
gene flow among populations, and quantified by Gst (Pons ¢ Petit, 1995), Nst based on
a distance matrix of pairwise differences (Pons & Petit, 1996) and st (Excoffier, Smouse
& Quattro, 1992) using dataset 1 in SPAGEDI 1.4 (Hardy & Vekemans, 2002) for Gst and
Ngst and ARLEQUIN 3.5.1.3 (Excoffier ¢ Lischer, 2010) for sr-.

mtDNA mutation rate

mtDNA evolves fast enough to provide sufficient variation for the estimation of  over a
two-decades period (Drummond et al., 2003), i.e., the time span of our temporal sampling
and corresponding to 5-6 generations of M. neritoides. Dataset 3 comprises different
sampling points in time, allowing sequences to be treated as heterochronous data for
estimating the number of mutations occurring in the time interval between samples as
described in Seo ef al. (2002) and Drummond et al. (2002). In this way, the mutation rate per
nucleotide site per year can be inferred using a Bayesian MCMC method as implemented in
BEAST 2.1.3 (Bouckaert et al., 2014) hosted on the CIPRES Science Gateway. The Bayesian
MCMC analysis was performed under a HKY substitution model (the closest model to
GTR since GTR is not available in BEAST) with empirical base frequencies and a fixed
substitution rate of 1.0 and a tree prior set to “coalescent exponential population” (chosen
after model comparison with the “coalescent constant population” and the “coalescent
Bayesian skyline” priors), a strict clock model assuming a constant substitution rate over
time and a prior set to lognormal with M = —5 and S = 1.25. The analysis was run in
triplicate for 500 million generations with a sample frequency of 50,000 and 10% burn-in.
Convergence of MCMC chains was assessed by visual examination of the log trace of each
posterior distribution showing caterpillar shape in TRACER, and making sure that the
Effective Sample Size (ESS) value of each statistic was >200 (Ho ¢ Shapiro, 2011). The
three runs were combined using LOGCOMBINER 2.1.3 (part of the BEAST package) and
the final ESSs were at least 1,100. The estimate of u was provided under the “Estimates”
tab in TRACER as the mean of the “clockRate” parameter.

Demography, selection and effective population size

Departure from mutation-drift equilibrium indicative of demographic change or selective
sweep was assessed in dataset 1 using Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) tests
implemented in ARLEQUIN and 10,000 coalescent-based simulations were run to calculate
p-values. Since Tajima’s D and Fu’s Fs statistics are sensitive to both demographic change
and selection, we also applied Fay & Wu’s H statistic (Fay ¢ Wu, 2000) to dataset 1 for the
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single 16S, COI, Cytb fragments and the concatenated 16S-COI-Cytb data using DnaSP
to attempt to discriminate between the effects of population size change and selection
(Zeng et al., 2006). Tectarius striatus was the most closely related species to M. neritoides
(Reid, Dyal & Williams, 2012) for which the three same gene fragments of 16S, COI and
Cytb were available on Genbank (U46825, AJ488644, U46826), and was therefore used
as outgroup for the Fay & Wu test. Confidence intervals were calculated based on 10,000
coalescent-based simulations.

ARLEQUIN was used to construct a distribution of pairwise nucleotide differences
between haplotypes (sequence mismatch distribution) and to compare this distribution
with the expectations of a sudden expansion model (Harpending, 1994; Li, 1977; Rogers,
1995). Although the analysis complied with the assumption of panmixis, it did not do so
with respect to neutrality (see ‘Results’), thus limiting the reliability of the results. Three
demographic parameters were inferred using a generalized nonlinear least-squares method
to determine whether M. neritoides has undergone sudden population growth: the rate of
population growth t =2ut (¢ being the time since the expansion), the initial population
size before the growth (6y), and the final population size after growth (6;). The goodness
of fit between the observed and expected mismatch distributions was tested by parametric
bootstrapping of the sum of squared deviations (Ssd) (Schneider ¢ Excoffier, 1999), and by
the Harpending Raggedness index (r) (Harpending et al., 1998).

A time-calibrated Bayesian skyline plot (BSP) was built for dataset 1 using BEAST, to
detect past population dynamics through time and to estimate N, of M. neritoides in the
Azores. The coalescent priors used in the skyline plot model assume a random sample
of orthologous, non-recombining and neutrally evolving sequences from a panmictic
population. The skyline plot model has been shown to be robust to violation of these
assumptions and to correctly reconstruct demographic history with mtDNA (Drummond
et al., 2005). However, recent studies show that violation of these assumptions may still
affect the estimated population size variation, and that the BSP is prone to confound the
effect of population structure with declines in population size in panmictic populations,
or fails to detect population expansion (Grant, 2015; Heller, Chikhi ¢ Siegismund, 2013).
Hence, population structure and selection were assessed beforehand using Tajima’s D,
Fu’s Fs and Fay & Wu’s H statistics. The BSP analyses were performed under a HKY
substitution model with empirical base frequencies, a fixed substitution rate equal to 1.0,
and a piecewise-constant Bayesian skyline model with 10 groups. The prior on the clockRate
parameter was set to alog-normal with M = —5 and S = 1.25. Analyses were run in triplicate
for 200 million generations with a sample frequency of 20,000 and 10% burn-in. After
combination of the three runs, the final ESSs were at least 1,000. N, was extracted from the
BSP, by dividing the median value of the Nt product in the most recent year 1996 (Nt
~217,977) by the generation time 7 = 3 years and five months (Hughes ¢» Roberts, 1981).

RESULTS

mtDNA diversity of Melarhaphe neritoides
Dataset 1, representing the overall population of the Azores archipelago (N = 185 from
five localities in the archipelago), contains 184 different and private haplotypes (H = 184;

Fourdrilis et al. (2016), PeerdJ, DOI 10.7717/peerj.2549 12/33


https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/U46825
http://www.ncbi.nlm.nih.gov/nuccore/AJ488644
http://www.ncbi.nlm.nih.gov/nuccore/U46826
http://dx.doi.org/10.7717/peerj.2549

Peer

400
—165
—COl
—16S-COl
300 4
w
w
19}
o
ey
2
©
% 200 -
_O obsT ]
[
©
T
100 -
[ e e A
0 500 1000 1500 2000 2500 3000

Number of individuals (n)

Figure 2 Individual-based rarefaction curves (solid lines) and 95% confidence intervals (dashed

lines) based on COI, 16S and concatenated 16S-COI data, based on M. neritoides specimens sampled

in Mosteiros (MOS), Sao Miguel island. H,, is the haplotype richness observed in the actual sample ()
from MOS. The logarithmic trendlines (dotted lines) show a prediction of the haplotype richness expected
for larger sampling size at the MOS sampling site.

H, =184 and hence H;=0) (Table 1), except for one haplotype that was found in two
individuals from Pico island (H,, = 1). Hence, the frequency of this latter, i.e., the most
common, haplotype was 0.0108, while all other haplotypes had a frequency of 0.00541.
This remarkable mtDNA diversity is further reflected by a haplotype diversity (based on
the concatenated 165-COI-Cytb data) close to its maximum value 1 (Hd =0.999 &£ 0.001),
indicating a probability of less than 0.001% that two individuals from the same locality
share the same haplotype in the overall population of the archipelago. One fourth of the
1771 nucleotide positions are polymorphic (S = 23.7%) with 167 sites (9.4%) showing one
variant, 225 sites (12.7%) two variants, 24 sites (1.4%) three variants, and four sites (0.2%)
four variants. Moreover, there is on average 1.3% nucleotide differences per site between
two randomly chosen DNA sequences in the overall population (7 =0.013 4= 0.001). More
precisely, among the protein-coding COI and Cytb regions (1,289 bp), we observed 323
(18%) sites with synonymous and 964 (54%) sites with non-synonymous substitutions,
yielding on average gy, =0.0677(6.77%) and mhon—syn = 0.0004(0.04%) at synonymous
and non-synonymous sites respectively. Repeating COI and 16S PCR amplifications on
20 specimens yielded identical sequence results, confirming that PCR did not generate
artificial variation. For 185 query sequences of M. neritoides submitted to BOLD, that
stores 51 barcodes of M. neritoides (data retrieved from BOLD on 13 October 2015), the
identification engine returns 100% correct identifications under one and the same Barcode
Index Number (BIN = BOLD:AAG4377).

The individual-based rarefaction curves of 16S, COI and 16S-COI (dataset 2) do not
reach a plateau, but their steep slopes decrease according to 165-COI > COI > 16S (Fig. 2).
Hp,s values are close to the maximal sampling size n for the COI (H,ps = 180, n=223)
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Figure 3 Mismatch distribution analysis showing the unimodal distribution of the observed number
of differences between pairs of haplotypes of M. neritoides. Ssd, sum of squared differences and p-value
in parenthesis; r, Harpending’s Raggedness index and p-value in parenthesis; 7, time in generations since
the last demographic expansion; 6, initial population size; 6;, final population size.

and the 16S-COI (Hqps = 174, n = 197) fragments indicating that a large fraction of the
haplotype diversity remains to be discovered, whereas it is further from #» for the 16S
fragment (Hops = 71, n=213). The logarithmic trendlines representative of the population
growth in the species show inflexion around large sampling sizes (n > 500), indicating
that additional sampling is likely to yield new haplotypes. Indeed, the Chaol (chaol mean
= 1596.22, CI = [878.94-3043.34], n=197) and Chao2 (chao2 mean = 1486.20, CI =
[842.91-2748.15], n =197) estimators for the concatenated 16S-COI gene fragment suggest
that the predicted total haplotype richness of M. neritoides would be reached by sampling
1,500 individuals per sampling site.

Demography, selection and mutation rate

Both Tajima’s D and Fu’s Fs tests show a significant departure of M. neritoides from constant
population size or neutrality (D = —2.030, p < 0.01 and Fs = —23.706, p < 0.01), suggesting
demographic expansion and/or a potential action of selection. Fay & Wu’s H, which is
sensitive to positive selection and not to population growth or background selection, shows
significant signal of selection for 16S (H = —30.42, CI = [—3.06-1.13]), COI (H = —85.16,
CI = [-17.05-6.08]), Cytb (H = —110.38, CI = [—13.33-5.18]) and the concatenated
165-COI-Cytb fragment (H = —225.96, CI = [—30.36-11.22]). The unimodal curve of
the sequence mismatch distribution (Fig. 3) suggests that population expansion cannot be
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Figure 4 Historical demographic trends of the median estimate of the maternal effective population
size over time (bold line) constructed using a Bayesian skyline plot approach based on concatenated
16S-COI-Cyt b haplotypes of M. neritoides sampled in 1992, 1993 and 1996. The y-axis is the product
of effective population size (N, ) and generation time (7) in a log scale, while the x-axis is a linear scale of
time in years. The 95% highest probability density (HPD) intervals are shaded in grey and represent both
phylogenetic and coalescent uncertainty.

rejected as Oy < 0 (t = 25.543, Oy =4.366, 6; = 123.516). The non-significant values of
the sum of squared deviations (Ssd =0.00118, p =0.600) and Harpending’s Raggedness
index (r =0.0005, p = 0.998) show that the sudden expansion model provides a good fit
to the data. The time-calibrated BSP shows an increase of N, through time, indicating that
M. neritoides has been expanding in the Azores archipelago or has undergone selection
(Fig. 4). For the year 1996, the BSP gives N ¥t ~ 17,977, corresponding to N, ranging from
1,312 to 37,495 with an average N, & 5,256 individuals.

With data sampled in 1992, 1993 and 2012 (i.e., an interval of 20 years), we estimated
a mutation rate of u = 5.82 x 107> per nucleotide site per year at COI. Considering a
generation time of T =41 months (i.e., 3.42 years), the mutation rate was estimated to be
n=1.99 x 10~* mutations per nucleotide site per generation.

Population genetic structure

All phylogenetic trees provided maximal support for the monophyly of M. neritoides
(trees not shown). Additionally, the three species delimitation methods, ABGD, bPTP and
GMYC, lumped M. neritoides as one Molecular Operational Taxonomic Unit (trees not
shown). The mean intraspecific p-distance within M. neritoides was d =0.018 £ 0.002, i.e.,
one order of magnitude greater than the mean intraspecific p-distances of the three other
species, viz. Littorina littorea (d = 0.004 £ 0.001), Pomatias elegans (d = 0.009 %+ 0.002)
and Tectarius striatus (d = 0.006 £ 0.001), but still far below interspecific p-distances
ranging from 0.166 to 0.271 for the 36 possible species pairs of Littorinoidea, from 0.166
to 0.246 for the 21 species pairs of Littorinidae, or from 0.187 to 0.225 for the six species
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Figure 5 Distribution of COI pairwise p-distances in M. neritoides.

pairs of Littorininae (Table S2). The Gaussian distribution of intraspecific COI p-distances
in M. neritoides (Fig. 5) indicates that the five populations sampled on five different islands
of the Azores archipelago form a homogeneous haplotype mixture without any evidence
of a DNA barcode gap.

The bush-like pattern of the mtDNA haplotype network (Fig. 6) shows the overwhelming
number of unique, private haplotypes represented by single individuals (i.e., singletons), the
lack of shared haplotypes between sites, and several homoplastic character states (cycles).
The apparent lack of association between genetic variation and geographic location (as
revealed by the distribution of colours across the network of Fig. 6) suggests the absence of
phylogeographic structure in Azorean M. neritoides.

The low and non-significant indices of population genetic differentiation (Gsy = 0.0003,
p=0.1676; Ngy = 0.0021, p = 0.5346; st = 0.0026, p = 0.2220) make that the hypothesis
of panmixis (and hence no population structuring) cannot be rejected.

DISCUSSION

How diverse is the mtDNA of Melarhaphe neritoides?

Azorean M. neritoides harbours a remarkable amount of intraspecific mtDNA diversity,
characterized by very high haplotype diversity and nucleotide diversity with respect to
the concatenated 16S-COI-Cytb gene fragments, at the single Cytb gene fragment and at
the single COI gene fragment. Moreover, it shows a value of neutral mtDNA nucleotide
diversity g, > the threshold of 5% for the concatenated 16S-COI-Cytb fragments, and
is therefore qualified as hyperpolymorphic. The gy, values for COI and Cytb separately
are also > 0.05 and support mtDNA hyperdiversity in M. neritoides (Table 1). mtDNA
hyperdiversity is also observed in a Spanish population. The COI data retrieved from
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Figure 6 Median-joining network of mtDNA in M. neritoides. Branch lengths are proportional to the
numbers of mutational steps separating haplotypes. The size of circles is proportional to the number of in-
dividuals per haplotype and the sole haplotype shared by two individuals is marked by an arrow. Haplo-
type origins: Flores island—green; Faial island—blue; Pico island—yellow; Sao Miguel island—red; Santa
Maria island—purple.

Garcia et al. (2013) yielded mgyn = 0.0762 (7.62%) and m,0n—syn = 0.0002 (0.02%) in a
local Spanish population of 49 individuals. These values are very similar to those of COI
in the Azorean populations (Table 1). Therefore, mtDNA hyperdiversity is not a local
characteristic of M. neritoides along the Iberian Atlantic coast, but is shared more broadly
in the Azorean populations, and presumably, throughout the species’ distribution range.
The high 7 values in M. neritoides reflect natural variation, not PCR errors, as validated by
the identical triplicates of mtDNA sequences and 100% correct species identification using
barcoding. DNA barcoding is based on the premise that COI sequence divergence is higher
among species than within species (Hebert, Ratnasingham ¢ DeWaard, 2003), and might be
hampered by high mtDNA variation, specifically COI hyperdiversity and high intraspecific
sequence divergence in COL Yet, in spite of the highly variable COI marker in M. neritoides
(r =0.018 £ 0.001) and elevated intraspecific p-distance (d =0.001-0.041), the ability of
DNA barcoding to identify M. neritoides is not affected by this mtDNA hyperdiversity.
The mtDNA of M. neritoides is more diverse than (1) mtDNA of most temperate
littorinids and many tropical littorinids, (2) mtDNA of many planktonic-dispersing
marine invertebrates, and (3) mtDNA of other hyperdiverse Mollusca (Table 2). More
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specifically, in comparison with 26 other littorinid species, M. nerifoides has the highest COI
haplotype diversity among temperate species (i.e., Austrolittorina spp., Bembicium vittatum,
Littorina spp., Tectarius striatus) and the same degree as two tropical species Echinolittorina
reticulata and Echinolittorina vidua. Melarhaphe neritoides also has the highest COI
nucleotide diversity among temperate species, and shows a higher COI nucleotide diversity
than tropical species (i.e., Bembicium nanum, Cenchritis muricatus, Echinolittorina spp.,
Littoraria spp.) except for Echinolittorina vidua whose nucleotide diversity (7 = 0.041) is
about twice that of M. neritoides (w = 0.018). In comparison to 15 other non-littorinid
marine invertebrates with similar planktonic larval dispersal and high mtDNA variability,
M. neritoides has the highest COI haplotype diversity. Yet, M. neritoides shows the same
degree of COI haplotype diversity as the pelagic nudibranch Glaucus atlanticus (Hd = 0.996)
and the annelid Pygospio elegans (Hd = 0.996). Regarding COI nucleotide diversity, M.
neritoides has the highest value among annelids, arthropods, cnidarians, echinoderms,
other gastropods, and some bivalves (but not all). Two bivalves, viz. Brachidontes pharaonis
and Tridacna maxima, show very high COI nucleotide diversities that probably reflect
ongoing speciation in the three lineages of the Brachidontes spp. complex (Terranova et
al., 2007) and in the four lineages in Tridacna maxima (Nuryanto ¢ Kochzius, 2009). The
literature data in Table 2 suggest that there is no obvious correlation between 7 and Hd.
However, more data are needed to corroborate this observation.

We estimated the neutral component of the COI nucleotide hyperdiversity in M. neri-
toides, i.e., Teyn = 0.074, on which the diagnosis of hyperdiversity is based. In comparison
to eight other mollusc species with hyperdiverse mtDNA (Table 2), M. neritoides is
situated in the lower part of the neutral nucleotide diversity range (75, =[0.066-0.256]).

mtDNA divergence and population structuring in Melarhaphe
neritoides

We investigated whether population genetic structure through time and space, and cryptic
taxa, could contribute to the mtDNA hyperdiversity in M. neritoides. The monophyly of
M. neritoides and the Gaussian distribution of its intraspecific p-distances, suggest that
M. neritoides does not conceal cryptic taxa in the Azores. Conversely, the overwhelming
number of private haplotypes (Fig. 6) at first glance suggest that populations are strongly
differentiated because of the apparent lack of shared haplotypes. Yet, the bush-like mtDNA
haplotype network (Fig. 6) is suggestive of complete population mixing (Nielsen ¢~ Slatkin,
2013). Indeed, recurrent long-term gene flow homogenising the gene pool of M. neritoides
over the 600 km between the Azorean islands implies an absence of population genetic
structure (differentiation), as is reflected in the Ggr, Ngt and st values that are not
significantly different from zero. This is congruent with the low level of differentiation
and high potential for long range gene flow between Swedish and Cretan populations
of M. neritoides (Johannesson, 1992). Currently, no other data on population genetic
differentiation and gene flow in M. neritoides are available. The possibility of long-distance
gene flow may suggest that the mtDNA diversity of M. neritoides in the Azores is the
result of larval influx from European populations. Yet, while short-lived Pleistocene
westward-flowing sea surface currents allowed the colonization of the Azores from Eastern
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Atlantic areas (Avila et al., 2009), the eastward-flowing Azores Current nowadays (Barton,
2001) suggests that larval transport predominantly occurs from the Azores towards the
North East Atlantic coasts and the Mediterranean Sea, and that the Azores rather may act
as a source of new, dispersing, haplotypes than as a sink receiving new haplotypes. Hence,
all current evidence suggests that mtDNA hyperdiversity in M. neritoides is not due to
(1) population structuring, (2) admixture of divergent local populations, (3) lumping of
cryptic taxa, or (4) influx of new haplotypes from distant European populations.

mtDNA mutation rate in Melarhaphe neritoides

We investigated whether mtDNA mutation rate explains mtDNA hyperdiversity. The
mutation rate is the rate at which new mutations arise in each generation of a species
and accumulate per DNA sequence, and differs from the substitution rate that accounts
for the fraction of new mutations that do not persist in the face of evolutionary forces
(Barrick & Lenski, 2013). Accordingly, neutral synonymous mutations reflect the mutation
rate (Barrick ¢» Lenski, 2013). Mutation rates in most nuclear eukaryotic genomes are
generally extremely low because elaborate molecular mechanisms correct errors in DNA
replication and repair DNA damage, whereas viral and animal mitochondrial genomes
have no, or far less efficient, repair mechanisms and thus have much higher mutation rates
(Ballard & Whitlock, 20045 Drake et al., 1998). Overall, synonymous mutations become
fixed at a rate that appears to be uniform across various taxa (Kondrashov, 2008), and
mtDNA mutation rates lie in a narrow range of 1078-10~7 mutations per nucleotide site
per generation across e.g., arthropods, echinoderms, chordates, molluscs and nematodes
(Table 3). Surprisingly, our estimate of the mtDNA COI mutation rate in M. neritoides
(u=1.99 x 10™* per site per generation) is 1,000 to 10,000-fold higher than commonly
estimated for the mtDNA mutation rates in metazoans from these phyla. Therefore, if
our inference is correct, it seems likely that this high mtDNA mutation rate substantially
contributed to generating the mtDNA hyperdiversity in M. neritoides. Our mutation rate
estimate was obtained from mtDNA sequence data of M. neritoides itself, not from closely
related species, and is therefore expected to be more accurate and species-specific. Bayesian
MCMC estimates of substitution rates based on heterochronous mtDNA samples may
be susceptible to an upward bias when populations have a complex demographic history
(e.g., bottleneck) or pronounced population structure. Hence, such biased estimates may
reflect other processes like migration, selection and genetic drift rather than mutation
(Navascués & Emerson, 2009). However, this study did not provide evidence of population
structure in M. neritoides, reducing therefore the risk of bias in the estimate of . Bayesian
MCMC inferences based on heterochronous mtDNA samples over short timescales may
also overestimate generational mutation rates by an order of magnitude in comparison to
phylogenetically derived mutation rates, because they may account for short-lived, slightly
deleterious mutations at non-synonymous sites (Ho et al., 2005; Penny, 2005; Subramanian
& Lambert, 2011). Since w in M. neritoides was estimated over a short period of 20 years, it
may be subject to such a bias. However, while this bias could have generated an order of
magnitude overestimation of u, it cannot entirely account for the extreme value inferred,

Fourdrilis et al. (2016), PeerdJ, DOI 10.7717/peerj.2549 19/33


https://peerj.com
http://dx.doi.org/10.7717/peerj.2549

Peer

Table 3 mtDNA mutation rates per site per generation in various metazoans ranked according to
decreasing p.

Species n locus Reference
Melarhaphe neritoides Mo 1.99 x 107* COI this study
Homo sapiens sapiens Ch 6.00 x 1077 mt genome Kivisild (2015)
Caenorhabditis elegans Ne 1.60 x 10~/ mt genome Denver et al. (2000)
Mpytilus edulis Mo 9.51 x 1078 COI Wares ¢ Cunningham (2001)
Drosophila melanogaster Ar 6.20 x 1078 mt genome Haag-Liautard et al. (2008)
Asteria rubens Ec 4.84 x 1078 COI Wares ¢ Cunningham (2001)
Nucella lapillus Mo 4.43 x 1078 COI Wares & Cunningham (2001)
Euraphia spp. Ar 3.80 x 1078 COI Wares & Cunningham (2001)
Idotea balthica Ar 3.60 x 1078 COI Wares & Cunningham (2001)
Semibalanus balanoides Ar 2.76 x 1078 COI Wares & Cunningham (2001)
Littorina obtusata Mo 2.49 x 1078 COI Wares & Cunningham (2001)
Sesarma spp. Ar 2.10 x 1078 COI Wares & Cunningham (2001)
Alpheus spp. Ar 1.90 x 1078 COI Wares & Cunningham (2001)
Prochilodus spp. Ch 0.27 x 1078 COI Turner et al. (2004)

Notes.

Ar, Arthropoda; Ch, Chordata; Ec, Echinodermata; Mo, Mollusca; Ne, Nematoda.

which is 10° to 10* fold higher than usually estimated for other organisms (Subramanian
& Lambert, 2011).

Invertebrates with shorter generation times have higher mtDNA mutation rates, as their
mitochondrial genomes are copied more frequently (Thomas et al., 2010). In comparison
to the generation times of invertebrates analyzed by Thomas et al. (2010), ranging from
8 days in the hydrozoan Hydra magnipapillata to 1,825 days in the coral Montastraea
annularis and the seastar Pisaster ochraceus, the generation time of M. neritoides (t ~ 1,250
days) is not particularly short and therefore its mtDNA mutation rate would be expected to
be at the lower side. Yet, M. neritoides has a high mtDNA mutation rate (; =5.82 X 107
per site per year) that does not fall within the range of mutation rates of invertebrates with
longer generation times than M. neritoides, i.e., from =3 x 10710 per site per year in
Montastraea annularis (Fukami ¢ Knowlton, 2005) to 1 =2.81 x 107° per gene per year
in Pisaster ochraceus (Popovic et al., 2014).

High mtDNA mutation rates may be more frequently linked to hyperdiversity than
previously thought in the widely used COI marker. Indeed, neutral nucleotide diversities
of >0.05 have been reported in 222 other species among Arthropoda, Chordata,
Echinodermata, Mollusca and Nematoda (Table S1), suggesting the possibility of
underlying high mtDNA mutation rates.

Demography and selection in Melarhaphe neritoides

We investigated whether selection, mtDNA demographic history and N, explain mtDNA
hyperdiversity. Equilibrium between variation gained by mutations and variation lost by

genetic drift should be reached if the effective population size has been stable over time and
in absence of population structure or selection (Kimura, 1983). According to the negative
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Table 4 mtDNA effective population sizes (N, ) for various taxa. The 95% confidence interval is given in parenthesis when available.

Taxon N, Locus Reference
Littorina keenae Mo 135 (42-2,490) ND6-Cytb Lee & Boulding (2007)
Melarhaphe neritoides Mo 5,256 (1,312—-37,495) COI-16S-Cytb this study
Homo & Pan Ch 5,900-10,000 mt genome Piganeau & Eyre-Walker (2009)
Felidae & Canidae Ch 130,000-430,000 mt genome Piganeau & Eyre-Walker (2009)
Pachygrapsus crassipes Ar 167,000-1,020,000 COI Cassone & Boulding (2006)
Cardinalis cardinalis Ch 193,000 (4,000-701,000) ND2-Cytb Smith & Klicka (2013)
Murinae Ch 230,000—730,000 mt genome Piganeau & Eyre-Walker (2009)
Littorina sitkana Mo 105,263-1,400,000 Cytb Lee & Boulding (2009)
Littorina subrotundata Mo 25,000-1,942,857 Cytb Lee & Boulding (2009)
Littorina scutulata Mo 90,790-3,814,286 Cytb Lee & Boulding (2009)
Littorina plena Mo 160,526-33,728,571 Cytb Lee & Boulding (2009)

Notes.

Ar, Arthropoda; Ch, Chordata; Mo, Mollusca.

Tajima’s D, Fu’s Fs and Fay & Wu’s H, the unimodal sequence mismatch distribution
and the BSP trend, the phylogeny of Azorean M. neritoides has been shaped either by
demographic expansion or selection, or a combination of both.

The effective mtDNA population size of M. neritoides estimated in this paper is
N, = 5,256 (CI = 1,312-37,495) for the concatenated 16S-COI-Cytb gene fragments.
This is relatively small in comparison to mtDNA N, of other littorinids with planktonic
larval stages and high dispersal potential like Littorina plena (N, = 16,0526-33,728,571)
and Littorina scutulata (N, = 90,790-3,814,286) (Table 4), except for the mtDNA N, in
the planktonic dispersing Littorina keenae (N, = 135) (Lee & Boulding, 2007). Yet, this
latter value refers to one sampling site only, whereas another sampling site of Littorina
keenae showed a much larger mtDNA N, (N, =31,797). Surprisingly, and somewhat
counterintuitively, the mtDNA of M. neritoides is also smaller than that of periwinkles
without planktonic larval stages, such as Littorina sitkana (N, = 105,263-1,400,000) and
Littorina subrotundata (N, = 25,000 —1,942,857) (Lee & Boulding, 2009). However, past
putative selection in M. neritoides likely confounds the BSP inference by reducing the
overall mtDNA diversity and thus the mtDNA N, estimate. As such, mtDNA variation
in M. neritoides is still remarkably high, despite this signal of a reduction of its diversity
by the putative influence of selection. This strengthens the hypothesis that the mtDNA
hyperdiversity in M. neritoides is best explained by a high © of mtDNA.

mtDNA N, and mtDNA hyperdiversity may be positively correlated such as in the lined
shore crab Pachygrapsus crassipes (N, = 167,000-1,020,000; COI Hd = 0.923; 7 = 0.009)
(Cassone & Boulding, 2006). Yet, this relationship has been questioned (Bazin, Glémin
& Galtier, 2006; Piganeau & Eyre-Walker, 2009), because Bazin, Glémin ¢ Galtier (2006)
showed that mtDNA diversity is not linked to mtDNA N,, but rather to © and selection.
Conversely, Nabholz, Glémin ¢» Galtier (2009) and Nabholz et al. (2008) found no link
between selection and mtDNA N,, but confirmed that mtDNA diversity is strongly linked
to w. Our present work shows a link between mtDNA hyperdiversity and high mtDNA
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W, and the putative influence of selection on N, estimation making mtDNA N, a poor
indicator of mtDNA hyperdiversity.

CONCLUSIONS

The mtDNA hyperdiversity of M. neritoides is characterized by a high haplotype diversity
(Hd =0.999 &£ 0.001), a high nucleotide diversity (r =0.013 4= 0.001) and a high neutral
nucleotide diversity (ney = 0.0678) for the concatenated 16S-COI-Cytb gene fragments.
The mutation rate at the COI locus is 1 = 1.99 x 10~* mutations per nucleotide site per
generation, which is a very high value. Demographic analyses revealed that M. neritoides
in the Azores underwent a population expansion, but the effective population size N, was
surprisingly small for a planktonic-developing species (N, = 5,256; CI = 1,312-37,495)
probably due to the putative influence of selection on M. neritoides mtDNA. As a result, N,
is not linked to mtDNA hyperdiversity and is a poor indicator of this latter. Mitochondrial
DNA hyperdiversity is best explained by a high mtDNA u in M. neritoides. Mitochondrial
DNA hyperdiversity may be more common across eukaryotes than currently known.
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