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Abstract
The renin-angiotensin-aldosterone system (RAAS) is more complex than it was originally regarded. According to the current

subject knowledge, there are two main axes of the RAAS: (1) angiotensin-converting enzyme (ACE)-angiotensin II-AT1 receptor

axis and (2) ACE2-angiotensin-(1-7)-Mas receptor axis. The activation of the first axis leads to deleterious effects, including

vasoconstriction, endothelial dysfunction, thrombosis, inflammation, and fibrosis; therefore, blocking the components of this

axis is a highly rational and commonly used therapeutic procedure. The ACE2-Ang-(1-7)-Mas receptor axis has a different role,

since it often opposes the effects induced by the classical ACE-Ang II-AT1 axis. Once the positive effects of the ACE2-Ang-(1-7)-

Mas axis were discovered, the alternative ways of pharmacotherapy activating this axis of RAAS appeared. This article briefly

describes new molecules affecting the RAAS, namely: recombinant human ACE2, ACE2 activators, angiotensin-(1-7) peptide and

non-peptide analogs, aldosterone synthase inhibitors, and the third and fourth generation of mineralocorticoid receptor antag-

onists. The results of the experimental and clinical studies are encouraging, which leads us to believe that these new molecules

can support the treatment of cardiovascular diseases as well as cardiometabolic disorders.
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Introduction

The renin-angiotensin-aldosterone system (RAAS) regu-
lates blood pressure and fluid and electrolyte balance
under physiological conditions. However, it plays also a
role in pathological processes leading to cardiovascular
and other disorders, e.g. hypertension, coronary artery dis-
ease, heart failure, and kidney diseases. The drugs blocking
the RAAS, e.g. angiotensin-converting enzyme inhibitors
(ACE-Is), angiotensin II receptor blockers (ARBs) and
mineralocorticoid receptor antagonists (MRAs), are the
mainstays of current pharmacotherapy for cardiovascular
diseases (CVD).1,2 Moreover, some data suggest the pleio-
tropic effects of RAAS blockers, since beneficial clinical
effects of RAAS inhibition in atherosclerosis, atrial fibrilla-
tion, post-ischemic stroke state, pulmonary hypertension,
diabetic vasculopathy, Alzheimer’s disease, or tumor angio-
genesis were observed.3–5 Thus, it seems that in the near
future, pharmacotherapy with RAAS-affecting agents
could be extended to new indications. On the other hand,

standard therapeutic procedure in CVD based on ACE-Is,
ARBs, and MRAs appears to be insufficient sometimes, since
it blocks only certain elements of the RAAS, while other
pathways are still unaffected. This may lead to a phenom-
enon called ‘RAAS escape’, which may attenuate the clinical
benefit of RAAS blockade. ‘RAAS escape’ was observed
during either ACE-Is or ARBs treatment, when renin and
angiotensin I (Ang I) accumulation overcame the ability
of drugs to effectively suppress RAAS.6 Moreover, there
are also ACE-independent pathways of Ang II formation.
The reactivated Ang II promotes aldosterone secretion.
‘Aldosterone escape’ occurs during long-term ARBs ther-
apy, as well as due to increased serum potassium levels or
angiotensin II receptor type 2 (AT2)-dependent mechanism.7

Furthermore, the broad use of drugs blocking the RAAS has
been limited by significant incidence of side effects, e.g.
hyperkalemia, which forces research for new drugs express-
ing adequate efficacy while avoiding the adverse effects.8

Taking all these factors into account, no wonder scientists
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worldwide try to understand the functions of the RAAS
better and to discover new drugs modulating it, as well
as expand their indications. Indeed, the new molecules
affecting the RAAS, namely: recombinant human ACE2
(rhACE2), ACE2 activators, angiotensin-(1-7) peptide and
non-peptide analogs, aldosterone synthase inhibitors (ASIs)
and the third and fourth generation of MRAs, have been
described recently. Some of these new compounds are in
clinical trials already. The question arises, whether the
new agents modulating the RAAS will be new drugs
in the future. The results of the experimental and clinical
studies are encouraging, which leads us to believe that
these new molecules can support the treatment of CVD.

Two axes of RAAS and their functions

According to the current subject knowledge, there are two
main axes of the RAAS: (1) ACE-angiotensin II-AT1 receptor
axis and (2) ACE2-angiotensin-(1-7)-Mas receptor axis
(Figure 1).9,10 Activation of the ACE-Ang II-AT1 causes
deleterious effects, including vasoconstriction, endothelial
dysfunction, thrombosis, inflammation, and fibrosis.11

ACE2-Ang-(1-7)-Mas receptor axis has a different role,
since it often opposes the effects induced by the classical
ACE-Ang II-AT1 axis.12 It has been suggested that the activ-
ity of the RAAS and the actions of RAAS blockers depend
on the balance between these two axes. It was demonstrated
that therapy with ACE-Is and ARBs prevented the decrease
in ACE2 expression in myocardial infarcted rats and
increased plasma Ang-(1-7) levels.13–15 This could be evi-
dence that these drugs are effective not only due to the
inhibition of Ang II effects, but also due to the activation
of the ACE2-Ang-(1-7)-Mas axis of the RAAS. Since,
the positive effects of the ACE2-Ang-(1-7)-Mas axis were
discovered, the alternative ways of pharmacotherapy acti-
vating this axis of RAAS appeared. ACE2-Ang-(1-7)-Mas
signaling, called ‘vasoprotective axis’ as well, has the poten-
tial to be considered a novel therapeutic approach to

counterbalance the ACE-Ang II-AT1 axis as a novel
approach targeting RAAS.10 Indeed, there are researched
exogenous Ang-(1-7) analogs and ACE2 activators, which
may be effective in the treatment of CVD, prevention and
treatment of diabetic vasculopathy or metabolic syndrome.

Angiotensin-(1-7)

Angiotensin-(1-7) is the element of the RAAS arousing big
interest due to its opposite to Ang II action.16,17 The pres-
ence of Ang-(1-7) has been confirmed in the heart, blood
vessels, kidneys, and liver.18 Ang-(1-7) is formed mainly
through the removal of the C-terminal phenylalanine
from Ang II by the action of ACE2. Ang-(1-7) can be also
produced from Ang-(1-9) by ACE and neutral-endopepti-
dase. Ang-(1-7) exerts its action through stimulation of the
specific G-protein coupled Mas receptor. Receptor Mas
stimulation leads, among others, to increased phosphoryl-
ation of endothelial nitric oxide synthase (eNOS) and
increased nitric oxide (NO) release. In addition, it augments
prostacycline synthesis and suppresses the release of
norepinephrine and thus Ang-(1-7) is considered a vasodi-
lating and antiarrhythmogenic factor.12,19 The effects of
Ang-(1-7) in diabetes and its cardiovascular disorders are
a new research area, although there are already some data
confirming the positive impact of this peptide on glucose
metabolism and its role in the prevention of the hypergly-
cemia-induced disorders. It was demonstrated that Mas-
knockout mice presented changes in glucose and lipid
metabolism which ended up with a condition resembling
metabolic syndrome, while chronic elevation of Ang-(1-7)
levels in transgenic rats leads to better glucose tolerance
and insulin sensitivity, a decrease in the plasma triglyceride
and cholesterol levels and a reduction in adipose tissue
mass.20,21 The possible mechanism of Ang-(1-7) action in
glucose metabolism may be related to the modulation of
blood flow and inhibition of fibrosis and therefore glucagon
and insulin release.22 The protective role of Ang-(1-7) in the
cardiovascular disorders of diabetes was also observed.
It was demonstrated that Ang-(1-7) attenuates diabetic car-
diomyopathy in rats because of vasodilatory, antiprolifera-
tive, and antifibrotic properties.23–26 Furthermore, the
cardioprotective effect of this peptide was also related to a
decrease in dyslipidemia. However, the therapeutic use
of Ang-(1-7) is limited due to its unfavorable pharmacoki-
netic properties.27 Thus, new strategies (e.g. the use of
cyclodextrins, liposomal delivery systems, modifications
of the peptide—cyclic form) are sought to make clinical
application of Ang-(1-7) possible.28

Non-peptide Ang-(1-7) analogs

The most widely studied so far Ang-(1-7) analog is AVE
0991, which is a non-peptide, orally active and physiologic-
ally well tolerated imidazole derivative.29 Despite the fact
that the first studies on AVE 0991 come from the last decade,
there are only few publications demonstrating the pharma-
codynamics and pharmacokinetics of this agent.

In 2002, the first in vitro study of AVE 0991 took place.30

It was demonstrated that novel compound caused a subse-
quent increase in NO and low concomitant production of

Figure 1 Targets of molecules affecting the RAAS. In red frames—drugs

blocking the ACE-AngII-AT1 axis, in green—molecules activating the ACE2-Ang-

(1-7)-Mas axis. Ang: angiotensin, ACE: angiotensin I converting enzyme, ACE-Is:

angiotensin I converting enzyme inhibitors, ACE2: angiotensin I converting

enzyme type 2, ARBs: angiotensin II receptor type 1 blockers, AT1: angiotensin II

receptor type 1, AT2: angiotensin II receptor type 2, Mas: Mas receptor. (A color

version of this figure is available in the online journal.)
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O2 in bovine aortic endothelial cells. AVE 0991 caused
approximately five times higher release of bioactive NO
compared with Ang-(1-7). Moreover, it was demonstrated
that the effects of AVE 0991 were not completely abolished
by inhibition of NOS or blockade of AT1 and AT2 recep-
tors.30 The beneficial effects of AVE 0991 were confirmed
in various experimental models of CVD and diabetes
(Table 1).31–40 Despite the promising results of experimental
studies, the development of AVE 0991 has been stopped for
unknown strategic reasons.

Peptide Ang-(1-7) analogs

Peptide Ang-(1-7) analogs, natural ligands able to stimulate
G-protein coupled receptors (Mas among others), were dis-
covered during the human proteome analysis. As a result,
two peptides, CGEN-856 and CGEN-857, were examined
(amino acid sequence FLGYCIYLNRKRRGDPAFKRRLRD
and SMCHRWSRAVLFPAAHRP, respectively). What is
the most important is that the compounds have no

significant homology to Ang-(1-7) or to known G-protein
coupled receptor ligands. These peptides have several
chemical structures, but CGEN-856S (a monomer in which
cysteine was substituted with serine) displays the highest
affinity for the Mas receptor confirmed in experimental
in vitro and in vivo models. CGEN-856S displays high, like
AVE 0991, affinity for the Mas receptor.41 The favorable
effects of CGEN-856S in the cardiovascular system were
confirmed in animal models of CVD (Table 1).41,42

Ang-(1-7) analogs in clinical trials

A major limitation of Ang-(1-7) use is that this molecule is a
peptide with a short plasma half-life and is rapidly
degraded in the gastrointestinal tract when given orally.
Although, some attempts to make Mas stimulation suitable
for clinical use of orally active derivatives of Ang-(1-7)
are being made. Some of the Ang-(1-7) analogs entered
the clinical studies, including NorLeu3-Ang-(1-7) which is
currently studied as DSC127 for topic treatment of diabetic

Table 1 New agents modulating RAAS in the experimental studies

New agents in RAAS Beneficial effects observed in animal models

Target diseases—potential

clinical implication Refs.

Non-peptide Ang-(1-7)

analogs (AVE 0991)

� Decrease in infarcted area in rats with myocardial

infarction

� Inhibition of atherogenesis in apoE-knockout mice

� Reduction of endothelial dysfunction in salt-fed rats

� Anti-hypertensive effect in 2K1C and DOCA hyper-

tensive rats

� Improvement in hemodynamics and renal protection

in streptozotocin-induced diabetic rats

� Myocardial ischemia

� Heart failure

� Atherosclerosis

� Hypertension

� Diabetes

31–40

Peptide Ang-(1-7)

analogs (CGEN-856S)

� Decrease in blood pressure in SHR rats

� Decrease in infarcted area and cardiac remodelling

in rats with hypertrophy and myocardial infarction

� Hypertension

� Myocardial ischemia

� Arrhythmias

41–42

rhACE2 � Reduced inflammation, renal dysfunction, and

glomerulus injury in apoE-knockout mice

� Reduced hypertrophy, diastolic dysfunction, and

myocardial fibrosis in mice with hypertrophy and

diastolic dysfunction

� Atherosclerotic renal injury

� Kidney diseases

� Heart failure

60–62

ACE2 activators

(Xanthenon, DIZE)

� Decrease in blood pressure in SHR rats

� Reduction in interstitial fibrosis in rats with pulmon-

ary hypertension

� Reduction in thrombus weight and area in rat venous

thrombosis

� Improvement in the autonomic and cardiac dys-

function in streptozotocin-induced diabetic rats

� Hypertension

� Diabetes

with cardiovascular

autonomic dysfunction

64–68

MRAs (Finerenone) � Improved mortality and nephroprotection in SHR

stroke-prone rats

� Cardiorenal protection in rats with diastolic heart

failure

� Hypertension

� Heart failure

102–104

ASIs (FAD286) � Reduced cardiac hypertrophy, oxidative stress and

improved hemodynamics and endothelial function in

rats with post-myocardial infarction heart failure

� Reduced lesion area and inflammation in apoE-

knockout mice

� Reduced renal inflammation, albuminuria in strep-

tozotocin-induced diabetic rats

� Lowered blood pressure in hypertensive salt-fed

rats

� Reduced neovascularization and retinopathy in rat

model of retinopathy

� Congestive heart failure

� Atherosclerosis

� Diabetic nephropathy

� Hypertension

� Retinal neovascularisation

110–121
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foot ulcers (DFU) (Table 2).43,44 DFU patients are being
recruited into phase III clinical trials for DSC127
(NCT01830348 and NCT01849965).45 One pharmaceutical
company aims to initiate clinical trials with another Ang-
(1-7) analog—TXA127 in patients with Duchenne muscular

dystrophy or congenital muscular dystrophy in early 2016.
So far, the positive effects of TXA127 in muscle dystrophy,
including reduction in muscle fibrosis, increases in muscle
strength as well as normalization of cardiac dysfunction,
were confirmed in experimental models.46–48

Table 2 New agents modulating RAAS in the clinical studies

New agents in RAAS

Clinical study

Results Mechanism of action Ref.Phase/Acronim Patients

Ang-(1-7) analogs

(DSC127)

Phase II clinical study Patients with chronic,

noninfected, neuro-

pathic, or neurois-

chemic plantar

Wagner Grade 1 or

2 foot ulcers

� Safety and efficacy of

DSC127 in accelerating

the healing of diabetic foot

ulcers

� Induction of progenitor

proliferation

� Accelerated

vascularisation

43

rhACE2 Phase I clinical study Healthy volunteers � Determined pharmacokin-

etics, pharmacodynamics,

safety, and tolerability

� Lack of cardiovascular

effects despite of marked

changes in angiotensin

system peptide

concentrations

� The presence of effect-

ive compensatory

mechanisms in healthy

volunteers is suggested

63

MRAs (Finerenone) Phase IIa clinical

study (ARTS)

Patients with heart failure

associated with a

reduced left ventricu-

lar ejection fraction

and chronic kidney

disease

� Determined pharmacokin-

etics, pharmacodynamics,

safety, tolerability, and

optimal dose range for

further studies

� Less hyperkalemia and

renal dysfunction com-

pared with spironolactone

� Greater selectivity than

spironolactone and

stronger mineralocortic-

oid receptor binding

affinity than eplerenone

105

Phase IIb clinical

study (ARTS-DN)

Patients with type 2 dia-

betes and clinical

diagnosis of diabetic

nephropathy

� Well tolerated with good

safety profile

� Future long-term clinical

studies examining the

effects of finerenone on

the progression of renal

disease as well as on CV

morbidity and mortality in

patients with DKD are

needed

106

Phase IIb clinical

study (ARTS-HF)

Patients with worsening

chronic heart failure

and reduced left ven-

tricular ejection frac-

tion and at high risk of

hyperkalemia and

worsening renal

dysfunction

� Investigated the safety

and potential efficacy

finerenone in a high-risk

population of patients

� Assessed the effects of

finerenone on a composite

clinical endpoint

107

ASIs (LCI699) Phase II clinical study Patients with primary

aldosteronism

� Decreased plasma aldos-

terone concentration

� Corrected the hypokal-

emia and mildly decreased

blood pressure

� Effectively and safely

inhibited aldosterone

synthase (CYP11B2)

123

Phase II clinical study Patients with primary

hypertension

� Lowered clinic and ambu-

latory blood pressure

� Effectively and safely

inhibited aldosterone

synthase (CYP11B2)

124

A multicenter, proof-

of-concept study

Patients with Cushing’s

disease

� Efficacious and well toler-

ated in patients with

Cushing’s disease

� Normalized urinary cortisol

� Decreased blood pressure

� Inhibited cortisol syn-

thesis (CYP11B1)

125

Gromotowicz-Poplawska et al. New agents modulating the renin-angiotensin-aldosterone system 1891
. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



Angiotensin converting enzyme 2

A monocarboxypeptidase, angiotensin-converting enzyme
2 (ACE2) is 42% homolog to ACE1 and is expressed in the
heart, kidney, testis, endothelium of coronary, intrarenal
vessels, and renal tubular epithelium.12 ACE2 shows
a 400-fold higher affinity to Ang II than to Ang I. ACE2
produces vasodilator peptides Ang-(1-7) from Ang II
(Figure 1). ACE-Is increase angiotensin-(1-9) and Ang-(1-7)
levels, which is probably related with the enhanced activa-
tion of ACE2.12 Moreover, ACE2 is a target for severe acute
respiratory syndrome coronavirus (SARS)-CoV. During
infection with this virus the expression of ACE2 is
decreased, which probably contributes significantly to the
development of pulmonary insufficiency.49 ACE2 is acti-
vated in the heart ventricles of primary pulmonary hyper-
tension patients, which suggests that ACE2 could be a
cardioprotective enzyme.50 Indeed, the results of experi-
mental studies support this thesis. Studies in rats overex-
pressing ACE2 showed a reduction in blood pressure and
an improvement in endothelial function.51 It has been also
demonstrated that lack of the ACE2 gene leads to an
increase in adhesion molecules and proinflammatory cyto-
kine expression, which augments vascular inflammation
and atherogenesis in ApoE knockout mice.52 Moreover,
the benefits of ACE2 in experimental models of diabetes
were demonstrated. Infection with the adenovirus contain-
ing human ACE2 gene resulted in improved fasting
glycemia and glucose tolerance, an increase in pancreatic
b cells proliferation and limitation of their apoptosis in dia-
betic mice.53 Moreover, it was demonstrated that ACE2
plays a protective role in diabetic nephropathy in experi-
mental animals.54,55 According to the latest reports, changes
in ACE2 gene expression were observed during clinical
studies in type 1 and type 2 diabetic patients.56,57 There
was a positive correlation between the ACE/ACE2
ratio and such variables as blood pressure, fasting glycemia,
creatinine levels, and urine protein.

The presented data proves a potential ACE2 role in the
prevention of CVD and organ damage provoked by sus-
tained hyperglycemia, thus the search for new molecules
and methods of modulating ACE2 activation is required.

Recombinant human ACE2

One of the possibilities activating the ACE2-Ang-(1-7)-Mas
axis is the use of rhACE2. It was demonstrated that treat-
ment of Ang II-infused wild-type mice with rhACE2
blunted the hypertrophic response and expression of hyper-
trophy markers and reduced Ang II-induced superoxide
production and Ang II-mediated myocardial fibrosis.58

These effects were associated with reduced plasma and
myocardial Ang II and increased plasma Ang-(1-7) levels.
Importantly, rhACE2 partially prevented the development
of dilated cardiomyopathy in pressure-overloaded wild-
type mice.58 These data prove that ACE2 is an important
negative regulator of Ang II-induced heart disease and can
suppress adverse myocardial remodeling. The beneficial
effects of rhACE2 were also demonstrated in experimental
models of diabetic kidney injury in association with a
reduction in blood pressure and a decrease in oxidative

stress.59 Moreover, blocking Ang-(1-7) action prevents the
beneficial effects of rhACE2 leading to systolic dysfunc-
tion.60 These results highlight a key cardioprotective role
of Ang-(1-7) and potential therapeutic strategy for CVD
(Table 1).61,62 Actually, rhACE2 was successfully taken
through a phase I trial and was well tolerated by healthy
volunteers. Although, despite marked changes in angioten-
sin peptide concentrations, cardiovascular effects were
lacking, suggesting the presence of some compensatory
mechanisms in healthy volunteers (Table 2).63

ACE2 activators

The second way to increase ACE2 activity, and therefore
Ang-(1-7) synthesis, is to use agents modulating ACE2
gene expression. In 2008, two ACE2 activators were dis-
covered: xanthenon (XNT) and resorcinolnaphthalein.
In vitro studies showed that these two compounds in a
dose-dependent manner enhanced ACE2 activity by
approximately two-fold from control levels.64 However,
due to the results of a solubility study only XNT was
researched in vivo. XNT is significantly more soluble than
resorcinolnaphthalein, thus it was commonly used in in vivo
studies. The protective cardiovascular effects of XNT were
confirmed in various animal models of CVD and diabetes
(Table 1).64–68

Recently, an antitrypanosomal drug, diminazene acetu-
rate (DIZE), was shown to exert an ‘‘off-target’’ effect of
enhancing the activity of ACE2 in vivo. The potential bene-
fits of DIZE in the therapy of hypertension and its compli-
cations were demonstrated in different animal models
(Table 1).69–73 The protective effects of DIZE were associated
with the activation of the vasoprotective axis of the lung
RAAS, decreased inflammatory cytokines, improved pul-
monary vasoreactivity, and enhanced cardiac function.69

A recent report demonstrated that the mechanism of
DIZE’s antihypertensive action involves Mas receptor
activation and the NO-dependent pathway.70 Moreover,
it was shown that treatment with DIZE improved hyperch-
olesterolemia-induced corpus cavernosum injury, sug-
gesting ACE2 as a potential target for treating erectile
dysfunction.72

The cardioprotective properties of ACE2 activators could
mean future use of these compounds in the prevention
of cardiac insufficiency or diabetes complications, including
hemostasis disturbances. These results, with the reduc-
tion of lipogenesis markers, open a new perspective for
metabolic disorder pharmacotherapy. At the moment, the
effects of ACE2 activators were evaluated only in preclinical
studies.

Aldosterone

Aldosterone, the final product of the RAAS, plays a crucial
role in the pathophysiology of the cardiovascular system.74

Aldosterone contributes to endothelial dysfunction, fibrino-
lytic disorders, inflammation, oxidative stress, fibrosis,
hypertrophy, and arrhythmias leading to progression
of CVD.75–78

The blockade of aldosterone action has been demon-
strated to be an extremely beneficial therapy in CVD.
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Clinical trials with spironolactone and eplerenone, steroidal
MRAs, investigated the potential role of aldosterone and
MRAs in a variety of CVD. These trials are a result of clin-
ical interest in the significant function of aldosterone in the
cardiovascular system, which became evident after publi-
cation of the outcomes of two clinical trials: Randomized
Aldactone Evaluation Study (RALES) and Eplerenone
Post-Acute Myocardial Infarction Heart Failure Efficacy
and Survival Study (EPHESUS).79,80 Moreover, numerous
animal studies have shown that MR blockade reduces car-
diovascular, renovascular, and cardiometabolic disorders
associated with obesity and diabetes.81–83 Moreover, the
prothrombotic effect of aldosterone was showed in experi-
mental models of thrombosis.84–87 It was demonstrated that
the hormone enhances venous thrombosis in normotensive
rats in the mechanism involving primary hemostasis, fibrin-
olysis, NO, and oxidative stress-dependent pathways.88

Furthermore, the MR blockade was not sufficient to reverse
aldosterone effects in hemostasis. The other receptors, e.g.
glucocorticoid receptor (GR) and AT1, were also involved
in the prothrombotic action of aldosterone.89,90 These
results show that the aldosterone action is more complex
and involves not only MR activation as it was previously
thought (Figure 2).

However, the molecular mechanism of aldosterone
action is not completely understood. The effects of aldos-
terone are mediated via classic nuclear receptors (genomic
actions of aldosterone) and cell-membrane receptors
(non-genomic actions of aldosterone) with alternative

pathways (activation of protein kinases or secondary mes-
senger signaling cascades).91,92 It was well documented that
aldosterone in supraphysiological concentrations can also
act via GR.93 Recently, it has been demonstrated that
another important receptor aldosterone acts on is G protein
coupled estrogen receptor (GPR30). GPR30 activation plays
an important role in aldosterone-mediated regulation of
endothelial cell growth and in aldosterone’s endothelial-
mediated regulation of vasoreactivity.94

This multiple mechanism of aldosterone action points
to the need of a search for new strategies of aldosterone
blockade.

New aldosterone blockers

To date, only two steroidal MRAs have been clinically used.
Spironolactone represents first generation of nonselective
MRAs, while eplerenone corresponds to the second gener-
ation with significantly improved selectivity for MR over
other steroid receptors.95 The IC50 of eplerenone for MR
(990 nmol/L) is over 10-fold less than for androgen, proges-
terone, and estrogen receptors.96]. Despite the irrefutable
beneficial effects of spironolactone and eplerenone con-
firmed in patients with heart failure and kidney disease,
the use of MRAs is limited by the risk of hyperkalemia,
especially in patients with renal disorders.79,80,97 In fact,
hyperkalemia was reported in up to 36% among elderly
heart failure outpatients. Hence, the risk of hyperkalemia
was the strongest stimulus for further research with third

Figure 2 Aldosterone synthesis and targets of hormone blockers. ACTH: adrenocorticotropic hormone, Ang II: angiotensin II, Ang III: angiotensin III, ASIs: aldos-

terone synthase inhibitors, AT1: angiotensin II receptor type 1, CYP11B2: aldosterone synthase, EKODE: oxidized derivative of linoleic acid, GPR30: estrogen receptor,

GR: glucocorticoid receptor, Kþ: potassium ions, MR: mineralocorticoid receptor, MRAs: mineralocorticoid receptor antagonists, ‘?’: non-identified cell-membrane

receptor. (A color version of this figure is available in the online journal.)
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generation of MRAs, which are nonsteroidal, more cardio-
selective thus exerting less renal side effects.98 Few pharma-
ceutical companies have nonsteroidal MRAs in clinical
development. However, no clinical data have been
published so far for MT-3995, SC-3150, LY2623091, and
PF-03882845. Although, there are some data available
from a phase II trial for finerenone (developmental code
name BAY 94-8862), showing safety and efficacy in patients
with heart failure and chronic kidney diseases.99

Finerenone—third generation of MRAs

Finerenone is a dihydropyridine derivative without L-type
Ca2þ channel activity and with less relative affinity to
other steroid receptors than currently available MRAs.99

Finerenone has unique pharmacodynamics as a conse-
quence of different molecular properties. Similar to spir-
onolactone and eplerenone, finerenone competitively
antagonizes the MR, although it shows more natriuretic
effects since it exerts a 3–10-fold higher potency and effi-
cacy with IC50 of 18 nmol/L with exceptional selectivity
versus the GR, androgen and progesterone receptors
(>500-fold).99–101 Finerenone shows cardiac and renal pro-
tection, which was confirmed in preclinical studies in rats
(Table 1).102–104 Furthermore, the end-organ protective
activity were more pronounced in finerenone-treated rats
compared to eplerenone-treated animals.102 These positive
outcomes from preclinical studies were further confirmed
in trials (Table 2). The safety and tolerability of finerenone
was studied during the Mineralocorticoid-Receptor
Antagonist Tolerability Study (ARTS) in patients with
heart failure and mild/moderate chronic kidney disease.105

Treatment with finerenone resulted in less hyperkalemia
and slower renal dysfunction compared with spironolac-
tone, whereas the other cardiac and renal parameters
were at least similar. Further clinical studies with finere-
none in patients with worsening chronic systolic heart fail-
ure and type 2 diabetes and/or chronic kidney disease
(ARTS-HF, ARTS-DN) showed positive outcomes as
well.106,107 However, the long-term effects of finerenone
will be investigated in a phase III study for the treatment
of chronic heart failure.

Fourth generation of MRAs

While MR blocking in the cardiovascular tissues is particu-
larly sought after, the fourth generation of MRAs, present-
ing high tissue selectivity (cardiovascular over renal effects)
and a renal-sparing profile (combined Naþ excretion with a
mild Kþ retention), is now postulated. This tissue selectivity
can be achieved by improving the physiochemical proper-
ties of MRAs that alter their tissue distribution or by the
interaction of novel MRAs with ‘‘coregulator molecules’’.
There is evidence that coregulators, a heterogeneous
group of nonreceptor proteins, are required to influence
nuclear receptor-mediated transactivation of target
genes.108 It is expected that the interaction of novel MRAs
with certain coregulators may allow the modulation of MR
activity and selectivity. Thus, rather selective MR modula-
tors, than MR blockers per se, may be a key factor
in proper MR antagonism. Understanding the nature of

MR-coregulator interactions may be a stimulator for a
rational design of the fourth generation of MRAs.

Aldosterone synthase inhibitors

Bearing in mind that the harmful effects of aldosterone are
not fully abolished by the MR blockade, since alternative
receptors (GR, GPR30, AT1), as well as nongenomic mech-
anisms are involved in the hormone action, the question
arises whether blocking at the level of aldosterone synthesis
would be more beneficial in this case (Figure 2).

The key enzyme in aldosterone production is aldoster-
one synthase (CYP11B2). CYP11B2 is predominantly
expressed in the adrenal gland but is also expressed in the
cardiovascular system or brain.109–111 Lack of optimal effect-
iveness in aldosterone receptor blockade initiated some
research on ASIs, like FAD286 or LCI699.112

FAD286

FAD286, the R-enantiomer of fadrozole, was initially devel-
oped as an aromatase (CYP19A1) inhibitor and used as a
drug to treat breast cancer.111 There were also demonstrated
potential benefits of FAD286 in the therapy of cardiovascu-
lar disorders in different experimental models of CVD and
diabetes (Table 1).110,113–121 Some effects were similar to the
effects of MRAs, proving that aldosterone plays a key role
in the pathogenesis of CVD. Considering that aldosterone
may also act through the MR-independent pathways, ASIs
seem to be an excellent supplement of classic MRAs therapy
in the prevention of cardiac insufficiency. The results
of experimental studies are promising, which allow us to
believe that inhibition of aldosterone synthesis can support
treatment of CVD.

LCI699

Following the experimental studies with FAD286, LCI699
was synthesized, based on the chemical structure of
FAD286, as the first orally active ASI for human use
(Table 2).122 LCI699 is a potent inhibitor of CYP11B2, but
it also inhibits CYP11B1, the enzyme that catalyses the final
step of cortisol synthesis. The results of phase II studies
showed that in patients with primary hyperaldosteronism
characterized by severe hypertension and hypokalemia
LCI699 induced a reversible and dose-dependent 70–80%
decrease in plasma and urinary aldosterone concentrations
with a massive accumulation of the aldosterone precursor,
deoxycorticosterone, in the plasma, confirming the inhib-
ition of the product of the CYP11B2 gene. Treatment
with LCI699 caused correction of hypokalemia and a mild
decrease in blood pressure.123 The efficacy of LCI699
for lowering BP was investigated in patients with essential
hypertension. The antihypertensive effect of 1 mg of LCI699
was similar to that of eplerenone at a dose of 50 mg.124

However, the effects of LCI699 on the glucocorticoid axis
limit the use of higher doses because of the loss of selectivity
for CYP11B2.122 These effects on the glucocorticoid axis may
not be a problem in the case of Cushing disease patients.
In fact, preliminary results from a multicenter, proof-of-
concept study are that patients with Cushing disease
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achieve normal urinary cortisol with LCI699.125 Another
LCI699 trial goal was to evaluate the effect of LCI699 on
cortisol response to adrenocorticotropic hormone stimula-
tion in patients with essential hypertension in order to
find the maximally tolerated dose in this patient popula-
tion, which was estimated to be 1.30 mg once daily.
The treatment was well tolerated with no serious adverse
effects.126 In a trial comparing LCI699 to eplerenone
in 14 patients with primary aldosteronism, the effects on
blood pressure and plasma potassium and renin concen-
trations of four weeks of eplerenone treatment were more
significant than those of four weeks of LCI699 treatment,
with the opposite drugs effect on plasma aldosterone
concentrations.127

Other ASIs

The new inhibitors of CYP11B2 are already existing drugs
that according to some researchers could be used either in
the treatment of hyperaldosteronism-related diseases or as
precursors to achieve safer and selective new ASIs.128

Moreover, several dihydropyridine Ca2þ channel blockers
block T-type channel as well, which brings upon the inhib-
ition of aldosterone synthesis in vitro. The dihydropiridine
structure might be the base for the development of novel
molecules that dually (a) block aldosterone synthase and
MR for more potent aldosterone antagonism and (b) inhibit
the L-type Ca2þ channel for more pronounced antihyper-
tensive effects.129

Combined treatment—another approach
to RAAS blocking

The another approach to effective treatment of CVD is the
usage of new combinations of agents modulating the RAAS.
There are many clinical studies (RESOLVD, CHARM,
ALOFT) showing the efficacy of dual RAAS blockade
based on combination of various doses of well-known
ACE-Is, ARBs, and direct renin inhibitor. Unfortunately,
several clinical trials (ONTARGET, ALTITUDE and VA
NEPHRON-D) in patients with hypertension, heart failure,
and chronic kidney disease with proteinuria have demon-
strated no beneficial effects of dual versus single RAAS
blockade, but a higher incidence of adverse events.130 Some
new combined agents affecting RAAS occurred recently.
According to the latest network meta-analysis of Xie et al.,
ARNI, a novel dual-acting angiotensin receptor-neprilysin
inhibitor has the highest probability of being the most effect-
ive therapy for heart failure and reduced ejection fraction
compared to ACE-Is and/or ARBs.131

Conclusions and perspectives

The efficacy of classic RAAS affecting drugs in CVD is
widely known, but previously it was not assumed these
effects could also be related with the activation of other
regulatory elements of RAAS. Understanding the mechan-
ism of new molecules’ action in the RAAS allows the intro-
duction of alternative therapies and thus elimination of the
adverse effects of already used drugs. The emergence of
these novel drugs may not only help to improve the

effectiveness of treatment of CVD, but it may further sig-
nificantly broaden the therapeutic potential of the RAAS.
The results of basic experiments and clinical studies are
encouraging, which leads us to believe that new molecules
can support treatment of CVD and could be helpful in the
management of cardiometabolic disorders.

More detailed information about the results of experimen-
tal studies with the usage of new agents affecting RAAS are
enclosed in supplementary files (Supplementary Tables 1–3).
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Rupérez FJ, Caro-Vadillo A, Barbas C, Egido J, Tuñón J, Lorenzo Ó.
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