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ABSTRACT

Rotaviruses (RVs) of species A (RVA) are a major causative agent of acute gastroenteritis. Recently, histo-blood group antigens
(HBGAs) have been reported to interact with human RVA VP8* proteins. Human P[19] is a rare P genotype of porcine origin
that infects humans sporadically. The functional and structural characteristics of P[19] VP8* interaction with HBGAs are un-
known. In this study, we expressed and purified the VP8* proteins of human and porcine P[19] RVs. In oligosaccharide and sa-
liva binding assays, P[19] VP8* proteins showed obvious binding to A-, B-, and O-type saliva samples irrespective of the secretor
status, implying broad binding patterns. However, they did not display specific binding to any of the oligosaccharides tested. In
addition, we solved the structure of human P[19] VP8* at 2.4 Å, which revealed a typical galectin-like fold. The structural align-
ment demonstrated that P[19] VP8* was most similar to that of P[8], which was consistent with the phylogenetic analysis. Struc-
ture superimposition revealed the basis for the lack of binding to the oligosaccharides. Our study indicates that P[19] RVs may
bind to other oligosaccharides or ligands and may have the potential to spread widely among humans. Thus, it is necessary to
place the prevalence and evolution of P[19] RVs under surveillance.

IMPORTANCE

Human P[19] is a rare P genotype of porcine origin. Based on phylogenetic analysis of VP8* sequences, P[19] was classified in the
P[II] genogroup, together with P[4], P[6], and P[8], which have been reported to interact with HBGAs in a genotype-dependent
manner. In this study, we explored the functional and structural characteristics of P[19] VP8* interaction with HBGAs. P[19]
VP8* showed binding to A-, B-, and O-type saliva samples, as well as saliva of nonsecretors. This implies that P[19] has the po-
tential to spread among humans with a broad binding range. Careful attention should be paid to the evolution and prevalence of
P[19] RVs. Furthermore, we solved the structure of P[19] VP8*. Structure superimposition indicated that P[19] may bind to
other oligosaccharides or ligands using potential binding sites, suggesting that further investigation of the specific cell attach-
ment factors is warranted.

Rotaviruses (RVs) are the major causative agents of acute gas-
troenteritis in young children and animals worldwide (1). The

RV genome contains 11 segments of double-stranded RNA en-
coding 12 proteins: six structural proteins (VP1, VP2, VP3, VP4,
VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6)
(2). RVs are classified into 8 species (A to H) by the antigenicity of
the VP6 protein (3). Group A rotavirus (RVA) is a major cause of
human RV-associated gastroenteritis (4). RVA can be classified
into various G and P types on the basis of glycoprotein VP7 and
protease-sensitive VP4, respectively. To date, at least 27 G and 35
P genotypes have been reported (5). The fact that the segmented
genome undergoes point mutations, reassortment, and gene rear-
rangements accounts for the large genetic diversity of RVs (1).

VP4 can be cleaved by protease to yield N-terminal VP8* and
C-terminal VP5* (6). VP8* includes the VP4 spike head and is
reported to bind to cell surface glycans essential for cell invasion
(7). The ability of a virus to invade host cells is crucial for its
replication, host tropism, and pathogenicity. Notably, VP8* is the
most variable domain. VP8* proteins of sialidase-sensitive RVs
were reported to interact with sialic acids (Sia) (8); however, most
animal RVs and almost all human RVs were sialidase insensitive
(9). It was noted that many of the sialidase-insensitive RVA strains
interact with Sia at subterminal sites of glycoprotein receptors
(10). Recently, histo-blood group antigens (HBGAs) have been

reported to be attachment factors for human RVs by interacting
with VP8* (11, 12). HBGAs are a group of carbohydrates present
on the surfaces of red blood cells and mucosal epithelia and as free
oligosaccharides in saliva, blood, and milk (13).

Previous studies by oligosaccharide and saliva binding assays
showed that P[4] and P[8] bound to Lewis b (Leb) and H1, while
P[6] recognized only H1 (11, 14, 15). P[11] showed obvious bind-
ing to type 1/type 2 precursors (16, 17). In addition, P[9], P[14],
and P[25] all bound to A type HBGA (A-HBGA) (18). Using sat-
uration transfer difference nuclear magnetic resonance (STD-
NMR), DS-1 P[4], RV-3 P[6], ST-3 P[6], and HAL1141 P[14] RVs
were shown to bind to A-HBGA, whereas Wa P[8] did not (19). In
addition, the VP8* protein of Wa also showed no binding to H1 or
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Leb in the STD-NMR assay. Moreover, epidemiological studies
have demonstrated certain correlations between HBGA status and
RV infections in different regions and populations (20–22). These
studies indicate the complexity of the interactions between RVs
and HBGAs. Through phylogenetic analysis of VP8* sequences,
RVAs have been classified into five genogroups (P[I] to P[V])
(18). P[I], P[IV], and P[V] mainly infect animals; P[II] infects
humans; and P[III] infects both animals and humans. The three
major P genotypes in humans (P[4], P[6], and P[8]) are all clus-
tered in P[II].

P[19] is also grouped in P[II]. P[19] is a rare RVA P genotype
reported in humans and pigs (4). It was found to be combined
with various G genotypes (23). P[19] was first identified in pigs in
1986 (4F) (24). The first human P[19] RV strains were detected in
Thailand in 1989 (Mc323 and Mc345) (25). Whole-genome anal-
ysis revealed that human P[19] RV Mc323 and Mc345 were of
porcine origin (26). It is unknown whether P[19] has HBGA bind-
ing patterns similar to those of other members of the P[II] geno-
group (P[4]/P[8] or P[6]), which may be essential for understand-
ing P[19] RV infection and transmission in humans and pigs.
Therefore, we expressed P[19] VP8* proteins and explored the
structural and functional characteristics of P[19] RV VP8* inter-
action with HBGAs in this study.

MATERIALS AND METHODS
VP8* protein expression and purification. The VP8* gene (encoding
amino acids 1 to 230) of human P[19] Mc345 (RVA/Human-tc/THA/
Mc345/1989/G9P[19]; GenBank accession number D38054) was synthe-
sized by Genewiz Company (Suzhou, China). One porcine G3P[19] RV
was identified in our laboratory (unpublished data), and the VP8* se-
quence (GenBank accession number KX455847) was obtained from a
reverse transcription (RT)-PCR replicon. VP8* core fragments (amino
acids [aa] 64 to 223) of both human and porcine P[19] RVs were then
cloned into the pGEX4T-1 vector with an N-terminal glutathione S-trans-
ferase (GST) tag. VP8* core fragments (aa 64 to 223) with a C-terminal
hexahistidine (His) tag were cloned into the pET-30a vector. The recom-
binant proteins were expressed in Escherichia coli strain BL21 induced
with isopropyl-�-D-thiogalactopyranoside (IPTG) at a final concentra-
tion of 0.4 mM at 22°C for 16 h. The GST fusion and His tag proteins were
purified as reported previously (27). Briefly, for the GST fusion protein,
the supernatant of the bacterial lysate was filtered through a 0.22-�m
membrane and bound to glutathione-Sepharose (GE Healthcare Life Sci-
ences). The GST fusion protein of interest was eluted with elution buffer
(10 mM reduced glutathione, 50 mM Tris-HCl, pH 8.0) after washing five
times with phosphate-buffered saline (PBS). The His-tagged protein was
bound to a HisTrap column and eluted with PBS with 300 mM imidazole
buffer following washing with PBS and PBS with 20 mM imidazole buffer.
Samples of each eluted product were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) to check the proteins.
VP8* protein was concentrated to �5 mg/ml using the 10-kDa concen-
tration tube (Millipore), centrifuged at a speed of 2,000 � g, and then
applied to a Superdex 20010/300GL gel filtration column buffered with PBS.
The protein from each peak was collected and verified by SDS-PAGE. The
protein of interest was concentrated to �5 mg/ml.

Saliva binding assay. A panel of saliva samples with typed A, B, and O
and secretor status kept in our laboratory was used for a saliva binding
assay as described previously (27, 28). A plate was coated with saliva sam-
ples. After blocking with 5% nonfat milk, the VP8*core-GST fusion pro-
teins of both human and porcine P[19] (50 �g/ml) were added at a vol-
ume of 100 �l per well. Then, mouse GST antibody (1:1,000; Abcam) was
added, followed by horseradish peroxidase (HRP)-conjugated goat anti-
mouse antibody (1:1,500; Abgent). The reaction was developed using a
3,3=,5,5=-tetramethylbenzidine (TMB) kit, and the absorbance was mea-

sured at 450 nm. In each step, the plates were incubated at 37°C for 1 h and
washed five times with 0.5% PBS-Tween 20 buffer.

Oligosaccharide binding assay. A plate was coated with the
VP8*core-GST fusion proteins of both human and porcine P[19] at 20 �g
per well, as reported previously (11). After blocking with 5% nonfat
milk, synthetic-oligosaccharide–polyacrylamide (PAA)– biotin conju-
gates (Lewis a [Lea], Leb, Lewis x [Lex], Lewis y [Ley], H1, H2, H3, A, B,
type 1 precursor, type 2 precursor, Neu5Ac, Neu5Gc, and sialyl-Lex;
GlycoTech, Inc., Gaithersburg, MD) were added at 0.2 �g per well. Then,
HRP-conjugated streptavidin (Abcam) was added at 0.1 �g per well. The
plates were incubated at 37°C for 1 h and washed five times with 0.5%
PBS-Tween 20 buffer at each step. The reaction mixture was developed
using a TMB kit, and the absorbance was measured at 450 nm.

Protein crystallization. The VP8*core-His protein was further puri-
fied by gel filtration buffered with 20 mM Tris-HCl, 50 mM NaCl, pH 8.0.
The protein was concentrated to approximately 10 mg/ml, and crystalli-
zation screening was carried out using the sitting-drop vapor diffusion
method at 18°C with 1 �l of protein mixed with 1 �l of reservoir solution.
Human P[19] VP8* was crystallized under these conditions with 0.2 M
ammonium sulfate, 0.1 M MES (morpholineethanesulfonic acid), pH 6.5,
and 30% (wt/vol) polyethylene glycol MME 5000.

Data collection and processing. Crystals were flash-frozen in liquid
nitrogen after being dipped briefly in cryoprotectant solutions containing
20% (vol/vol) glycerol. Diffraction data were collected at the Shanghai
Synchrotron Radiation Facility (SSRF) BL17U. Original data were pro-
cessed using HKL2000 software (29). The human P[19] VP8* structure
was solved by molecular replacement using Phaser software implemented
in the CCP4 program suite (30), with the structure of Wa VP8* (Protein
Data Bank [PDB] code 2DWR) as the search model. The initial model was

TABLE 1 Crystallographic X-ray diffraction and refinement statistics

Parameter Valuea for P[19] VP8*

Data collection
Space group C121
Cell dimensions

a, b, c (Å) 180.90, 129.78, 86.82
�, �, � (°) 90, 116, 90

Resolution (Å) 50–2.40 (2.49–2.40)
Rsym or Rmerge 0.150 (0.967)
I/�I 10.73 (1.97)
Completeness (%) 99.8 (100.0)
Redundancy 4.1 (4.1)

Refinement
Resolution (Å) 33.82–2.40
No. of reflections 70,272
Rwork/Rfree 0.2155/0.2594
No. of atoms

Protein 10,232
Ligand/ion 20
Water 362

B factors
Protein 40.1
Water 42.1
Ligand 29.4

RMSD
Bond length (Å) 0.004
Bond angle (°) 0.768

Ramachandran plot
Most favored (%) 87.7
Additionally favored (%) 12.1
Generally allowed (%) 0.2
Disallowed (%) 0

a The values in parentheses are for the highest-resolution shell.
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refined by rigid-body refinement using the REFMAC5 program (31), and
extensive model building was performed using the COOT program (32).
The model was then subjected to iterative cycles of refinement using
PHENIX software (33) with energy minimization, isotropic ADP refine-

ment, and bulk solvent modeling. Final statistics for P[19] VP8* are pre-
sented in Table 1. The structural analysis was performed using the PyMOL
software package. Root mean square deviation (RMSD) values of the
matching C� atoms between P[19] VP8* and other representative

FIG 1 Human and porcine P[19] VP8*core-GST (A and C) and human and porcine P[19] VP8*core-His (B and D) protein purification by gel filtration. The
arrows indicate the protein samples at the peak positions in the gel filtration. A molecular mass marker was added to indicate the putative corresponding protein
size of the main peak in the gel filtration.

FIG 2 Saliva-based binding assay of human (A) and porcine (B) P[19] VP8*core proteins. VP8* proteins bound to saliva samples of A, B, and O types and saliva
of nonsecretors (O	). The cutoff value was the value of a negative-control well with PBS instead of saliva samples. In total, 93 saliva samples were tested in the
assay. OD450nm, optical density at 450 nm.
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VP8*structures, along with the percent sequence identity, were calculated
with the align function in PyMOL.

Accession number(s). The P[19] VP8* structure has been deposited
in PDB with the PDB ID 5GJ6. The VP8* sequence has been deposited in
GenBank (accession number KX455847).

RESULTS
Expression and purification of P[19] VP8* protein. VP8*core
proteins of human and porcine P[19] were expressed both in GST
fusion form for the functional assay and with a His tag for crystal-
lization. The VP8*core-GST fusion proteins were �46 kDa, and
the gel filtration peak of the fusion protein was eluted in �14.3 ml
(Fig. 1A and C). The human and porcine P[19] VP8* core-His
proteins were �20 kDa, and the gel filtration peak was eluted in
�18.5 ml (Fig. 1B and D), implying that the VP8* protein existed
in the monomer form, in agreement with a previous report on
P[4] (34).

Assay of P[19] VP8* protein binding to saliva samples. In
order to evaluate the binding patterns of P[19] VP8* to A-, B-, and
O-type salivas, the purified VP8*-GST proteins were tested in a

FIG 3 Oligosaccharide binding assay of human and porcine P[19] VP8*core
proteins. The VP8* proteins did not bind to any HBGA tested in the study. P[14]
VP8*, which binds to A-HBGA, was used as a positive control. GST protein was
used as a negative control. The error bars indicate standard deviations.

FIG 4 Structural analysis of human P[19] Mc345 VP8*. (A) Overall structure of human P[19] VP8* with two twisted antiparallel sheets consisting of strands A,
L, D, G, and H and M, B, I, J, and K. (B) Superimposition of Mc345 human P[19] VP8* structure (5GJ6) (lemon) on those of rhesus rotavirus (RRV) P[3] (1KQR)
(pale cyan), HAL1166 P[14] (4DRV) (cyan), CRW-7 P[7] (2I2S) (light blue), DS-1 P[4] (2AEN) (orange), Wa P[8] (2DWR) (yellow), and human rotavirus
(HRV) P[11] (4YG0) (violet). The width of the cleft that separates the two �-barrel sheets is shown by the thick arrows. Residue 135 of P[3] and P[14], which was
deleted in P[4], P[8], P[11], and P[19], is indicated by the thin arrow. (C) Sequence alignment of VP8* proteins of RRV P[3], HAL1166 P[14], CRW-7 P[7], DS-1
P[4], Wa P[8], P[11], and Mc345 P[19]. The position of residue 135 is labeled with an asterisk. The alignment was done with Clustal Omega (http://www.ebi
.ac.uk/Tools/msa/clustalo/), and the colors and box labels were generated with ESPript (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). Red shading indi-
cates residues that are the same in all the aligned sequences, and red letters indicate the residues with high conservation.
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saliva binding assay using saliva samples with known A, B, and O
and Lewis types kept in our laboratory. These saliva samples had
been used for the binding assay of Rotateq P[8] and P[14] VP8*
proteins. Rotateq P[8] bound to the A, B, and O types, but not to
nonsecretors (28), whereas P[14] specifically bound to A-type sa-
livas (35). In this assay of P[19], both human and porcine P[19]
VP8* proteins showed obvious binding to A-, B-, and O-type sa-
liva samples (Fig. 2). Notably, P[19] VP8* proteins also bound to
salivas of nonsecretors, which did not bind VP8* of P[4] and P[8]
RVAs (11, 27).

Detection of P[19] VP8* attachment to synthetic oligosac-
charides. To investigate the specific binding ligand of P[19] VP8*,
we conducted a synthetic-oligosaccharide binding assay. Human
and porcine P[19] VP8* proteins displayed no detectable binding
to the synthetic oligosaccharides (Fig. 3), including Lea, Leb, Lex,
Ley, H1, H2, H3, A, B, type I precursor, type II precursor, Neu5Ac,
Neu5Gc, and sialyl-Lex. P[14] VP8* bound to A-HBGAs was used
as a positive control, and GST protein was a negative control.

Structure of human P[19] VP8*. We solved the P[19] VP8*
structure at 2.4 Å (Table 1) (PDB ID 5GJ6). Similarly to other
solved VP8* structures, it shows a typical galectin-like fold (36)
with two twisted antiparallel �-sheets consisting of strands A, L, C,
D, G, and H and M, B, I, J, and K, respectively (Fig. 4A). The two
�-sheets are separated by a shallow cleft, which forms the main
ligand binding sites. Structure alignment revealed that P[19] VP8*
was most similar to Wa P[8] VP8* (PDB code 2DWR) with an
RMSD of 0.422. P[19] VP8* has a cleft that separates the two
�-barrel sheets (Fig. 4B, thick arrows) wider than those of P[14]
(PDB accession no. 2DWR) and animal P[3] (PDB accession no.
1KQR) and similar to those of P[4] (PDB accession no. 2AEN)
and Wa P[8] (Fig. 4B). The ligand binding clefts in P[4], P[8], and

P[19] VP8* are �0.5 Å wider than those in P[3] and P[14] VP8*
proteins. The distance between the C� atoms of Pro157 and
Thr186 in P[3] is �10.7 Å, and that of Thr157 and Thr186 in
P[19] VP8* is �11.2 Å. Residue 135 of P[3] and P[14] (Fig. 4B,
thin arrow), which was deleted in P[4], P[8], and P[19] (Fig. 4C),
was reported to influence the width of the binding cleft (37). From
the sequence alignment, amino acids 101, 155, and 187 to 190 of
the putative ligand binding site are quite varied among P geno-
types (Fig. 4C).

Structural comparison of RV VP8* receptor binding sites.
Superimposition of the complex structures of P[3] and Sia (36)
(Fig. 5A), P[14] and A-HBGA (12) (Fig. 5B), and P[11] and LNnT
(37) (Fig. 5C) on P[19] VP8* demonstrated that the residues that
interact with these ligands differ. The residues Arg101, Tyr189,
and Leu190 participating in the interaction in P[3] and P[14] were
replaced by Val101, Ser189, and Thr190 in P[19] (Fig. 5D and E).
The putative binding site of P[19] VP8* showed no specific inter-
action with Sia. Steric hindrance was observed for A-HBGA with
residue 190Thr (Fig. 5E). For LNnT, the interaction residues were
quite different between P[11] and P[19]. In P[11] and LNnT,
Asn153 and Arg154 formed an H bond; Asn155, Tyr156, Asp185,
and Arg187 involved hydrophobic and H-bond interactions; and
the corresponding residues in P[19] were Gln153, His154, Lys155,
Arg156, Thr185, and Asp187. The overall conformation changed
enormously, and no specific binding was seen (Fig. 5F).

Electrostatic potential surfaces of VP8* structures. To fur-
ther analyze the VP8* structures of different genotypes, the
electrostatic potential surfaces of P[3], P[14], P[11], P[4],
P[8], and P[19] VP8* proteins were analyzed, showing similar-
ities and differences among the putative ligand binding sites
(Fig. 6). The structure of the P[3] Sia binding site was slightly

FIG 5 Detailed analysis of the interactions between VP8* and various ligands. (A to C) The residues involved in the interactions between RRV P[3] VP8* and
Sia (1KQR) (A), HAL1166 P[14] VP8* and A-HBGA (4DRV) (B), and HRV P[11] VP8* and LNnT (4YG0) (C) are labeled. (D to F) Superimposition of Sia,
A-HBGA, and LNnT on the Mc345 P[19] VP8* (5GJ6) structure. The residues in P[19] corresponding to those in P[3], P[14], and P[11] are also shown.
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positive (Fig. 6A), whereas in P[14], the A-HBGA binding site was
positively charged (Fig. 6B). In P[11], the binding site of LNnT
presented a positive charge on the top and was both neutral
and positive on the bottom (Fig. 6C). In P[4], P[8], and P[19], the
putative Sia binding site showed a positive charge, whereas the
putative LNnT binding site displayed a somewhat negative charge
in the middle region (Fig. 6D, E, and F), indicating a variation in
potential ligand binding for different P genotypes.

DISCUSSION

P[19] RVs have been reported sporadically in humans. Following
the report of Mc323 and Mc345, a human rotavirus G9P[19] iso-
late (RMC321) with porcine rotavirus characteristics was reported
following an outbreak of infantile gastroenteritis in India (38). In
addition, P[19] RVs with novel lineages of G3, G5, G9, and G26
were detected in children with acute diarrhea in Asia (23, 39).
Furthermore, a rare G3P[19] RV infection in humans that showed
high sequence identity with G3P[19] from Asia (40) was identified
in Italy. In pigs, G3P[19], G4P[19], and G9P[19] were also de-
tected in Thailand (4, 41), and G3P[19] was also found in China
(unpublished data from our laboratory). Sequence analysis has
indicated that all human P[19] RVs are of porcine origin. In this
study, human P[19] Mc345 showed binding to the saliva samples
similar to that of porcine P[19], which was consistent with a pre-
vious report that Mc345 was of porcine origin (26). From the
sequence alignment of VP8* core fragments, the two sequences
showed �95.6% identity, and only 7 amino acids were different,
as revealed in the Mc345 VP8* structure (data not shown). These
amino acids were not located in the putative ligand binding sites,
also consistent with the saliva binding assay.

P[19] RV is classified in P[II], along with P[4], P[6], and P[8]
RVs, which are prevalent in humans and reported to interact with
HBGAs (13). P[4] and P[8] RV VP8* bound to saliva types A, B,
and O of secretors and did not bind to saliva of nonsecretors.

Meanwhile, P[6] also recognized A, B, and O saliva types of secre-
tors with relatively low binding affinity. In this study, P[19] RV
VP8* bound to A-, B-, and O-type saliva samples irrespective of
the secretor status, implying that P[19] may have a broad binding
range. Since all of the reported human P[19] RVs have been shown
to be of porcine origin, it is suggested that P[19] may infect hu-
mans sporadically and may still not have the capacity to spread
among humans. However, based on saliva binding patterns
broader than those of other P genotypes (11, 18), if the P[19] RVs
acquired the ability to cross the species barrier and infect humans
fully, it might cause widespread prevalence, as P[8] RVs did. Re-
cently, a new GII.17 norovirus (NoV) variant caused significantly
increased acute gastroenteritis outbreaks in China and other re-
gions of Asia during 2014 and 2015 (42), which highlights the
notion that a rare human NoV genotype has the potential to
emerge as an epidemiologically important pathogen. The rare
GII.17 NoVs also showed good binding in the saliva binding assay
but did not bind to the oligosaccharides tested (42, 43). This un-

TABLE 2 Structural alignment of VP8* of different P genotypesa

P genotype

RMSD (Å)b for:

P[3] P[7] P[14] P[4] P[8] P[11]

P[7] 0.418
P[14] 0.623 0.611
P[4] 0.845 0.883 0.703
P[8] 0.894 0.879 0.784 0.386
P[11] 2.019 1.137 1.068 1.050 1.018
P[19] 0.760 0.724 0.631 0.520 0.422 1.750
a P[3] (PDB accession no. 1KQR), CRW-7 P[7] (PDB accession no. 2I2S), HAL1166
P[14] (PDB accession no. 4DRV), DS-1 P[4] (PDB accession no. 2AEN), Wa P[8]
(PDB accession no. 2DWR), HRV P[11] (PDB accession no. 4YG0), and Mc345 P[19]
(PDB accession no. 5GJ6).
b The values represent RMSDs of the C� atoms of one VP8 monomer.

FIG 6 Electrostatic-potential presentation of VP8* structures. Shown are RRV P[3] with sialic acid (A), HAL1166 P[14] with A-HBGAs (B), HRV P[11] with
LNnT (C), DS-1 P[4] (D), Wa P[8] (E), and Mc345 P[19] (F) VP8*. The red and blue bar indicates the negative and positive charges; the values refer to the relative
degrees of electrostatic potential.
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derscores the need for surveillance of the prevalence and evolution
of P[19] RVs in humans and pigs.

In our analysis of specific HBGA ligands of P[19] RV, the P[19]
VP8* proteins showed no obvious binding to any synthetic oligo-
saccharides in the oligosaccharide binding assay, whereas P[4] and
P[8] VP8* showed binding to H1 and Leb, and P[6] bound to only
H1. More kinds of oligosaccharides or other ligands still need to be
explored to fully characterize the receptor binding specificity of
P[19] RV.

P[19] VP8* showed a typical galectin-like fold (36) that was
most similar to that of P[8]. The structure alignment of P[19]
VP8* with other solved VP8* structures is presented in Table 2
with RMSD values. The values reflect the relative structural simi-
larity, with a smaller value indicating higher similarity. P[19]
VP8* shares the greatest structural similarity with P[8] and P[4],
with RMSD values of 0.422 and 0.520, respectively. This is consis-
tent with the phylogenetic analysis based on the VP8* sequence,
which classified P[19] with P[4], P[8], and P[6] in genogroup II
(18). The VP8* structures of P[4] and P[8] have been solved, albeit
with no ligand bound, so details of the ligand binding sites remain
unknown. Superimposition of the P[19] VP8* structure on those
of P[3], P[11], and P[14] with ligands showed a lack of interac-
tions or steric hindrance with the ligands, which may provide a
structural basis for the lack of binding to the oligosaccharides in
the enzyme immunoassay (EIA).

Furthermore, the electrostatic potential surface comparison
revealed the similarities and differences among different P geno-
types, which may explain to some extent the various binding pat-
terns observed in the functional assays (11, 12, 16–18, 36). How-
ever, for the potential binding site of P[19], the surface

presentation of P[3] and Sia, P[14] and A, P[11] and LNnT, and
P[19] showed that there was indeed a cavity in the potential bind-
ing site in P[19] VP8* (Fig. 7), suggesting that P[19] VP8* may
bind to some other oligosaccharides or ligands at the site. Further
studies are needed to explore the specific cell attachment factors
for P[19] RVs.
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