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Abstract

The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem
cells in vitro will facilitate the development of the cell replacement therapies for the treat-
ment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signal-
ing pathways, we have developed an abbreviated five-stage protocol (25-30 days) to
generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed
that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more effi-
ciently than that of the previously described culture systems. The activation of FGF and
Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of
75% NKX6.1"/NGN3™* Endocrine Progenitors. The inhibition of Notch and tyrosine kinase
receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35%
mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insu-
lin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glu-
cose in static incubation and perifusion studies, and could secrete insulin in response to
successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse
demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracel-
lular signals to trigger insulin secretion. In conclusion, targeting selected signaling path-
ways for 25—-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to
secrete insulin in response to glucose renders them a promising model for the in vitro
screening of drugs, small molecules or genes that may have potential to influence beta-cell
function.
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Introduction

Type 1 Diabetes (T1D) is characterized by the autoimmune destruction of pancreatic beta-cells
and the need for insulin therapy to control hyperglycemia. In some cases, pancreatic islet cell
transplantation can reverse hyperglycemia in T1D and negate the use of insulin therapy [1].
Unfortunately, donor islet scarcity, ultimate graft failure and the required use of potentially
harmful immune-suppressive drugs have restricted their use for the treatment of T1D [2].
Insulin-producing beta-like cells generated from embryonic stem (ES) cells or induced pluripo-
tent stem (iPS) cells offer potential regenerative medicine approach that could be used instead
of primary islet cell transplantation. To this end, laboratories have established multistep in
vitro protocols to generate insulin-producing cells from ES and iPS cells. Although these differ-
entiated cells have many features of bona fide human beta-cells, they fail to secrete insulin in
response to in vitro glucose stimulation. In addition, significant percentages of the insulin-posi-
tive cells co-express other peptides including glucagon and somatostatin, which are not typi-
cally expressed in mature beta cells [3-6].

The differentiation of pluripotent stem cells (PSCs) to the Pancreatic Progenitor stage with
subsequent kidney capsule transplantation has led to the generation of cells with a more beta-
cell-like phenotype [7, 8]. Rezania et al. showed that these transplanted Pancreatic Progenitors
could reverse hyperglycemia within 3-4 months in diabetic mice. This suggests that a popula-
tion of cells within the preparation has the potential to develop into functioning beta-cells, if
provided with the appropriate signals and growth factors in a temporally regulated manner [8].
Following this work, two groups have recently demonstrated that beta-like cell expansion pro-
tocols that include the inhibition of specific signaling pathways/molecules, can lead to the gen-
eration of highly glucose-responsive beta-like cells in vitro [9, 10]. Specifically, Rezania et al.
reported that fully differentiated stage 7 ES-derived beta-like cells could lower blood glucose to
normal levels in 6 weeks when transplanted into mice, while Pancreatic Progenitors could
achieve this in 23 weeks [9]. Importantly, these cells were immature and contained clear defi-
ciencies when compared to mature human islets [9]. Although this protocol could successfully
generate 40% mono-hormonal insulin”/NKX6.1" cells that express MAFA, it requires a long
differentiation period (43 days) and a culture environment at the air-liquid interface; which
may introduce many variabilities during long-term differentiation [9]. Pagliuca et al. [10] also
established a method for the production of functional human beta-cells from ES cells via a
three-dimensional cell culturing system. Using the same protocol, as Pagliuca et al, Millman
et al. were able to differentiate human iPS cells derived from T1D patients into functional beta-
like cells that were responsive to glucose challenges [11]. Although Pagliuca et al. showed an in
vitro insulin secretion response of the ES-DBCs to glucose, they were unable to demonstrate an
increase in MAFA expression which is required for the maturation and regulated secretion of
insulin seen in mature beta-cells [10]. Despite these significant advancements, the differentia-
tion protocols require in vivo maturation and/or extensive cell culture systems that are rela-
tively costly.

Here, we describe a simple (five-stage) and shorter (25-30 days) protocol for the in vitro
generation of ES-DBCs through Definitive Endoderm, Gut Tube Endoderm, Pancreatic Pro-
genitors, Endocrine Progenitor and finally beta-like cell stages. This protocol uses Geltrex as a
substrate to generate Definitive Endoderm and as a support for all of the differentiation stages
throughout the protocol. As previously described by Russ et al., we similarly observed that inhi-
bition of TGF-beta (ALK4, 5 and 7) and BMP signaling resulted in a high number of NGN3"/
NKX6.1" Endocrine Progenitors [12]. Further differentiation of the Endocrine Progenitors
with combination of small molecules, including ALKS5 inhibitor, thyroid hormone (T3), Notch
and receptor AXL inhibitor, led to the generation of Insulin*/NKX6.1"/MAFA™ cells in a
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significant proportion of the differentiated cell population. Moreover, in vitro analyses of the
ES-DBCs generated using this short protocol showed key features of human mature beta-cells
and most notably their ability to sense and respond to changes in ambient glucose
concentrations.

Materials and Methods
Cell culture

Human islets obtained from board-approved deceased donors were isolated by the Islet Core
and Clinical Islet Laboratory at the University of Alberta, Canada. In all cases written consent
from participants or their next-of-kin was obtained. Consent forms are kept in the Clinical
Islet Laboratory at the University of Alberta. Use of the human islets in this study was reviewed
and approved by University of Toronto Research Ethics Board (REB; Approval Number
20542). We used human H1 ES, human Epi-9 (an episomal reprogrammed iPS cell line) and
iPS1-10 (an iPS cell line generated by doxycycline-inducible PiggyBac-expressing OCT4,
SOX2, KLF-4 or c-Myc transposons as a monocistronic transcript established in Nagy labora-
tory) cells in this study. All PSCs were routinely cultured on mitotically inactivated Mouse
Embryonic Fibroblast (MEF) feeder cells in hES medium: DMEM/F12 supplemented with 20%
KnockOut Serum Replacement and 10 ng/ml bFGF (Invitrogen) and split at the ratio of 1:10-
1:12 every 8-10 days using 100 ug/ml Collagenase type IV.

In vitro differentiation of human PSCs

Stage 1: Definitive Endoderm (4 days). All cells were cultured for three passages prior to
the commencement of differentiation. To differentiate the PSCs into the Definitive Endoderm
(DE) cells, H1 and iPS cells were dissociated using Accutase (STEMCELL Technologies) for 2
minutes. Next, H1 and iPS cells were re-plated onto Geltrex (0.1%, Invitrogen) coated 6-well
plates in mTeSR feeder-free medium. To generate DE cells from PSCs, three different cell cul-
ture systems were tested; 1) culturing and differentiation on MEF, 2) culturing and differentia-
tion on Geltrex (0.1%, Invitrogen) and, 3) Embryoid Body (EB) formation. For the first two cell
culture conditions, differentiation started when the cells reached 60-70% confluency. To differ-
entiate the cells as EBs, the dissociated single PSCs were subjected to EB formation in Aggre-
Well”800 plates (STEMCELLS Technologies) for one day at a density of 1 x 10° cells/ml in
DMEM/F12 media supplemented with 3% KnockOut Serum Replacement. Next, 90-100
homogenously-shaped EBs were transferred to one well of a non-adherent 24-well plate where
they underwent the differentiation procedure in suspension. To induce DE formation in all
three-cell culture conditions, cells were treated with Activin A (100 ng/ml; R&D Systems) and
Wnt3a (75 ng/ml; R&D System) in advanced-RPMI medium supplemented with 2% B27 and 1
mM sodium bicarbonate. This initial treatment with Activin A and Wnt3a is referred to as day
0 (DO0) in the differentiation protocol. Over the next 3 days, the cells were induced using Acti-
vin A (100 ng/ml) in Advanced RPMI medium supplemented with 2% B27, 0.5 mM sodium
bicarbonate and a 10 mM final glucose concentration. Media were replaced daily.

Stage 2: Gut Tube Endoderm (2 days). To induce Gut Tube Endoderm formation from
PSC-derived DE cells, the cells were induced by Keratinocyte Growth Factor (KGF; 50 ng/ml;
R&D Systems) in Advanced RPMI medium supplemented with 2% FBS and 10 mM glucose.

Stage 3: Pancreatic Progenitor (4 days). The differentiated cells from stage 2 were
exposed to DMEM medium that was supplemented with 1% B27, KGF (50 ng/ml), KAAD-
cyclopamine (25 uM), All-trans Retinoic Acid (2 pM), Noggin (100 ng/ml), ascorbic acid
(VitC, 25mM) and 10 mM final glucose concentration for 4 days. The cell medium was
changed every 2 days.
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Table 1. Antibodies information.

Conjugated primary Ab
PE-Mouse-CXCR-4
APC-Mouse-c-Kit
PE-Mouse-NKX6.1
PE-Mouse-lgG2a isotype
Unconjugated primary Ab
Rabbit FOXA2

Goat SOX17

Guinea Pig PDX1

Goat NGN3

Rabbit NGN3

Mouse C-peptide

Guinea Pig Insulin
Mouse NKX6.1

Rabbit MAFA

Rabbit Glucagon

Rabbit Somatostatin
Mouse NeuroD1

Mouse Syntaxin-1A
Rabbit Synaptophysin
Rabbit ARX

Mouse PAX4

* FC: Flow Cytometry
**|F: Immunofluorescent staining

doi:10.1371/journal.pone.0164457 1001

Stage 4: Endocrine Progenitor (6 days). The cultures were continued for 3 days in
DMEM medium supplemented with 1% B27, KGF (50 ng/ml), SB431542 (a TGF-beta recep-
tors (ALK4, 5 and 7) inhibitor; final concentration 6 M), Noggin (100 ng/ml) and 20 mM glu-
cose. For the following 3 days, the cells were exposed to the same medium without KGE

Stage 5: ES-Derived beta-like cells (9-14 days). Differentiated cells from stage 4 were fur-
ther differentiated using MCDB131 medium supplemented with 2% BSA, 100nM LDN193189
(a BMP receptor inhibitor), 1:200 ITS-X, 1 uM T3, 10 uM ALKS5 inhibitor, 10 pM Zinc Sulfate,
100 nM gamma secretase inhibitor, Exendin-4 (50 ng/ml) and 20 mM glucose for the first two
days, with the addition of 10 pg/ml of heparin for the subsequent three days. Next, the cells
were exposed to MCDB131 medium further supplemented with 2% BSA, 1:200 ITS-X, 1 uM
T3, 10 uM ALKS5 inhibitor, 10 uM Zinc Sulfate, 1 mM N-acetyl cysteine, 10 mM Trolox (Vita-
min E analogue), 2 uM R428 (receptor AXL inhibitor), 10 pug/ml of heparin, 50 ng/ml of Exen-
din-4, and 20 mM glucose for 5-7 days. To understand the effect of small inducers during
stage 5, a group of differentiated cells from stage 4 was exposed to MCDB131 medium supple-
mented with 2% BSA and 20 mM glucose and cultured for 9-14 days only.

Immunofluorescence staining

Human islets and the differentiated cells were fixed with 4% paraformaldehyde (PFA) for 30
minutes. After washing with PBS, cells were blocked and permeabilized with 5% BSA and 0.1%
Saponin in PBS containing 0.1% TX-100 for 45 minutes at room temperature. They were then
incubated with the corresponding primary antibodies listed in Table 1 for 2 hours or overnight.
Next, the cells were washed three times with wash buffer (PBS without Ca®" and Mg**

Company/Cat# Application Dilution
BD Cat# 561733 FC* 1:20
Thermo Fisher Cat# CD11705 FC 1:20

BD Cat# 563023 FC 1:20

BD Cat# 551438 FC 1:20
Company/Cat# Application Dilution
Abcam Cat# ab40874 IF** 1:200
R&D Cat# AF1924 IF 1:200
Abcam Cat# ab47308 FC/IF 1:10000
Santa Cruz Cat # sc-13793 FC/IF 1:50
Abcam Cat# ab38548 FC/IF 1:100
Millipore Cat# 05—-1109 FC/IF 1:100
Dako Cat# A0564 FC/IF 1:200
Hybridoma Bank Cat# F55A12 IF 1:50
Custom Ab, Lifespan Biosciences, Seattle IF 1:200
Cell signaling Cat# D16G10 FC/IF 1:100
Thermo Fisher Cat# PA1-30636 FC/IF 1:100
Abcam Cat# ab60704 IF 1:100
Thermo Fisher Cat# MA5-17612 IF 1:200
Cell Signaling Cat# D35E4 IF 1:200
Abcam Cat# ab111063 IF 1:25
Hybridoma Bank Cat# M-Pax4-1F3A3 IF 1:25
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containing 0.2% BSA, 0.1% TX-100 and 0.1% Saponin), and then incubated with the secondary
antibodies for 45 minutes. The cells were washed 3 times and incubated with DAPI for 5 min-
utes for nuclei staining. The stained cells were visualized with a Leica (Houston, TX) TCS-SP2
confocal microscope.

Flow Cytometry

For cell surface markers the differentiated cells from stage 1 were trypsinized using TrypLE
0.5X (Invitrogen) for three minutes and then centrifuged at 1000 RPM for 5 minutes. The cells
were washed twice with FACS washing buffer (5% FBS in PBS without Ca®* and Mg>"). Next,
the cells were re-suspended in 90 pl of antibody dilution buffer (1% BSA in PBS without Ca>*
and Mg*") and incubated with 5 pl of PE-conjugated CXCR-4 (CD184; BD Bioscience) and

5 ul of APC-conjugated c-Kit (CD117; Invitrogen) for 30 minutes on ice. Finally, the cells were
washed three times with FACS washing buffer and analyzed using a Gallios™ Cytometer
machine (Beckman Coulter).

For intracellular markers, the differentiated cells from stage 3, 4 and 5 were trypsinized with
TrypLE 0.5X (Invitrogen) for 3 minutes and centrifuged at 1000 RPM for 5 minutes. After
washing twice with the FACS washing buffer, the cells were fixed in 4% PFA for 10 minutes.
After centrifugation, the cells were suspended in 100% methanol (Pre-chilled at -20°C) for 10
minutes at 4°C. After washing twice with FACS buffer, the cells were blocked with 10% FBS-
containing PBS for 10 minutes at 4°C, and incubated for 2 hours or overnight with the corre-
sponding primary antibodies (Table 1). Next, the cells were centrifuged and washed three
times in the FACS washing buffer and blocked with 10% FBS-containing PBS for 10 minutes at
4°C prior to incubation with the secondary antibodies. Finally, the cells were washed 3 more
times with FACS washing buffer and analyzed using a Gallios™ Cytometer machine (Beckman
Coulter).

Real time RT-PCR to quantify mRNA expression

Total RNAs were extracted from human islets, differentiated and undifferentiated cells using
the RNeasy Mini Plus kit (Qiagen). The RNA (2-5 pg) was then reverse-transcribed using the
TagMan Reverse Transcription Kit (Applied Biosystems) and random hexamer primer mix
according to the manufacturer’s instructions. For each reaction, the synthesized cDNA (20ng)
was subjected to PCR by mixing with 5 gL of Power SYBR Green master mix (2X, Applied Bio-
systems), and 0.5 pM of each primer (Table 2) in a total volume of 10 pl. Precise pipetting was
achieved using the automated pipetting epMotion 5075 workstation. The threshold cycle (Ct)
of each target gene was normalized using the Ct of GAPDH as an internal standard. The com-
parative 2Anct
sample relative to the control. The relative gene expression values were presented as Mean

method was applied to calculate the relative expression of target gene in each

+SEM of three independent biological experiments and three technical replicates.

Digital Droplet RT-PCR (dd-RT-PCR)

For each dd-RT-PCR reaction mixture, the synthesized cDNA (50ng) was subjected to PCR by
mixing with 12.5 uL of QX200 EvaGreen ddPCR supermix (2X, Bio-Rad) and 0.4 uM of for-
ward and reverse primers (insulin primers listed in Table 2) in a total volume of 25 pl. Next,

20 pl of the dd-RT-PCR reaction mixture was loaded into the sample well and 70 pl of DG oil
was loaded into the oil well of a DG8 cartridge. The cartridge was placed into the droplet gener-
ator to generate the 0il-PCR reaction mixture. Then, 37.5 pl of the mix was loaded into each
well of a 96-well PCR plate. The PCR was performed with an annealing temperature of 60°C
for 40 cycles using a 2°C ramp rate. The positive and negative droplets were read on a QX200
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Table 2. Primers information.

Gene Accession # Forward Sequence Reverse Sequence
ABCC8 NM_001287174.1 GAGGCTACTTCACGTGGACC CTATCTCGCTGTCAGGAAGGC
Albumin NM_000477.5 GAAAAGTGGGCAGCAAATGT GGTTCAGGACCACGGATAGA
Amylase NM_000699.2 ACAATGATGCTACTCAGGTCAGA TCGGCAATCTTAGAACGCAC
ARX NM_139058.2 CCACGTTCACCAGCTACCAG TCGGTCAAGTCCAGCCTCAT
ATP5G3 NM_001689.4 CGCATTGAGTCCCACTCCTT ATATTGGGTGACAGGCGACG
BHLHB3 NM_030762.2 TAACCGCCTTAACCGAGCAA GCGCATGTTTGAAATCCCGA
Brachyury NM_001048.3 CAGGCGGGCAGCGAGRAG AGGAAGGAGTACATGGCGTTGG
BRN4 NM_000307.4 GTCAAGGGCGTACTGGAGAC TACAGAACCAGACACGCACC
CACNATA NM_000068.3 GTCGCCGTCATCATGGACAA TGATACATGTCCAGGTAAGGCAT
CACNA1D NM_000720.3 GGATCACCCAAGCTGAGGAC CCACCAGCACCAGAGACTTC
CGHA NM_001275.3 ACTGAAGGAGCTCCAAGACCT GCCTCCTTGGAATCCTCTCTT
CK19 NM_002276.4 AGATGAGCAGGTCCGAGGTT CAAGGCAGCTTTCATGCTCA
EGR1 NM_001964.2 CTTCAACCCTCAGGCGGACA GAGTGGTTTGGCTGGGGTAA
EPS1 NM_001430.4 AACTTGTGCACCAAGGGTCA CATGGAGAACACCACGTCA
FOS NM_005252.3 GGGGCAAGGTGGAACAGTTA AGGTTGGCAATCTCGGTCTG
FOXA2 NM_021784.4 AAGACCTACAGGCGCAGCT CATCTTGTTGGGGCTCTGC
GAPDH NM_001289745.1 CCTCAAGATCATCAGCAATG CATCACGCCACAGTTTCC
GATA4 NM_002052.3 CTTGCAATGCGGAAAGAGGG CTGACTGAGAACGTCTGGGAC
GATA6 NM_005257.5 AAGCGCGTGCCTTCATCA TCATAGCAAGTGGTCTGGGC
GCK NM_000162.3 CGGTCAGCAGCTGTATGAGA TGTAGATCTGCTTGCGGTCG
Glucagon NM_002054 GAATGAAGACAAACGCCACTCA CGGCGGGAGTCGAGGTAT
GLUT1 NM_006516.2 GGCTTCTCCAACTGGACCTC CCGGAAGCGATCTCATCGAA
GLUT2 NM_000340.1 GTCACTGGGACCCTGGTTTT GTCATCCAGTGGAACACCCAA
Gooscoid NM_173849.2 GCTTCTCAACCAGCTGCAC CTGATGAGGACCGCTTCTG
HCN3 NM_020897.2 CTGGGCCTGAGCCTAAGAG CAGCAGCATGATCAGGTCCC
HEX NM_002729.4 AGCGAGAGACAGGTCAAAACC TGGGCAAATCTTGCCTCTGAT
HNF1B NM_000458.3 TCTCAACAAGGGCACCCCTA GAAACAGCAGCTGATCCTGAC
HNF4A NM_001287183.1 GGTGTTGACGATGGGCAATG CTCGAGGCACCGTAGTGTTT
HNF6 NM_004498.2 TTAGCAGCATGCAAAAGGAAAGA AGAGTTCGACGCTGGACATC
HOPX NM_032495.5 GGTTTACCTCCTGCCCACG CAGTGGGGCAGTCTGTCATT
HPRT NM_000194.2 CCCTGGCGTCGTGATTAGTG GCCTCCCATCTCCTTCATCA
Insulin NM_001185097.1 AAGAGGCCATCAAGCAGGTC TTCCCCGCACACTAGGTAGA
ISL1 NM_002202.2 ACGGTGGCTTACAGGCTAAC ATTAGAGCCCGGTCCTCCTT
KCNB1 NM_004975.2 GAGTTCGATAACACGTGCTGC TGGTGGAGAGGACGATGAAC
KCNK1 NM_002245.3 AGTCCTGGAGGATGACTGGAA GCAATAAGGCCAAGTAGCAGG
KCNK3 NM_002246.2 CATCACCGTCATCACCACCA CAGCAGGTACCTCACCRAGG
KIR6.2 NM_000525.3 GGACCCAGGTGGAGGTAAGG CTCTCGGTGGGCACCTTCTC
KLF9 NM_001206.2 TACAGTGGCTGTGGGAAAGTC CTCGTCTGAGCGGGAGAAC
LZTS1 NM_021020.3 AGCTCAGGTCCTACGAGAGG CAGGATCTCGCTAGCCTTGG
MAFA NM_201589.3 GAGAGCGAGAAGTGCCAACT CTTGTACAGGTCCCGCTCTTT
MAP2 NM_002374.3 GCAGCTCTGCCTTTAGCAGC TGCTTCTCTGACTCCTTTTCCT
MESP1 NM_018670.3 CCTGGTATCCGCCGTCCG CATCCAGGTCTCCAACAGAGC
MycN NM_001293228.1 CGCCCTAATCCTTTTGCAGC TCCGCCCCGTTCGTTTTAAT
NANOG NM_024865.2 ACCTCAGCTACAAACAGGTGAAG TAAAGGCTGGGGTAGGTAGGT
NeuroD1 NM_002500.4 GAGGCCCCAGGGTTATGAGA CCCACTCTCGCTGTACGATT
NGN3 NM_020999.3 CGCAATCGAATGCACAACCT CTATGCGCAGCGTTTGAGTC
NKX2.2 NM_002509.3 CTTCTACGACAGCAGCGACA TGTCATTGTCCGGTGACTCG
(Continued)
PLOS ONE | DOI:10.1371/journal.pone.0164457 October 18,2016 6/24
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Table 2. (Continued)

Forward Sequence

Reverse Sequence

Gene Accession #
NKX6.1 NM_006168.2
OCT4 NM_002701.5
PAX4 NM_006193.2
PCSK2 NM_002594.4
PDX1 NM_000209.3
PPY NM_002722.3
PTF1a NM_178161.2
RCOR2 NM_173587.3
SLC30A8 NM_001172815.1
Somatostatin NM_001048.3
SOX1 NM_005986.2
SOX17 NM_022454

doi:10.1371/journal.pone.0164457.t002

TATTCGTTGGGGATGACAGAG TGGCCATCTCGGCAGCGTG
CAAAACCCGGAGGAGTCCCAG CTCAAAGCGGCAGATGGTICG
AGAAAGAGTTCCAGCGTGGG CTTGGTACAGTCAGCCCCTG
TGCCGAAGCAAGTTACGACT AACTTCTCCTGCACATCGGG
AAGCTCACGCGTGGAAAGG GGCCGTGAGATGTACTTGTTG
AATGCCACACCAGAGCAGAT CGTAGGAGACAGAAGGTGGC
AGGCCCAGAAGGTCATCATC TCCAGACTTTGGCTGTTCGG
CGAGGTCTTGACTCTCAGCTC CATACCTACGGATGGCTTGAAC
CACTAGAAAGAAGGAGCTGCAA TTTCCACTTGGCATAGGCGT
ACGCAAAGCTGGCTGCAAGA GGGGGCGAGGGATCAGAGGT
CAACCAGGACCGGGTCAAAC CCTCGGACATGACCTTCCAC
ATGGTGTGGGCTAAGGAC AGCGCCTTCCACGACTTG

droplet reader and the results were presented as exact insulin mRNA copy number per pl.
GAPDH mRNA copy number was used as internal standard for the normalization.

Glucose-stimulated insulin secretion (GSIS)

Differentiated ES-DBCs, EN cells at stage 5, or human Islets were subjected to a GSIS assay.
The differentiated cells and human islets (~ 50 islets) were washed 2 times with KRB (Krebs-
ringer bicarbonate pH 7.2; (112 mM NaCl, 4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4,
2.5 mM CaCl2, 5 mM NaHCO3, 20 mM HEPES, and 0.1% BSA)) and then incubated with low
glucose KRB for 60 minutes at 37°C. Next, the cells were incubated with KRB containing low
glucose (2.8 mM), high glucose (16.5 mM), and both high glucose and KCI (16.5 mM glu-
cose"30 mM KCL) for 30 minutes sequentially. To measure insulin and C-peptide content in
the ES-DBCs at stage 5, the cells were suspended in Tris-EDTA (pH 7.4) on ice and then briefly
sonicated until the cell membranes disappeared. The cell debris was removed via centrifugation
and the intracellular insulin content was measured from the supernatant. Human insulin levels
were measured using a Homogenous Time Resolved Fluorescence (HTRF) insulin assay kit
(Cisbio), according to manufacturer’s instruction. C-peptide was measured using Ultra-Sensi-
tive C-peptide ELISA kit (Mercodia), according to manufacturer instructions. All the Insulin
and C-peptide measurements were performed on the PHERAstar FS (BMG Labtech). For nor-
malization, the total protein contents of the cell lysates were measured using a Bradford assay.

Dynamic insulin secretion by perifusion

Perifusion studies were done using stage 5 ES-DBCs alongside with human islets as a positive
control. The differentiated ES-DBCs were cultured on a 6-well plate, dissociated using Accutase
(STEMCELLS Technologies) for 5 minutes and then trypsinized (0.25% EDTA) for 5 minutes.
100 human islets or about 2x10° ES-DBCs were washed twice with KRB buffer (112 mM NaCl,
4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO04, 2.5 mM CaCl2, 5 mM NaHCO3, 20 mM
HEPES, and 0.1% BSA, pH 7.2) and pre-incubated for 60 minutes at 37°C in KRB buffer with
low glucose. Next, the cells were centrifuged for 5 minutes at 1000 RPM and resuspended in
500 pl of Bio-gel P-4 (Biorep technologies) before being loaded into the plastic chambers of a
PERIA4.2 perifusion system with valve manifold (Biorep technologies). To dynamically stimu-
late the cells with glucose, they were perifused sequentially with 2.8 mM glucose containing
KRB, 16.5 mM glucose containing KRB, 2.8 mM glucose containing KRB, 16.5 mM glucose
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containing KRB and lastly 16.5 mM glucose plus 30 mM KCl containing KRB. The cells were
perifusedat 100 pl per minute with KRB under temperature-controlled conditions and the
supernatant from each cycle was collected for insulin measurement. After perifusion the
ES-DBCs and islets were retrieved for protein measurement using a Bradford assay.

Intracellular Ca2™* flux measurements

Cells were washed 3 times with imaging buffer (130 mM NaCl, 5mM KCl, 2mM CaCl2, 1 mM
MgClI2, 5 mM NaHCO3, 10 mM HEPES) and incubated with Fluo-4, AM (1 pug/ml) in imaging
buffer for 45 minutes at 37°C. The cells were then washed twice with imaging buffer. Intracellu-
lar Ca®" was measured using a PHERAstar FS (BMG Labtech) by successive excitation of the
Fluo-4, AM incubated cells. The emitted fluorescence signals were acquired at 480/500 nm and
recorded as 20-second intervals per cycle (15 cycles for 2.8 mM glucose, 60 cycles for 16.5mM
glucose, 15 cycles for 2.8 mM glucose, 60 cycles for 16.5mM glucose and 15 cycles for 16.5mM
glucose and 30 mM KCI). The intracellular Ca®* flux in each cell group was normalized to the
intracellular Ca®" flux measured in 2.8 mM glucose incubation as the baseline.

Glucose metabolism

The respiration capacity of the non-treated, differentiated ES-DBCs compared to that of the
MIN-6 beta-cell line was measured using mitochondrial flux kits with the Seahorse XF24 extra-
cellular flux analyzer (Seahorse Bioscience, Billerica, MA, USA). To determine oxygen flux, the
XF Cell Mito Stress Test Kit was used and Oxygen Consumption Rates (OCR) was measured
according to the manufacturer's instructions. One hour before analysis, the culture medium of
the cells was replaced with 525 pl of XF Base Medium (Seahorse Bioscience) containing 2mM
glutamine, ImM sodium pyruvate and 16.5 mM glucose, and the cells were incubated at 37°C
without CO2. Four different components, XF Medium, Oligomycin (final concentration

5 uM), FCCP (final concentration 1 uM) and a cocktail of rotenone (5 pM) and Antimycin A
(5 uM) were injected sequentially; three OCR measurements were taken after each injection.
The results were normalized to baseline OCR.

Statistical analysis

To analyze the real-time RT-PCR and seahorse data, an unpaired two-tailed t-test was used.
For the statistical analyses of insulin and Ca** measurements, a paired one-tailed ¢-test was
applied. The results in this study are presented as Means + SD or Means + SEM.

Results
Geltrex extracellular matrix induces efficient DE formation

The efficiency of DE formation during stage 1 determines the efficiency of the entire protocol
leading to the generation of beta-like cells at the latter stages [13, 14]. To increase the consis-
tency and efficiency of DE formation, we compared three different cell culture conditions. In
the first condition, the cells were induced using Wnt3a/Activin A during embryonic body (EB)
formation in suspension culture [13, 15]. In the second condition, the PSCs were plated on
MEFs and induced with Wnt3a/Activin A [16]. To avoid any effects of undefined growth fac-
tors, such as BMPs and TGF-beta superfamily members that are produced by MEFs, in the
third condition the cells were cultured on Geltrex extracellular matrix, a soluble form of
reduced growth factor basement membrane extract, and were induced by Wnt3a and Activin
A. The induction of the human H1 ES cells by Wnt3a and Activin A significantly increased
expression of SOX17, FOXA2 (not for MEF culture condition) and Gooscoid genes as specific
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markers of DE cells in all cell culture conditions. However, the levels of expression for all DE
markers were significantly (p<0.001) higher in the cells cultured on Geltrex compared to the
other conditions, as shown in Fig 1B. To analyze the effect of Geltrex on the derivation of non-
endodermal cell layers, the expression levels of SOX1 and Brachyury mRNAs as specific mark-
ers of neuroectoderm and mesoderm, respectively, were measured.

The results showed that the expression of SOX1 and Brachyury (Fig 1B) was not up-regu-
lated in the cells that were induced by Wnt3a/Activin A and cultured on Geltrex. These results
imply that Geltrex did not induce mesodermal and ectodermal fates in the differentiated cells.
The same DE-specific gene expression patterns were detected in Epi-9 and iPS1-10 cells that
were differentiated on Geltrex: however, with less efficiency (Data not shown). Considering
these results, the Geltrex extracellular matrix was used as a substrate for the differentiation of
PSCs into pancreatic beta-like cells in our short protocol.

Flow cytometry results (Fig 2A) showed that 93% of cells cultured on Geltrex and induced
by Wnt3a/Activin A could express c-Kit (CD117) and CXCR-4 (CD184) as surface markers
used for the quantification of DE formation efficiencyin stage 1 [5]. Immunofluorescent stain-
ing for the DE specific markers, FOXA2 and SOX17 (Fig 2A), in the Wnt3a/Activin A treated
ES cells showed that almost all of the cells co-expressed these markers in their nuclei. This
implies that DE cells were generated with a high efficiency. We carefully checked flow cytome-
try to confirm DE formation efficiencyin all the differentiation experiments. If the efficiency
was lower than 90% (a minimum threshold), the experiment was terminated.

Induction of the Pancreatic PDX1" Progenitors

To generate Gut Tube Endoderm (GTE) we induced H1 ES-derived DE cells with KGF which
is more potent than FGF10 [4, 7, 16], for 2 days (Fig 1A). The levels of HNF1B and HNF4A
transcription factor mRNAs as markers of GTE cells were significantly increased (Fig 2B). As
well the expression of HEX, FOXA2, GATA4, and GATA6 (Fig 2C) transcription factors, which
were up-regulated at stage 1, were maintained high as result of KGF induction. Additionally,
tube-like structures were frequently observed in the KGF-treated cells (Fig 1 A) but not in the
non-treated cells (Fig 1A). In our protocol, we used RA in combination with KGF/FGF?7,
which is more effective than FGF10, to generate Pancreatic Progenitor cells [7]. In our short
protocol we used Cyclopamine, and Noggin to inhibit SHH and BMP signaling pathways,
respectively, as they are known to inhibit pancreas formation and PDX1 expression [17, 18].
We also tested the effect of PDBu (Phorbol 12, 13-dibutyrate; 100 nM) as a Protein Kinase C
activator, and SANT-1 (0.25 uM) as a SHH inhibitor in our differentiation protocol. We found
that the combination of VitC, RA, SANT-1 and/or PDBu is both acidic and cytotoxic for the
differentiating cells, thus, KAAD-Cyclopamine was used instead of SANT-1 (data not shown).

At stage 3, the differentiated cells exhibited an organized epithelial morphology in contrast
to non-treated cells that assumed a mesenchymal-like morphology (Fig 1A). Flow cytometry
results showed that more than 75% of the cells at stage 3 expressed PDX1 (Fig 3A). The immu-
nofluorescence staining for PDX1 confirmed the flow cytometry results (Fig 3A). Transcript
analysis of the stage 3 cells by real-time RT-PCR confirmed an increase in the levels of HNF6,
PDX1 and PTFla expression in the ES-derived Pancreatic Progenitor cells (Fig 3A).

Generation of NKX6.1"/NGN3*/NeuroD1" Endocrine Progenitors

To further differentiate the ES-derived Pancreatic Progenitors into Endocrine Progenitors,
stage 3 cells were induced with KGF for an additional 3 days. In addition, to continue the inhi-
bition of BMP signaling, treatment with Noggin was extended into stage 4 for 6 days. Several
studies have illustrated that the inhibition of TGF-beta receptors at stage 4 could efficiently
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Fig 1. Short protocol outline. (A) Schematic overview of the 25 to 30-day protocol to generate human H1 ES-
derived beta-like cells (DBCs). Below, images of the differentiated H1 cells and the control cells (Non-Treated
ES cell) at each stage are shown. The arrow symbol identifies tube-like structure in the differentiated cells in the
stage 2. The star symbol identifies detached dead cells as spheres in the Non-Treated cells in stage 4. Scale
bar = 100um for all cell images. The red font indicates modifications to molecules or timing in comparison to the
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protocol described by Rezania et al [9]. (B) Expression analyses of SOX17, FOXA2and Gooscoid as Definitive
Endoderm (DE), Sox1 as ectoderm, and Brachyury as mesoderm-specific markers in the H1 ES cells
differentiated on MEF, Mouse Embryonic Fibroblast; as EB (Embryoid Bodies) or on Geltrex, analyzed by
quantitative RT-PCR. (* p< 0.05, **p< 0.01, p***<0.001, significant differences between the treated and
control cells in each condition, unpaired two-tailed t-test, n = 3).

doi:10.1371/journal.pone.0164457.9001

increase the derivation of Endocrine Progenitors [4, 8, 9]. Here we used SB431542 to inhibit
Activin receptor-like kinase [19] 4, 5 and 7. To generate Endocrine Progenitors (EN), the PSC-
derived Pancreatic Progenitors were treated with a complex of KGF, SB431542 and Noggin in
10 mM glucose-containing medium for 3 days followed by further treatment with the same
medium in the absence of KGF for an additional 3 days. Following this treatment, at the end of
stage 4, 72-75% of cells were found to express NGN3/NKX6.1, as analyzed by flow cytometry
(Fig 3B). Immunocytochemistryalso confirmed expression of NGN3 in the nuclei of differenti-
ated Endocrine Progenitor-like cells and the co-localization of NKX6.1 and PDX1 in the
majority of the stage 4 cells (Fig 3B). Interestingly, the expression of NeuroD1 as a target of
NGN3 [20] was observed in the differentiated stage 4 cells (S1 Fig). Quantitative RT-PCR also
confirmed the flow cytometry and immunofluorescence staining results for NKX6.1 and
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Fig 2. The efficiency of Definitive Endoderm (DE) and Gut Tube Endoderm formation at the stage 1 and 2 of the
differentiation protocol. (A) Flow cytometry, and immunofluorescence staining for DE-specific markers in the
differentiated H1 ES cells. (B) Quantitative RT-PCR results for Gut Tube Endoderm-specific markers are shown in (B),
showing genes up-regulated in the stage 1, and (C) maintained highly expressed genes in the stage 2. Scale bar = 40pm.
(*p<0.05, **p< 0.01, p***<0.001, unpaired two-tailed t-test, n = 3).

doi:10.1371/journal.pone.0164457.9002
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Stage 3: Pancreatic Progenitor

A

PDX1 DAPI

<
S
=

-
B
=)

31.3%)| 47.5%

N

o
*
*
*

©
o
-

- -
0 o
o o

o
oA
-

PDX1
(2]
o

S
o

10!
mRNA expression
(Fold over Non-Treated)

N
o

o

100 102 108 10¢
FOXA2

HNF6 PDX1 PTF1a

~ T+

-
o
o

72.3%

- -
o O N
o © o

NGN3
mRNA expression
(Fold over Non-Treated)
A O
S o

N
o

101 102 10% 10

NKX6.1 ' NGN3  NKX6.1
PAX4 DAPI ARX PAX4

DAPI PDX1 NKX6.1
ARX

Fig 3. Characterization of the differentiated H1 ES cells at the Pancreatic Progenitor (PP) and the
Endocrine Progenitor (EN) stages. (A) From left to right, flow cytometry for PDX1/FOXA2,
immunofluorescence staining for PDX1, and qRT-PCR analysis for the PP-specific genes in the
differentiated cells at stage 3. (B) Flow cytometry for NGN3/NKX6.1, immunofluorescence staining for
NGNS3, qRT-PCR analysis for the EP-specific genes and below, immunofluorescence staining for PDX1/
NKX6.1 in the differentiated cells at stage 4. (C) Immunofluorescence staining for ARX/PAX4, and qRT-PCR
analysis for ARX and PAX4 in differentiated cells at the stage 4. Scale bar = 40um. (*p< 0.05, **p< 0.01,
p**¥<0.001, unpaired two-tailed ttest, n = 3).

doi:10.1371/journal.pone.0164457.9003

C

- -
0 O N
o o o

N b
o

mRNA expression
(Fold over Non-Treated)
o
o o

o

ARX PAX4

PLOS ONE | DOI:10.1371/journal.pone.0164457 October 18,2016 12/24



@° PLOS | ONE

In Vitro Generation of Functional Beta-Like Cells

NGN3 while showing high expression of PAX4 in PSC-derived Endocrine Progenitor-like cells
(Fig 3C). Immunofluorescent staining for PAX4 in the stage 4 cells confirmed a high number
of PAX4-expressing cells in PSC-derived Endocrine Progenitor-like cells (Fig 3C). The study of
transcription factors required for the generation of Endocrine Progenitor cells showed an
increase in FOXA2, HNF4, GATA4, ISL1 and NeuroD1 expression levels in the differentiated
cells during stage 4 (S1 Fig). As shown in Fig 1A, cell death was observed in the non-treated
cells during stage 4 whereas cell death and subsequent cell detachment in the differentiated
Endocrine Progenitor-like cells was not observed (Fig 1A).

Generation of Insulin-producing MAFA*/NKX6.1*Cells

To generate insulin-producing cells from Endocrine Progenitor-like cells, we employed two
strategies. In the first strategy, the Endocrine Progenitor-like cells were differentiated without
induction by exogenous factors for 9-14 days (Fig 1A) as previously described by Hrvatin et al.
We referred to these differentiated cells as ENdocrine cells (EN). Our results showed that about
30% of differentiated EN cell populations were insulin” cells, however, some of the cells were
poly-hormonal and they expressed glucagon and/or somatostatin hormones in addition to
insulin (data not shown). In the second strategy, PSC-derived Endocrine Progenitors were
treated with LDN193189 (a BMP receptor inhibitor), ALK5 inhibitor, gamma secretase inhibi-
tor XX (inhibitor of Notch signaling), receptor tyrosine kinase AXL inhibitor, T3 and Exendin-
4 for 4-9 days (Fig 1A). We also used R428, an inhibitor of receptor AXL, to induce the expres-
sion of MAFA.

Flow cytometry results showed that 35-40% of the differentiated ES-Derived Beta-Like
Cells (ES-DBCs) could synthesize insulin de novo, as we analyzed C-peptide expression (Fig
4A). Less than 1% of the C-peptide” ES-DBCs also co-expressed glucagon (Fig 4A), and about
6% of the cells co-expressed C-peptide and somatostatin (Fig 4B). Flow cytometry analysis
using antibodies against insulin and NKX6.1 as markers of mature and functional beta-cells,
showed that 30% of the cells express both proteins (Fig 4C). We also detected MAFA expres-
sion in the C-peptide expressing cells (Fig 4D). NeuroD1 as a target of NGN3 was also
expressed in the ES-DBCs (Fig 4E). The expression of syntaxin-1A as a key protein in synaptic
exocytosis (Fig 4F), and Synaptophysin as an endocrine marker (Fig 4G) were detected in the
membrane of some C-peptide-expressing ES-DBCs [21].

Our results showed that although human EPi-9 and iPS1-10 as iPS cell lines could differen-
tiate into insulin-producing cells through the protocol, the efficiency was significantly reduced
compared to H1 ES cell lines. Digital droplet RT-PCR (dd-RT-PCR) results demonstrated that
ES-DBCs expressed 319 insulin mRNA copies per microliter of the PCR reaction (399 mRNA
molecules/ 20 ng of RNA), whereas H1 ES and non-treated cells expressed no insulin mRNA
copies (Fig 5A). The copy number of insulin mRNA for human islets was 3763 copies per
microliter of the PCR reaction (4703 mRNA molecules/ 20 ng of RNA). Some batch-to-batch
and donor-to-donor variation was observed in both ES-DBCs and primary human islet cells.
These variations are not unexpected for both human islets and ES-DBCs generated through a
25-30 day protocol involving four basal media and 20 differentially combined factors (Fig 1A).

As shown in Fig 5B, the expression analyses of other hormones in ES-DBCs indicate very
low expression of glucagon (GCG; 1.7x107°), somatostatin (SS; 23x107°) and pancreatic poly-
peptide (PPY; 15x10°). ES-DBCs could express a high level of the transcription factors PDX1,
NKX6.1 NeuroD1, NKX2.2, MAFA, and Chromogranin A (CGHA) as a marker of endocrine
cells (Fig 5C). Several glucose-sensing genes were also found to be elevated in ES-DBCs as
shown in Table 3. To test the specificity of our short protocol for the generation of beta-like
cells specifically, we analyzed the expression of other cell linage specific markers in the
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Stage 5: ES-Derived B- like Cells (ES-DBCs)
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Fig 4. Study of insulin and beta-cell marker expression in the human H1 ES-DBCs at stage 5. (A) Flow cytometry
and immunofluorescence staining for C-peptide/Glucagon. From left to right, gating of flow cytometry for detection of C-
peptide and glucagon, flow cytometry for C-peptide and glucagon and immunofluorescence staining for C-peptide/
glucagon in the ES-DBCs. (B) Flow cytometry and immunofluorescence staining for C-peptide/Somatostatin and (C)
Insulin/NKX6.1, in the ES-DBCs. (D) Immunofluorescence staining for C-peptide/MAFA, (E) C-peptide/NeuroD1,(F) C-
peptide/Syntaxin-1A, and (G) C-peptide/Synaptophysin in the ES-DBCs at the stage 5. Scale bar = 20um. GCG:
Glucagon, SS: Somatostatin.

doi:10.1371/journal.pone.0164457.9004

ES-DBCs at the end of stage 5. As shown in Table 3, quantitative expression of non-beta-cell
lineage markers including Amylase (marker of acinar cells), CK19 (marker of ductal cells),
Albumin (marker of hepatic cells), MAP2 (marker of neurons), and (E and F) OCT4 and
Nanog (markers of pluripotent stem cells), were not increased in the ES-DBCs.

One of the issues related to the generation of beta-like cells from PSCs is the presence of
poly-hormonal cells among the differentiated cells. Following the sequential inhibition of sig-
naling pathways throughout our differentiation protocol, flow cytometry illustrated that less
than 1% of the ES-DBCs express insulin and glucagon together (Fig 4A) and 6% express insulin
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Fig 5. The mRNA expression analysis of pancreatic islet, beta-cell and related genes in the differentiated
human H1 ES-DBCs. (A) Exact copy number of insulin mRNA molecules in the ES-DBCs and human islets by digital
droplet RT-PCR (GAPDH was used for normalization). Quantitative real time RT-PCR analysis for (B) endocrine
hormones, (C) Chromogranin A, (D) pancreatic transcription factors, Ca*? and K* channels genes, (E) Glucose
transporters (GLUT1 and 2) and PCSK2 as the enzyme required for pro-insulin processing and in the ES-DBCs

compared to human islets. (¥*p< 0.05, **p< 0.01, p***<0.001, unpaired two-tailed t-test, n = 3).
doi:10.1371/journal.pone.0164457.9005

and somatostatin together (Fig 4B). To understand why such a small number of o-cells were
detected at the end of stage 5, we investigated the expression of TFs governing the commitment
of a-cell precursors to mature o-cells during stage 4. As shown in Fig 3C, the expression of
ARX, a transcription factor involved in a-cell development [22, 23], was not significantly
(p>0.05) up-regulated at stage 4 compared to non-treated cells. Inmunofluorescent staining
for ARX revealed no positive cells within the differentiated Endocrine Progenitors at stage 4,
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Table 3. Gene expression analysis of human H1 ES-DBCs. The data are presented as fold changes
over Non-Treated human H1 ES cells.

Gene Expression (Folds) Function/Marker
KIR6.2 10.53 KATP channel
ABCC8 8.5 KATP channel

SLC30A8 3.35 Zinc transporter

GCK 8.62 Glucokinase

ATP5G3 9.59 ATP synthase
Amylase 0.83 Acinar

CK19 0.58 Ductal
Albumin No expression Hepatic
MAP2 0.43 Neurons

OCT4 0.06 Pluripotency
NANOG 0.52 Pluripotency

doi:10.1371/journal.pone.0164457.1003

whereas PAX4, which is indispensable for the development of beta and & cells [24, 25], was
abundantly expressed in mRNA and protein levels.

Comparing gene expression of ES-DBCs with fetal and adult beta-cells

Recently, Melton’s group reported the transcriptome profiles of fetal and adult human insulin
positive beta-cells [3, 26]. To comprehend the maturity of the differentiated ES-DBCs at the
transcriptome level, from this study, we selected the 5 the most enriched genes in fetal insulin
positive beta-cells and 5 from adult insulin positive beta-cells to examine their expression in
our cells. We show that LZTS1 (Leucine Zipper, putative Tumor Suppressor 1), MycN
(N-Myc), FOS (FB] murine osteosarcoma viral oncogene), EGR1 (early growth response 1)
and RCOR2 (REST co-repressor 2) which were enriched in fetal sorted beta-cells, were down-
regulated in ES-DBCs compared to non-treated cells (Fig 6). In contrast, the expression of
KLF9 (Kruppel-like factor 9), EPS1 (Endothelial PAS domain protein 1), BHLHB3 (basic
helix-loop-helix, E41), HOPX (HOP homeobox) and MESP1 (mesoderm posterior bHLH
transcription factor 1) which were enriched in the adult sorted insulin positive beta-cells, were
up-regulated in the differentiated ES-DBCs (Fig 6). These results suggest that the pattern of
gene expression in differentiated ES-DBCs is closer to adult mature beta-cells than fetal beta-
cells, at least in terms of the top-ten modulated genes from the human fetal or adult sorted
insulin-positive beta-cells.

De novo insulin synthesis and secretion in differentiated ES-DBCs at the
stage 5

One of the critical issues regarding the generation of insulin-producing cells from stem cells is
the ability of the differentiated cells to sense changes in glucose concentrations and secrete
insulin accordingly. We performed glucose-stimulated insulin secretion assays in both static
and dynamic assays. Glucose-challenged ES-DBCs secreted 3-fold more insulin in response to
high glucose compared to low glucose concentrations (Fig 7F), whereas the endocrine cells
(EN) that were spontaneously differentiated at stage 5 were unable to secrete insulin in
response to glucose (Fig 7F).

The human C-peptide ELISA showed 2.8 and 5.2 fold (p< 0.05) increases in response to
16.5 mM glucose and 16.5 mM glucose containing 30 mM KCI KRB bulffer, respectively, com-
pared to the low glucose condition (Fig 7A). As shown in Fig 7B, the intracellular content of
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Fig 6. Comparison of gene expression in human H1 ES-DBCs and mature beta-cells. Expression of the top-
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insulin in the ES-DBCs that were differentiated through the short protocol was 54.1 pM/ug
DNA, whereas the spontaneously differentiated non-treated cells contained 1.2 pM/ug DNA of
intracellular insulin. Furthermore, we compared the amount of secreted C-peptide in the dif-
ferentiated ES-DBCs stimulated with glucose to the secreted C-peptide in the human islets (Fig
7C). The secreted C-peptide in ES-DBCs was increased from 1.8 pM/ug DNA in the low glu-
cose treatment to 4.1pM/ug DNA in the high glucose treatment and finally to 9.1 pM/ug DNA
in the high glucose plus KCl treatment. Although both the ES-DBCs and isolated human islets
showed a regulated glucose-stimulated insulin secretion pattern, the amount of secreted C-pep-
tide in human islets was greater in both the low and high glucose challenge conditions. Next,
we graphed the ratio of secreted C-peptide to intracellular C-peptide content in both ES-DBCs
and human islets. In the high glucose treatment, the ratio for human islets was approximately 2
times greater (p< 0.05) than the ratio in ES-DBCs (Fig 7C); however it was not statistically dif-
ferent between the ES-DBCs and the human islets in low and high glucose under depolarizing
conditions (KCl) (Fig 7C).

To further analyze the physiological glucose response of ES-DBCs, we performed islet peri-
fusion studies to better mimic physiological conditions (i.e. 2 rounds of sequential low/high
glucose challenges). As shown in Fig 7D, the ES-DBCs at the end of stage 5 could respond to
the dynamic glucose stimulation in the first and second rounds of high glucose challenge. This
suggested that the ES-DBCs could repeatedly secrete insulin in response to high glucose stimu-
lation like isolated human islets (Fig 7D); however the amount of secreted insulin in the
human islets was remarkably higher.

MAFA expression and glucose responsiveness of the ES-DBCs

To increase the expression and nuclear localization of MAFA, a crucial transcription factor
involved in the maturity of ES-DBCs, we treated the differentiating cells with R428, N-acetyl cys-
teine and Trolox during stage 5 (Fig 1A). Next, GSIS assays were carried out and the same cells
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Fig 7. Examination of beta-cell stimulus-secretion coupling in human ES-DBCs vs. human islets. (A) Measurement
of C-peptide in the supernatant, and (B) lysates of H1 ES-DBCs and the human islets after stimulation by glucose. (C)
Normalized secretion compared to intracellular C-peptide. (D) Temporal insulin secretion by perifusion in ES-DBCs and
human islets. Correlation between (E) MAFA expression analyzed by qRT-PCR and (F) insulin secretion, in response to
glucose stimulation in EN and ES-DBCs at stage 5. EN: ENdocrine cells as referred in Fig 1A. (*p< 0.05, **p< 0.01,
p***<(0.001, paired two-tailed t-test, n = 5).

doi:10.1371/journal.pone.0164457.9007
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were subjected to real time RT-PCR quantification to measure MAFA expression. The results
illustrated that treatment of the cells with MAFA-inducing factors could increase the level of
MAFA mRNAs (Fig 7E; about 4-fold more than the human islets), allowing the ES-DBCs to
secrete 3 fold more insulin in response to the glucose stimulation compared to the low glucose
condition (Fig 7F). Conversely, in the ENdocrine cells (EN cells) that were not treated with
MAFA-inducing factors, the level of MAFA expression was 3.5-fold lower than human islets
(Fig 7E). Interestingly, EN cells were not responsive to glucose stimulation (Fig 7F).

Calcium flux and mitochondrial dynamics to assess glucose sensing

To further characterize our ES-DBCs, the intracellular Ca®* flux that occurs in response to glu-
cose stimulation was measured. As depicted in Fig 8A, ES-DBCs and MIN-6 cells (control)
responded to sequential glucose stimulation by repeatedly increasing intracellular Ca** in a
pattern that was consistent with glucose responsiveness. Interestingly, spontaneously differen-
tiated non-treated cells showed a pattern of Ca>* flux in response to glucose challenges that
was opposite to ES-DBCs (Fig 8A).
Mitochondrial respiration capacity during stage 5 was examined by measuring mitochon-

drial respiration. To measure mitochondrial stress in the ES-DBCs we used 1uM FCCP, an
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Fig 8. Analyses of Ca*? flux, and respiration capacities of the human H1 ES-DBCs. (A) Measurement of glucose-
stimulated cytosolic Ca*? flux in the ES-DBCs, Non-Treated cell and MIN-6 beta-cell population. (B) Mitochondrial
respiration (the potential of mitochondria to reserve energy) in ES-DBCs, Non-Treated and MIN-6 cells using the
seahorse technique. (n = 4)-two technical replicates per batch, data are presented as MeanSD. (*p< 0.05, **p< 0.01,
p***<(0.001, paired two-tailed t-test, n = 4).

doi:10.1371/journal.pone.0164457.9g008
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uncoupler to short-circuit the proton path and permit maximal respiration as measured by
OCR (Oxygen Consumption Rate), in the third injection. Next, a cocktail of rotenone (5 M)
and Antimycin A (5 uM) was injected to inhibit electron transfer and attenuate the OCR. The
difference between maximum and basal respiration shows the spare capacity, referring to the
potential of mitochondria to reserve energy during acute aerobic stress. As shown in Fig 8B,
the OCR measurement demonstrated that the ES-DBCs had the greatest maximal respiration
and spare capacity, illustrating that the mitochondria in these cells have more energy reserves
available to handle the demands of acute stress when compared to the other cell types.

Discussion

The ability to generate beta-like cells from human pluripotent stem cells in vitro, would provide
a unique tool for screening novel therapies that target beta-cells and to speed the development
of cell replacement therapies for Type 1 diabetes. Recently, two groups developed remarkably
similar protocols for generation of so-called glucose-responsive ES-DBCs in vitro, which could
reverse hyperglycemia in diabetic mouse models [9, 10]. Although, the ES-DBCs generated in
both studies possessed several molecular and physiological characteristics of natural human
islets, the researchers reported that they still displayed some characteristics of immature beta-
cells [9, 10]. For example, Rezania et al. reported that the differentiated cells at stage 7 have a
delayed insulin secretion and Ca" influx in response to glucose [9] while Pagliuca et al. did not
demonstrate the expression of mature beta-cell markers, such as MAFA in the ES-DBCs [10].
Moreover, the Pagliuca protocol is performed in 500ml spinner flasks and requires 5 different
media and a myriad of growth factors. This makes the protocol expensive for adaptation to
smaller scale screening of drugs, genes and bioactive molecules that may be involved in beta-
cell function [10]. Although the Rezania protocol can be utilized on a smaller scale, it is tempo-
rally demanding (43 days) and requires an air-liquid interface for culturing. Here, we have
established a five-stage protocol that is short (25-30 days) where all steps are performed in
vitro without the requirement of a complicated cell culture system.

In our report, we demonstrated that Geltrex as an extracellular matrix, could better support
DE formation compared to other cell culture systems. We also determined that DE formation
is the most important checkpoint in our protocol, as the experimental batches that contained a
DE cell number below the threshold at stage 1, could not differentiate into glucose-responsive
cells at stage 5. Furthermore, we found that the induction of cells with KGE, RA, Cyclopamine
(SHH inhibitor) and Noggin (BMP inhibitor) at stage 3, results in 80% PDX1" Pancreatic Pro-
genitor cells. Rezania et al. recently described that the treatment of the PSC-derived differenti-
ated cells at an early stage of differentiation with ascorbic acid (VitC) would reduce the early
expression of NGN3. NGN3 is master regulator of pancreatic endocrine cell differentiation,
which is thought to promote the generation of poly-hormonal cells [9]. In our protocol, we did
not observe significant differences in the NGN3 expression after adding VitC to the cells at
stage 2. Unlike the Rezania et al. protocol that used MCDB 131 culture medium with no VitC,
we used Advanced RPMI that contains VitC and found that increasing VitC concentration did
not appear to have any additional effect. Several studies have shown that signaling molecules
secreted by surrounding mesenchymal tissue at E12.5 such as FGF-10 and RA could promote
the generation of pancreatic PDX1" progenitors in the developing pancreas [27]. We also
tested combinations of inducers described by the Rezania and Pagliuca protocols at stage 3 and
found them to be more toxic than our components, perhaps due to the differences in the cell
culture and differentiation systems.

Inhibition of TGF-beta (ALK4, 5 and 7) using SB431542, and the BMP4 signaling path-
way at stage 4 resulted into 70% NKX6.1"/NGN3* Endocrine Progenitors. To generate
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mono-hormonal insulin”/NKX6.1" cells, the Endocrine Progenitors were treated with thy-
roid hormone T3, and gamma secretase inhibitor XX, as inhibitor of Notch signaling. It has
been proposed that growth arrest specific protein 6 (GAS6), an agonist of the AXL receptor
tyrosine kinase subfamily, plays a role in beta-cell maturation through the down-regulation
of Mafa expression in rodents [28]. Thus, to increase the expression of MAFA, which is
indispensable for the maturation of ES-DBCs [9], we treated the cells with R428 as a receptor
AXL inhibitor [28].

The results showed that at the end of stage 5, about 35% of differentiated cells were mono-
hormonal insulin® and only 1% and 6% were insulin*/glucagon” and insulin*/somatostatin”,
respectively. One explanation could be the low expression of ARX, a transcription factor that is
needed for a-cell development at stage 4. Additionally, 30% of the insulin® cells co-expressed
NKX6.1, which is expressed in glucose responding cells [29].

Perifusion studies showed that ES-DBCs could respond to repeated stimulations including
glucose challenges. However, insulin secretion was lower in absolute magnitude relative to
the human islets. A potential reason is lower intracellular insulin content in the ES-DBCs
compared to human islets (Fig 7B). The amount of intracellular C-peptide in the ES-DBCs
was found to be about half of the human islets and the ratio of secreted C-peptide to intracel-
lular insulin content in the ES-DBCs during the high glucose condition, was about two fold
less than the ratio for human islets. This could potentially indicate the presence of immature
beta-like cells in the ES-DBC population. Like Rezania et al., our results also confirmed that a
high level of MAFA expression is a prerequisite for regulated glucose-stimulated insulin
secretion.

Glucose-stimulated insulin secretion is tied to glucose metabolism and subsequent calcium
influx. It is also known that calcium influx essentially mirrors insulin secretion and is a requi-
site signaling molecule to trigger insulin exocytosis [10]. We found that the pattern of Ca>" flux
in our ES-DBCs and in response to glucose challenge was in line with the pattern shown by the
Melton group in stem-cell-derived beta-cells [10]. Consequently, a clear correlation between
glucose-stimulated increased Ca®* influx and insulin secretion was established. To assess glu-
cose metabolism in our ES-DBCs, respiration capacity was assessed using the Seahorse plat-
form. The ability to metabolize glucose and stimulated insulin secretion is consistent with a
more mature beta-like cell than what we had previously reported [30]. Furthermore, Melton’s
group recently profiled the transcriptome of fetal immature and adult mature insulin® cells
sorted by insulin antibody followed by RNA-Seq analysis [3, 26]. Upon comparison with their
results, the pattern of gene expression in our ES-DBCs appear to be more similar to adult
mature beta-cells than fetal/immature beta-cells.

In conclusion, we have developed an abbreviated and simplified in vitro protocol for the
generation of glucose-responsive, ES-derived beta-like cells. The majority of the insulin-pro-
ducing cells were mono-hormonal and demonstrated many key characteristics of mature beta-
cells. We believe that this protocol could be applied to platforms for screening drugs, small
molecules, and genes that may improve beta-cell function.

Supporting Information

S1 Fig. Expression analysis of Endocrine Progenitor-related transcription factors in the
human H1 ES-derived Endocrine progenitor cells. (A-E) Quantitative RT-PCR analyses of
FOXA2, HNF4, GATA4, ISL1 and NeuroD1 transcription factors in the differentiated Endo-
crine Progenitors cells. (F) Immunofluorescence staining for NuroD1 in the ES-derived Endo-
crine progenitors. (*p< 0.05, **p< 0.01, p***<0.001, paired two tailed t-test, n = 3).

(TIF)
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