
RESEARCH ARTICLE

Lethal Mutagenesis of Hepatitis C Virus

Induced by Favipiravir
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Abstract

Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an

excess of mutations acquired during replication in the presence of a mutagen. Here we

show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during

its replication in human hepatoma cells. T-705 leads to an excess of G! A and C!U tran-

sitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased sig-

nificantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its

cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM

T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for

approval for human use, the results open a new approach based on lethal mutagenesis to

treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV

agent may be useful in patient groups that fail current therapeutic regimens.

Introduction

Lethal mutagenesis is an antiviral approach consisting of achieving viral extinction by an excess
of mutations [1–6]. It is an application of the error threshold relationship of quasispecies the-
ory that can be applied to finite populations of viruses in changing fitness landscapes [7]. We
were interested in exploring lethal mutagenesis for the treatment of HCV infections, based on
the evidence that ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide),an
important component of several anti-HCV therapies, might be exerting its antiviral action
partly through lethal mutagenesis [8,9]. Effective antiviral lethal mutagenesis therapy will
require additional agents that mutagenize the virus and not the cells, and provide an advantage
over standard non-mutagenic inhibitors and their combinations.
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funded by Instituto de Salud Carlos III. C.P. is

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0164691&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pirazinecarboxamide) is one of several pyrazine-
carboxamide derivatives that display a broad spectrumantiviral activity against RNA viruses.
Work by Furuta and colleagues has documented that T-705 is active against influenza virus,
and with lower potency also against poliovirus, rhinovirus and respiratory syncytial virus
[10,11], and that T-1105 (3-hydroxy-2-pyrazinecarboxamide) inhibited foot-and-mouth dis-
ease virus (FMDV) replication in cell culture and in vivo [12]. T-1106, the nucleoside derivative
of T-1105, inhibited replication of bovine viral diarrhea virus and HCV [13]. RNA viruses as
diverse as picornaviruses, alphaviruses, flaviviruses, rhabdoviruses, orthomyxoviruses, para-
myxoviruses, arenaviruses, hantaviruses and bunyaviruses are inhibited by members of this
family of antiviral agents [14–28]. Moreover, T-705 potentiated the anti-influenza activity of
oseltamivir [24] and the anti-arenavirus activity of ribavirin [29,30].

Present evidence suggests that these inhibitors target the viral RNA-dependent RNA poly-
merase (RdRp) resulting in inhibition of viral RNA synthesis [31,32]. T-705 is converted into
nucleotide derivatives inside the cell, and T-705-4-ribofuranosyl-5’-triphosphate (T-705-RTP)
inhibited the influenza virus polymerase in a GTP-competitive manner [11]. In replicating
influenza RNA, T-705-RTP can be ambiguously recognised as G or A, and the consecutive
incorporation of two T-705-RMP residues in the RNA produced chain termination [33].

The ambiguous base pairing of T-705-RTP is consistent with a dominance of G! A and
C! U transitions in viral RNA that led to lethal mutagenesis of influenza virus [34]. T-705
induced also lethal mutagenesis of norovirus in cell culture and in vivo, although in this case
progeny RNA acquired an excess of A! G and U! C transitions [35]. In the present study
we show that T-705 is a mutagenic agent for HCV that produces an excess of G! A and C!
U transitions, leading to loss of infectivity through a decrease of specific infectivity. The results
reinforce the possibility of lethal mutagenesis as an alternative antiviral design to treat HCV
infections.

Materials and Methods

Cells and viruses

The origin of Huh-7.5, Huh-7-Lunet, Huh-7.5 reporter cell lines and procedures for cell growth
in Dulbecco’s modification of Eagle’s medium (DMEM), have been previously described
[36,37]. Infected and uninfected cells were cultured at 37°C and 5% CO2. The viruses used in
the experiments reported here are HCVcc [Jc1FLAG2(p7-nsGluc2A)] (a chimera of J6 and
JFH-1 from genotype 2a) and GNN [GNNFLAG2(p7-nsGluc2A)] (carrying a mutation in the
NS5B RNA-dependent RNA polymerase rendering it replication-defective) [38]. To control
for the absence of contamination, the supernatants of mock-infected cells, which were main-
tained in parallel with the infected cultures, were titrated; no infectivity in the mock-infected
cultures was detected in any of the experiments.

Production of viral progeny and titration of infectivity

The procedures used to prepare the initial virus stock HCV p0 and for serial infections of the
human hepatoma Huh-7.5 cells have been previously described [39]. Briefly, Huh-7-Lunet
cells were electroporated with 10 μg of the infectious transcript of HCVcc (Jc1 or the negative
control GNN) (Gene Pulser Xcell electroporation system; Bio-Rad; 260 volts, 950 μF). Electro-
porated cells were then passaged every 3–4 days without allowing the cells to reach confluence;
passages were continued until 30 days post-electroporation, and the cell culture supernatants
were pooled. The virus was then concentrated 20 times using 10,000 MWCO spin columns
(Millipore) as instructed by the manufacturer, and stored in aliquots (at -70°C). To increase
virus infectivity, Huh-7.5 reporter cells were infectedwith concentrated virus stocks at a MOI

Favipiravir for Hepatitis C Virus

PLOS ONE | DOI:10.1371/journal.pone.0164691 October 18, 2016 2 / 19

supported by the Miguel Servet program of the

Instituto de Salud Carlos III (CP14/00121)

cofinanced by the European Regional Development

Fund (ERDF). C.M.R. is supported by a grant from

the U.S. Public Health Service, National Institute of

Allergy and Infectious Diseases, R01 AI099284.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: Dr. Josep Gregori is a

member of “Roche Diagnostic, S.L.”. This does not

alter our adherence to PLOS ONE policies on

sharing data and materials.



of 0.5 TCID50/cell, and the cells were passaged to obtain the working viral stock HCV p0. The
infection of Huh-7.5 cells with HCV p0 can be sustained for at least 100 serial passages [39].
For titration of HCV infectivity, serially diluted cell culture supernatants were applied to Huh-
7.5 cells and 3 days post-infection the cells were washed with PBS, fixed with ice-coldmetha-
nol, and stained using anti-NS5A monoclonal antibody 9E10, as previously described [39,40].

Treatment with favipiravir (T-705)

A solution of T-705 (Atomax Chemicals Co. Ltd) was prepared at a concentration of 20 mM in
H2O. It was sterilized by filtration, and stored at –70°C. Prior to use, the stock solution was
diluted in DMEM to reach the desired concentration. Huh-7.5 reporter cells were pretreated
with the appropriate drug concentrations (or with DMEMwithout drug) during 16 h prior to
infection. Then, 4 x 105 Huh-7.5 reporter cells were infected (or mock infected) with 1.2 x 104

TCID50 of HCV p0; the adsorption time was 5 h, and the infection continued for 72 to 96 h in
the absence or presence of T-705. For successive viral passages, 4 x 105 Huh-7.5 reporter cells
were infected with 0.5 ml of the supernatant from the previous infection; the MOI ranged
between 0.6 and 5 x 10−5 TCID50/cell; each MOI can be calculated from the infectivity values
given for each experiment.

Toxicity assays

The CC50 of T-705 was measured by seeding 96-well plates with Huh-7.5 cells to 70% conflu-
ence and exposing the cells to a range of T-705 concentration for up to 142 h. MTT [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was added to each well at a final
concentration of 500 μg/ml; 4 h later crystals were dissolved in 100 μl of DMSO and the O.D.
measured at 550 nm; 50% cytotoxicity was calculated from four different determinations as
previously described [38].

Inhibitory concentration

The IC50 of T-705 was calculated relative to the progeny infectivity of the untreated controls
(defined as 100% infectivity), as describedpreviously [41,42]; determinations were carried out
in triplicate.

RNA extraction, cDNA synthesis, and PCR amplification for Sanger

nucleotide sequencing

Intracellular viral RNA was extracted from infected cells using the Qiagen RNeasy kit accord-
ing to the manufacturer’s instructions (Qiagen, Valencia, CA, USA). RT-PCR amplification
was carried out using AccuScript (Agilent), as specifiedby the manufacturers. NS5B genomic
region was amplified using the specific oligonucleotides Jc1-NS5B-F1 (5’-TGGTCTACTTGC
TCCGAGGAGGAC-3’) and Jc1-NS5B-R4 (5’-AGTTAGCTATGGAGT GTACCTAG-3’).
Nucleotide sequences of genomic HCV RNA were determined using the 23 ABI 3730XLS
sequencer. To evaluate the complexity of mutant spectra,HCV RNA was extracted as described
above and subjected to RT-PCR to amplify the NS5B-coding region as previously described
[39]. Amplification products were analyzed by agarose gel electrophoresis using HindIII-
digestedФ-29 DNA as molar mass standard. Negative controls (amplifications in the absence
of RNA) were included in parallel to ascertain the absence of contamination by template
nucleic acids. To ensure an excess of template in the RT-PCR amplifications for quasispecies
analysis, and to avoid complexity biases due to redundant amplifications of the same initial
RNA templates, amplifications were carried out with template preparations diluted 1:10, 1:100
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and 1:1000; only when at least the 1:100 diluted template produced a visible DNA band was
molecular cloning pursued using the DNA amplified from undiluted template [43]. Controls to
ascertain that mutation frequencies were not affected by the basal error rate during amplifica-
tion have been previously described [44].

Ultra deep sequencing

For the ultra deep sequencing (UDPS) analysis (GS-Junior platform, 454 Life Sciences-Roche),
reverse transcription (RT) was performed for 60 min at 40°C using Accuscript High Fidelity
Reverse Transcriptase (Agilent) with a specific oligonucleotide covering the NS5A region. The
products were then subjected to a PCR using Pfu Ultra II Fusion HS DNA polymerase (Agi-
lent); the primers were composed of a specific sequence and a universal M13 primer, either
upstream or downstream of the specific sequence (S1 Table). For the PCR, 5 μl of reverse tran-
scription product were mixed with 5 μl of 10X buffer, 0.8 mM of dNTPs, 2 ng/μl of each sense
and antisense primer. The initial denaturing step was at 95°C for 1 min, and it was followed by
40 cycles of a denaturing step at 95°C for 20 seconds, annealing at 60°C for 20 seconds, exten-
sion at 72°C for 1 min, and then a final extension at 72°C for 5 min.

The PCR products were then subjected to a nested PCR using Pfu Ultra II Fusion HS DNA
polymerase (Agilent). The primers were composed of a complementary universal M13 primer,
upstream or downstream followed by a Roche’s Validated Multiplex Identifier (MID) with oli-
gonucleotide A or B (supplier nomenclature) at the 5’ or 3’ end of the upstream or downstream
primer, respectively. For the PCR, 5 μl DNA of the previous PCR amplification mixture was
added to 5 μl of a mixture containing 0.8 mM of dNTPs, 0.4 μM of sense and antisense PCR
primers. The initial denaturing step was at 95°C for 1 min, and it was followed by 15 cycles of a
denaturing step at 95°C for 20 seconds, annealing at 60°C for 30 seconds, extension at 72°C for
1 min, and then a final extension at 72°C for 5 min. The PCR products were purified (QIA-
quick Gel ExtractionKit), quantified (Pico Green Assay), and analyzed for quality (Bioanaly-
zer) prior to the UDPS procedure. Negative controls (without template RNA) were run in
parallel to ascertain absence of contamination with undesired templates.

Data treatment methods in ultra deep sequencing

The fasta file obtained from the 454/GS-Junior system was subjected to demultiplexing and
quality filtering as previously described [45,46]. The haplotypes common to the forward and
reverse strand with abundances 0.1% or higher in each strand were considered established hap-
lotypes. The post-filter coverage of each amplicon, ranged from 4566 to 9807 reads, median
7874 and standard deviation 2075. To balance biases, the amplicons were down sampled (DS)
to a common size of 4500 reads (coverage of the smallest sample), and the resulting frequencies
were subjected to fringe trimming (FT), excluding haplotypes with estimated frequencies
below 0.2% with 95% confidence; this procedure yielded the DSFT haplotypes [47,48].

Diversity indices were computed using the DSFT haplotypes. A set of incidence-based indi-
ces (number of haplotypes, number of mutations, and number of polymorphic sites), abun-
dance-based indices (Shannon entropy, Gini-Simpson index, and Hill numbers of order 1,2
and infinity), functional incidence-based indices (Mfe, FAD and ^πe), and functional abun-
dance-based indices (Mf minimum,Mfm and ^π) were calculated for each amplicon as previ-
ously described [47](S1 Fig). Standard deviations and confidence intervals were computed by a
semiparametric bootstrap, where the haplotype frequencies are the parameters of a multino-
mial distribution. Each multinomial resample (2000 cycles of bootstrap) was then subjected to
DSFT and the resulting haplotypes and frequencies were used to calculate diversity indices.
The standard deviations were calculated as the standard deviation of the bootstrap values
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obtained for each index, and an approximate 95% confidence interval (CI) was computed as
the basic bootstrap CI [49,50]. P-values were computed as the number of bootstrap value dif-
ferences larger or equal than the observeddifference; for this purpose, 10,000 bootstrap cycles
were performed. The observeddiversity differences were calculated with the full set of diversity
indices using the DSFT haplotypes of the two amplicons to be compared. The null hypothesis
is that favipiravir had no effect, that is all reads might belong to the same quasispecies; the
alternative hypothesis is that favipiravir is mutagenic and increases quasispecies complexity.
The null distribution is the pool of all haplotypes, prior to the DSFT procedure, with corre-
sponding frequencies for sequences obtained in absence and presence of favipiravir. As most of
the observedvalues of diversity lie far beyond the null distribution (see S2 Fig with boxplots),
the bootstrap p-values are a conservative upper bound. An alternative approach was to con-
sider the asymptotic normality of the difference of diversity values obtained in the bootstrap
(S2 Fig), and to calculate a p-value from a normal distribution with mean and standard devia-
tion as estimated by the bootstrap itself. Both sets of p-values were multitest-adjusted by the
Bonferroni correction [51] to take into account that the full set of diversity indices was simulta-
neously tested. The new sequences derived from this study can be found as S3 Fig.

Quantification of HCV RNA

Real time quantitative RT-PCR was carried out using the Light Cycler RNA Master SYBR
Green I kit (Roche), according to the manufacturer’s instructions, as previously described [52].
The 5’-UTR non-coding region of the HCV genome was amplified using as primers oligonucle-
otide HCV-5UTR-F2 (5’- TGAGGAACTACTGTCTTCACGCAGAAAG; sense orientation;
the 5’ nucleotide corresponds to genomic residue 47), and oligonucleotideHCV-5UTR-R2 (5’-
TGCTCATGGTGCACGGTCTACGAG; antisense orientation; the 5’ nucleotide corresponds
to genomic residue 347). Quantification was relative to a standard curve obtained with known
amounts of HCV RNA, synthesized by in vitro transcription of plasmid GNNDNA. The speci-
ficity of the reaction was monitored by determining the denaturation curve of the amplified
DNAs. Negative controls (without template RNA and RNA frommock-infected cells) were
run in parallel with each amplification reaction, to ascertain absence of contamination with
undesired templates.

Results

Inhibition of hepatitis C virus replication in hepatoma cells by T-705

The cytotoxicity of T-705 for human hepatoma Huh-7.5 cells was quantified in experiments of
exposure of different drug concentrations to the cells for a fixed time, or two drug concentra-
tions for variable times, up to 142 h. The T-705 concentration that reduced cell viability by
50% (CC50) was 865 ± 59 μM (Fig 1A), and the T-705 concentration that produced a 50%
decrease in infectious progeny production (IC50) of HCV p0 was IC50 = 7.4 ± 6 μM (Fig 1B).
These values yield a therapeutic index (TI = CC50 / IC50) of 116.9. The inhibition was sustained
over at least five serial passages of the virus, in a dose-dependentmanner (Fig 1C). The differ-
ences in progeny production in the absence and presence of T-705 at 200 μM, 300 μM and
400 μM concentration were statistically significant over the five passages (p = 0.007 for
200 μM, p = 0.0004 for 300 μM and p<0.0001 for 400 μM; ANOVA test). No infectivity was
rescuedwhen subjecting the cell culture supernatant from passage five in the presence of
400 μM T-705 to three blind passages in the absence of drug. Thus, T-705 is a potent inhibitor
of HCV during replication in Huh-7.5 cells that can lead to virus extinction.
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Mutagenic activity of T-705 for hepatitis C virus

To investigate if the inhibition of HCV replication might be associated with a mutagenic activ-
ity for HCV, the mutant spectra of the virus passaged three times in the absence or presence of
T-705 was analyzed, and several diversity indices were calculated [47]. Three amplicons of

Fig 1. Cytotoxicity for Huh-7.5 cells, and inhibition of HCV progeny production by T-705. (A) Determinations of cytotoxic

concentration 50 (CC50) and the effect of 400 μM and 800 μM T-705 on cell viability, (B) drug concentration required for 50%

inhibition, or inhibitory concentration 50 (IC50); experiments were carried out in triplicate. Values and standard deviations were

calculated using the program Sigma Plot. (C) Huh-7.5 reporter cells were infected with HCV p0 at a MOI of 0.03 TCID50/cell (4 x

105 Huh-7.5 cells infected with 1.2 x 104 TCID50), in the absence or presence of the T-705 concentrations indicated in the box.

Infections with HCV GNN were carried out in parallel (negative control). Experimental conditions for cell growth, HCV infection,

determination of cell viability, HCV infectivity, and serial virus passages are described in Materials and Methods. Discontinuous

horizontal lines indicate the limit of detection.

doi:10.1371/journal.pone.0164691.g001
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NS5A were analyzed by ultra-deep pyrosequencing (Table 1 and S1 and S2 Figs). All indices,
except those denoted as being at entity level, increased significantly (p<0.01; bootstrap) when
T-705 was present during replication, suggesting a mutagenic activity of this compound on
HCV. Variation of indices at the entity level (Mfe and ˄πe) would require an increase in the

Table 1. Ultra deep pyrosequencing analysis of HCV p0 subjected to three passages in the absence or presence of 400 μM favipiravira.

NS5A ampliconb

Parameter or diversity indexc Favipiravir A1 (6152–6454) A2 (6446–6767) A4 (6910–7252)

Number of nucleotides sequenced - 2,366,733 2,589,202 1,477,987

+ 2,156,148 2,895,746 1,459,465

Number of haplotypesd - 5 (2/2/0/0) 9 (7/0/1/0) 27 (23/3/0/0)

+ 30 (26/3/0/0) 33 (30/2/0/0) 66 (55/8/1/1)

Number of different mutations - 6 10 24

+ 30 34 64

Number of total mutations - 679 1,318 1,023

+ 1,788 2,590 2,234

Number of polymorphic sites - 6 9 24

+ 29 33 64

Dominant haplotype abundance (%) - 92.36 84.90 78.32

+ 76.01 72.18 55.14
˄HS - 0.3374 0.6640 1.1820

+ 1.2367 1.3756 2.5032
˄HGS, sample-based Gini-Simpson index - 0.1438 0.2731 0.3836

+ 0.4154 0.4682 0.6918
1D (p), Hill numbers - 1.40 1.94 3.26

+ 3.44 3.96 12.22
2D (p), Hill numbers - 1.17 1.38 1.62

+ 1.71 1.88 3.24
1D (p), Hill numbers - 1.08 1.18 1.28

+ 1.32 1.38 1.81

Mfe, mutation frequency, entity level - 4.0 x 10−3 3.4 x 10−3 3.1 x 10−3

+ 3.5 x 10−3 3.2 x 10−3 3.4 x 10−3

FAD, Functional Attribute Diversity - 0.16 0.49 4.33

+ 6.09 6.75 29.25
˄πe, sample nucleotide diversity, entity level - 7.9 x 10−3 6.8 x 10−3 6.2 x 10−3

+ 7.0 x 10−3 6.4 x 10−3 6.8 x 10−3

Mf min, minimum mutation frequency - 2.5 x 10−6 3.9 x 10−6 1.6 x 10−5

+ 1.4 x 10−5 1.2 x 10−5 4.4 x 10−5

Mf max (Mfm), maximum mutation frequency - 2.9 x 10−4 5.1 x 10−4 6.9 x 10−4

+ 8.3 x 10−4 8.9 x 10−4 1.5 x 10−3

˄π, sample nucleotide diversity - 5.5 x 10−4 9.8 x 10−4 1.3 x 10−3

+ 1.6 x 10−3 1.7 x 10−3 3.0 x 10−3

aThe populations analyzed correspond to passage 3 of the infections described in Fig 1.
bThe HCV genome residue numbering corresponds to the JFH-1 genome (accession number #AB047639). The number of reads on which the parameters

were calculated was 4,500 for each amplicon. Procedures are described in Materials and Methods. Mutation types are summarized in Fig 3 and their

position in the HCV genome and deduced amino acid substitutions are given in S2 and S3 Tables.
cDiversity indices are defined and calculated as described in [47].
dIn parenthesis the number of haplotypes with one, two, three, and four mutations is given; no haplotypes with a higher number of mutations were found.

doi:10.1371/journal.pone.0164691.t001
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number of mutations per haplotype induced by T-705. Despite T-705 increasing the number of
genomes with any number of mutations, an increase in the number of mutations per haplotype
was not observed.

To obtain an independent confirmation of the mutagenic activity of T-705 on HCV, the
mutant spectrumof the polymerase NS5B-coding region of the same populations was analyzed
by molecular cloning and Sanger sequencing. The results (Table 2) indicate a mutagenic activ-
ity of T-705, with significant increases in mutation frequencies (p<0.0001;χ2 test). Thus, T-705
is mutagenic for HCV. No infectivity was detected in the cell culture supernatant of HCV that
was passaged five times in the presence of 400 μM T-705.

To confirm that loss of infectivity of HCV by T-705 followed a hallmark of lethal mutagene-
sis, the specific infectivity (the ratio between viral infectivity and the amount of genomic viral
RNA) of the virus replicating at a concentration of 400 μM T-705 was calculated (Fig 2). A
13-fold to 20-fold decrease of specific infectivity occurred over the first three passages of treat-
ment with the drug (that are those in which measurement of infectivity and viral RNA in sam-
ples of cell culture supernatant were reliable); differences were statistically significant between
values in the absence and presence of the drug (p<0.0001 for passages 1 and 3, and p = 0.0001
for passage 2; t-test). In addition, treatment with T-705 did not alter the consensus genomic
nucleotide sequence, again an observationmade during lethal mutagenesis of viruses [53,54].

Mutational bias evoked by T-705

The types of the different mutations at the NS5A and NS5B regions analyzed in the populations
passaged in the absence and presence of T-705 (S2, S3 and S4 Tables) indicate a predominance
of C!U and G! A transitions, with a 3.6—to 4.0- fold increase in the ratio [(G! A) + (C!
U)] / [(A! G) + (U! C)] ratio, associated with replication in the presence of T-705 (Fig 3).
Thus, T-705 is a potent mutagenic agent for HCV that produces a bias in favor of G! A and
C!U transitions preceding loss of infectivity.

Discussion

In the present report we have shown that favipiravir (T-705) is a potent inhibitor of HCV repli-
cation in Huh-7.5 cells, with a therapeutic index (TI) value of 116.9 which is seven to nine
times the value obtained previously for ribavirin in two independent determinations in the
same virus-host system (TI = 12.8 [42]; TI = 15.6 [55]). According to the IC50 values, the inhib-
itory activity of T-705 for HCV is comparable to the activity exhibited against other RNA
viruses [14,16,31,34,56]. The TI values for different, non-mutagenic anti-HCV agents using the
same HCV p0 and Huh-7.5 cell culture system vary by orders of magnitude: 252.9, 602.4,
>2000, 1.49x106 and>2x108 for telaprevir, cyclosporineA, sofosbuvir, daclatasvir and IFN-α,
respectively [41,55,57]. Therapeutic efficacymay be different in vivo than in cell culture.
Despite differences of values measured with HCV p0 in Huh-7.5 cells, each of the inhibitors
tested has had a significant role in anti-HCV therapy.

The toxicity of T-705 for Huh-7.5 cells and the calculated CC50 value (Fig 1A) exclude that
virus extinction (Fig 1C) was due to toxicity of T-705 for Huh-7.5 cells. The evidence that T-
705 can act as a lethal mutagen includes also an increase in mutation frequency associated with
a bias in favor of G!A and C!U transitions, a decrease of specific infectivity, and invariance
of the consensus sequence. These are features typical of lethal mutagenesis, as previously estab-
lished with several viruses and mutagenic nucleotide analogues (reviewed in [58,59]). The
mutational bias evoked by T-705 is similar to that induced by ribavirin on HCV [42] and on
FMDV [43,60,61]. The movement of viral genomic sequences towards extreme regions of
sequence space is a critical deleterious event preceding extinction [60,62]. Our previous studies
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with FMDV have shown that a class of ribavirin- or 5-fluorouracil-resistant mutants harboring
amino acid replacements in the viral polymerase or in non-structural protein 2C has as its
mechanism of action to counteract the mutational bias induced by the mutagen [63,64]. The
present study adds the important human pathogen HCV to a growing list of viral pathogens
reported to be mutagenized by T-705 [34,35]. It is not clear whether the inhibition of HCV p0
replication by T-705 is exclusively a consequence of its mutagenic activity or T-705 has an

Table 2. Quasispecies analysis of the NS5B-coding region of hepatitis C virus population HCV p3 in

the absence and presence of favipiravira.

Parameter or diversity indexb Favipiravir NS5B

Number of nucleotides sequenced - 31,968

+ 35,520

Number of haplotypesc - 9 (2/3/3/0/0/0/0/0/0)

+ 20 (1/0/6/5/3/1/3/0/1)

Number of different mutations - 17

+ 69

Number of total mutations - 17

+ 71

Number of polymorphic sites - 17

+ 69
˄HS - 1.8334

+ 2.9957
˄HGS, sample-based Gini-Simpson index - 0.7059

+ 1.0000
1D (p), Hill numbers - 6.25

+ 20
2D (p), Hill numbers - 3.0

+ 20
1D (p), Hill numbers - 1.8

+ 20

Mfe, mutation frequency, entity level - 1.0 x 10−3

+ 2.5 x 10−3

FAD, Functional Attribute Diversity - 0.15

+ 1.51
˄πe, sample nucleotide diversity, entity level - 2.1 x 10−3

+ 4.0 x 10−3

Mf min, minimum mutation frequency - 5.3 x 10−4

+ 2.0 x 10−3

Mf max (Mfm), maximum mutation frequency - 5.3 x 10−4

+ 1.9 x 10−3

˄π, sample nucleotide diversity - 1.1 x 10−3

+ 4.0 x 10−3

aThe populations analyzed correspond to passage 3 of the infections described in Fig 1. The NS5B residues

analyzed are 7667–9442. The HCV genome residue numbering corresponds to the JFH-1 genome

(accession number #AB047639). Mutation types are summarized in Fig 3 and their position in the HCV

genome and deduced amino acid substitutions are given in S3 Table.
bDiversity indices are defined and calculated as described in [47].
cIn parenthesis the number of haplotypes with one, two, three, four, five, six, seven, eight and nine mutations

is given; no haplotypes with a higher number of mutations were found.

doi:10.1371/journal.pone.0164691.t002
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inhibitory activity independent of its mutagenic activity, as previously documented for 5-fluo-
rouracil acting on FMDV [65].

Despite the success of direct acting antiviral agents (DAAs) that can reach sustained
response levels exceeding 90% [66–82], we have identified five reasons that justify exploration
of new antiviral compounds to treat HCV infections: (i) There are patients who do not elimi-
nate the virus with the new DAAs, in particular those infectedwith the so called “hard to treat”
HCV genotypes such as genotype 3 HCV [83–85]. (ii) Inhibitor-escape mutants have been
described for virtually every anti-HCV agent used alone or in combination, and their frequency
is expected to increase with the extended use of new treatments, as judged by the pattern
observedwith HIV-1 during the AIDS pandemic. Selection of resistant mutants within individ-
ual patients or their increase during the epidemiological spread of the virus will require drugs

Fig 2. Effect of T-705 on the specific infectivity of HCV. Huh-7.5 reporter cells were infected with HCV p0 at an initial MOI of 0.03

TCID50/cell, in the absence or presence of 400 μM T-705; infection with GNN was performed as negative control. The infectivity values

(upper right panel) have been redrawn from those shown in Fig 1(C). Extracellular viral RNA was measured by quantitative RT-PCR

(bottom letf panel). Specific infectivities (bottom right panel) were calculated by dividing the infectivity by the amount of viral RNA.

Statistically significant differences are indicated by three asterisks [(p<0.001); one way analysis of variance]. The range of specific

infectivities determined at passages 1, 2 and 3 was 1.3 x 10−4 to 2.2 x 10−5 TCID50/RNA molecules for T-705 100 μM, 1.1 x 10−5 to 2.7 x

10−5 for T-705 200 μM, and 8.0 x 10−5 to 3.1 x 10−6 for T-705 300 μM. Procedures are described in Materials and Methods.

doi:10.1371/journal.pone.0164691.g002
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with newmechanisms of action (reviewed in [58,59]). (iii) There are reports of patients who
fail therapy and that in the breakthrough virus no resistance mutations to the drugs used in the
treatment are detected [86–89]. One possibility to explain these clinical observations is that
high fitness or a fitness-associated trait confers resistance to several anti-HCV agents [55,57];
high fitness virusesmay be more sensitive to lethal mutagenesis than to standard inhibitors, a
possibility that we are currently investigating. (iv) A recent report indicates that DAA-based
treatments may induce tumor recurrence in about 27% of HCV-infected patients previously
treated successfully of HCV-associated liver cancer [90]. If extended to other patient cohorts,
the possibility of cancer recurrencemay impose a limitation for the use of some DAAs.
Although the recurrencemechanism is not known, tumor recurrence was not reported during
the years in which patients were treated with pegylated interferon-alpha and ribavirin
(pegIFN-α+Rib), the standard of care one decade ago. Although ribavirin has several mecha-
nisms of activity [91–98], genetic and clinical evidences suggest that mutagenesis may be part
ot its detrimental activity for HCV in vivo [8,9]. The possibility that lethal mutagens may extin-
guish HCV without the side effect of tumor recurrence is worth exploring. (v) The benefits of a
treatment option depend on the HCV genotype. In the present DAA era, genotype 3 is a “hard
to treat” HCV while sustained response rates of 65% to 80% were achieved after 24-week treat-
ment with pegIFN-α+Rib (comparative efficacies for different HCV genotypes with various
treatments described in [99–102], among other examples). The quasispecies dynamics of HCV
[59,103–105] helps interpreting not only the existence of genotypes but also their origin and
complexity. Genotypes are sets of related genomes that accumulate at some regions of sequence
space due to a combination of adequate replicative and epidemiological fitness [58]. Given that
antiviral efficacy is multifactorial −involving host and viral traits− it is expected that different
treatments will not exhibit the same efficacy across genotypes. According to our model studies
in cell culture, replicative fitness –one of the factors likely involved in genotype differentiation
− is also a determinant of inhibitor efficacy [55,57]. Therefore, the available evidence suggests
that if T-705 or other viral mutagens were licensed for a clinical application, it would not be
possible to predict their efficacy in vivo, or their relative efficacy against the different existing
HCV genotypes, as well as new genotypes likely to come. Assuming, however, that T-705 and
ribavirin have a similar anti-HCV activity in the clinic, it is likely that the efficacy of T-705
would require its use in combination with other antiviral agents.

An advantage of considering T-705 as a potential anti-HCV inhibitor is that the drug has
already undergone advanced clinical trials of efficacy and safety for treatment of other human
viral diseases such as uncomplicated influenza in adults (US National Institutes of Health,
identifierNCT02008344) and Ebola infection (JIKI trial, US National Institutes of Health,
identifierNCT02662855 [106]). Thus, T-705 use for HCV treatment would be an example of
drug repurposing, increasingly practiced in pharmacology to accelate testing and approval of
drugs for new indications.

In summary, given the clinical evidence of still incomplete efficacy of the DAA-based treat-
ments, of DAA-promoted hepatocarcinoma recurrence in patients previously subjected to

Fig 3. Mutational spectrum induced by favipiravir on hepatitis C virus. (A) Matrix of mutation types found

in the NS5A-coding region of HCV p0 passaged three times in absence or presence of favipiravir (400 μM),

based on haplotypes of three amplicons determined by UDPS, as detailed in Table 1. Below, matrix of mutation

types found in the NS5B-coding region of the same viral populations, based on molecular cloning and Sanger

sequencing, as detailed in Table 2. The box below each matrix quantifies the mutational bias, according to the

transition type ratio shown on the left. (B) Percentage of mutation types considering 100% as the sum of all

mutation types in the same populations and genomic regions analyzed in (A). The bottom panels indicate the

difference in mutation types between the population passaged in presence and absence (control) of favipiravir.

Procedures are detailed in Materials and Methods.

doi:10.1371/journal.pone.0164691.g003
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successful tumor resection and treatment, and the continuing HCV diversification that will
necessitate new treatments for optimal efficacy, favipiravir and other lethal mutagens may find
a new role in anti-HCV treatment.

Supporting Information

S1 Fig. Barplots with diversity values for each of the three amplicons (A1, A2 and A4) and
the two conditions (favipiravir, FVP and control, Ctrl). The diversity indices are abbreviated
in ordinate (Hpl, number of haplotypes; nMuts, number of different mutations; PolySites,
number of polymorfic sites; Mpct; dominant haplotype abundance; Shannon, ^HS; GiniS,
^HGS, sample-based Gini-Simpson index; D1, D2, Dinf, Hill numbers; Mfe, mutation fre-
quency, entity level; FAD, Functional Attribute Diversity; Pi.e, sample nucleotide diversity,
entity level; Mf min, minimummutation frequency;Mf.max, maximummutation frequency;
Pi, sample nucleotide diversity, and their calculation is described in reference [47] of the main
text. Standard deviation interval (left column), and basic bootstrap with 95% confidence inter-
vals (CI)(right column) are shown for each index.
(PDF)

S2 Fig. Histogram of null distribution bootstrapeddiversity differences between the popu-
lations passaged in the presence (FVP) and in the absence of favipiravir (Ctrl) with super-
imposedmean (dash-dot line) and normal distribution with bootstrapmean and standard
deviation.The diversity index is given in the abscissa, with the same abbreviations used in S1
Fig. Density means the probability density of the corresponding distribution. The panels on the
right indicate the boxplot of null distribution bootstraped diversity differences, with observed
difference as red dot and red dash-dot line. The distance from this line to the boxplot, in terms
of boxplot width, is an illustration of the low p-values obtained. A1, A2 and A4 mean ampli-
cons 1, 2 and 4, respectively.
(PDF)

S3 Fig. Raw data obtained from ultra-deeppyrosequencing experiments.
(ZIP)

S1 Table. Oligonucleotidesused for the ultra deep pyrosequencinganalysis of HCV p0 sub-
jected to three passages in the absence or presence of 400 μM favipiravir.
(PDF)

S2 Table. Mutations, corresponding amino acid substitutions and point acceptedmutation
(PAM) of the NS5A-coding region in the mutant spectraHCV p0 subjected to three pas-
sages in the absence of drug analyzedby ultra deep pyrosequencing.
(PDF)

S3 Table. Mutations, corresponding amino acid substitutions and point acceptedmutation
(PAM) of the NS5A-coding region in the mutant spectraHCV p0 subjected to three pas-
sages in the presence of favipiravir (T-705) 400 μM analyzedby ultra deep pyrosequencing.
(PDF)

S4 Table. Mutations, corresponding amino acid and point acceptedmutation (PAM) of the
NS5B-coding region in the mutant spectraHCV p0 subjected to three passages in the
absence or presence of 400 μM Favipiravir (T-705).
(PDF)
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