
An efficient protocol for obtaining accurate hydration free 
energies using quantum chemistry and reweighting from 
molecular dynamics simulations

Frank C. Pickard IVa, Gerhard Königa,c, Andrew C. Simmonetta, Yihan Shaob, and Bernard 
R. Brooksa

aNational Institutes of Health – National Heart, Lung and Blood Institute, Laboratory of 
Computational Biology, 5635 Fishers Lane, T-900 Suite, Rockville, MD 20852 USA

bDepartment of Chemistry and Biochemistry University of Oklahoma Norman, OK 73019

cMax Planck Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, NRW, Germany, EU

Graphical abstract

Keywords

hydration free energy calculations; Non-Boltzmann Bennett; implicit solvent

1. Introduction

The accurate determination of hydration free energy (HFE) is of paramount importance to 

the fields of chemistry, biophysics and rational drug design. HFE, the free energy required to 

transfer a molecule from the gas phase to an aqueous solution at the limit of infinite dilution, 

in turn affects other properties critical to the drug design process. Properties such as: 

solubility, distribution, protomeric state, ligand binding and diffusion, are all affected by a 

ligand’s hydrophilicity and therefore its HFE. One of the key goals for computational 

chemistry is the accurate prediction of HFE values.

Accurate HFE determination is also of critical importance to computational chemistry 

method development, as it serves as an evaluation tool for a diverse set of theoretical 

methods from force field parameters, sampling methods, free energy protocols and even 

quantum chemistry techniques. The statistical assessment of modeling of proteins and 
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ligands (SAMPL) challenge Nicholls et al. [2008]; Guthrie [2009]; Marenich et al. [2009a]; 

Geballe et al. [2010]; Klimovich and Mobley [2010]; Klamt and Diedenhofen [2010]; 

Ribeiro et al. [2010]; Muddana et al. [2012]; König and Brooks [2011]; Gallicchio and Levy 

[2012]; Lawrenz et al. [2012]; Mobley et al. [2011]; Geballe and Guthrie [2012]; Beckstein 

and Iorga [2011]; Reinisch et al. [2012]; Kehoe et al. [2011]; Guthrie [2014]; Mobley et al. 

[2014]; König et al. [2014a]; Mikulskis et al. [2014] has emerged as a venue for 

computational chemists to evaluate the efficacy of their methods with respect to blinded, 

high quality, curated experimental data. In the SAMPL4 challenge, we predicted HFE values 

(1 M fixed-concentration standard-state) for the 21 molecules in the blind portion of the 

small molecule challenge (Figure 2), where the non-Boltzmann Bennett (NBB) free energy 

method König et al. [2014a]; König and Boresch [2011]; König et al. [2014b] was used in 

combination with molecular mechanics (MM) and quantum mechanics (QM) to make HFE 

predictions.

NBB is a free energy method for calculating the free energy difference between two 

expensive (QM) potential energy surfaces (PES) based on sampling from two cheaper (MM) 

PES. König and Boresch [2011]; König et al. [2014a,b] This is achieved by reweighting the 

data obtained from the cheaper PES to the more expensive PES. The convergence of the 

NBB calculations relies on the capability of Bennett’s acceptance ratio method Bennett 

[1976] to determine many complex free energy differences in just one step (Figure 1). Gao 

and Xia [1992]; Gao et al. [1993]; Gao and Freindorf [1997]; Vaidehi et al. [1992]; Luzhkov 

and Warshel [1992]; Wesolowski and Warshel [1994]; König et al. [2009] It is advantageous 

to use NBB to connect QM surfaces based on MM, because it allows one to harness the 

advantages of both methods in a computationally efficient manner. The calculation of free 

energy differences involves accurately computing potential energy differences over an 

ensemble of configurations from the states of interest. MM methods can quickly sample the 

potential energy surface, but may have difficulty accurately modeling solute–solvent 

interactions. Conversely, QM methods are very accurate, but their relative expense precludes 

them from generating ensembles for all but the smallest of gas phase systems. NBB allows 

for the combination of these methods’ complementary strengths. The accurate QM 

Hamiltonian can address weaknesses of the assumptions inherent in a fixed charge MM 

force field, or weaknesses in the parameterization itself, which frequently occurs in difficult 

to parameterize drug-like molecules. Conversely, the sampling from the MM trajectories 

captures the conformational entropy and anharmonic effects, which is often not technically 

feasible with QM calculations alone.

While coupling QM and MM methods together using NBB is enticing in principle, the 

results of our submissions to SAMPL4 using this approach were mixed. Computing HFE 

values using QM/MM B3LYP/6-31G(d)/TIP3P coupled to MM using the CHARMM 

general force field (CGENFF) Vanommeslaeghe et al. [2010, 2012] and TIP3P yielded root 

mean square deviations from experiment (RMSD) of 1.6 kcal·mol−1, our best submission. 

However, by making a different choice of solvent, including the use of implicit solvent, 

choosing a different QM method, or even using purely MM or QM approaches, statistically 

different results may be obtained. König et al. [2014a] Because the “parametric space” 

encompassed by the choice of density functional, basis set and solvent model is large, in the 

current work we exhaustively explore the results’ dependence upon these choices. We will 
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choose an effective QM method, by using the HFE of the SAMPL4 data set as our objective. 

Since we will focus on the efficiency and accuracy of the calculations, we make extensive 

use of implicit solvation methods. In the end, we provide an accurate and efficient QM-NBB 

protocol to obtain results that are consistently more accurate than either pure QM or MM 

calculations alone.

2. Methods

2.1. Free Energy Methods

The most basic method to estimate the free energy difference, ΔGi→j, between a sampled 

state i and an unsampled state j is the Zwanzig equation, Zwanzig [1954] it is also known as 

thermodynamic perturbation. This free energy difference is obtained via the following:

(1)

Here β−1 is the thermodynamic temperature (kBT), Ui is the potential energy of a 

configuration drawn from state i using the Hamiltonian of state i, and the angle brackets 

imply an ensemble average over state i. This approach Zwanzig [1954] can, in principle, be 

used to obtain a free energy value for a QM PES, using an ensemble generated using a much 

cheaper MM force field. Such free energy differences can be used to correct for errors that 

may arise from a classical force field representation in molecular dynamics (MD), without 

the need to run prohibitively expensive ab initio molecular dynamics. The applicability of 

this approach is limited by the overlap between QM and MM potential energy surfaces, and 

the size of the system of interest, because of this, alternative free energy schemes may be 

preferable. Dybeck et al. [2016]; Jia et al. [2016]; Ryde and Söderhjelm [2016]; König and 

Brooks [2015]; Cave-Ayland et al. [2014]; Sampson et al. [2015]; Rodinger and Pomès 

[2005]; Heimdal and Ryde [2012]; Mikulskis et al. [2014]; Genheden et al. [2015]; Olsson 

et al. [2016]; Hudson et al. [2015a,b]; Beierlein et al. [2011]; Fox et al. [2013]

Improving upon the Zwanzig equation, Bennett Bennett [1976] showed that the minimum 

variance estimate of the free energy difference between two states, using configurations 

drawn from both states, is calculated by

(2)

where f is the Fermi function

(3)
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and C is a constant. An iterative procedure is applied, such that the ratio in eq. 2 approaches 

unity. This estimator is known as Bennett’s Acceptance Ratio (BAR), and it is very 

commonly applied to studying free energy changes in chemical processes. When considering 

the free energy differences between more than two states, such as in a chain of states during 

an alchemical transformation process, the multistate BAR (MBAR) estimator should also be 

considered. Shirts and Chodera [2008] One disadvantage of the BAR method, is that it 

requires configurations to be drawn from both states i and j. When working with QM based 

methods, direct sampling is computationally too demanding.

Using the NBB estimator, similarly to Zwanzig, we can estimate the free energy of an 

unsampled state i by using configurations drawn from a sampled state i′. This is 

accomplished by biasing the sampled states i′ and j′ using the potential energy difference 

between i and i′ as follows

(4)

The correct ensemble averages in the unsampled states i and j are then recovered from the 

biased states by applying Torrie and Valleau’s relationship Torrie and Valleau [1977] to 

calculate the unbiased ensemble average, 〈X〉i, from configurations taken from a biased state 

i′.

(5)

Combining eq. 2 and eq. 5 yields the NBB equation, which allows us to estimate the free 

energy difference between two unsampled states i and j.

(6)

2.2. MD Simulation

All MD simulations were carried out using the PERT module within the CHARMM 

simulation package. Brooks et al. [2009, 1983] CGENFF parameters Vanommeslaeghe et al. 

[2010, 2012] along with the TIP3P water model Jorgensen et al. [1983]; Neria et al. [1996] 

were used to generate all ensembles. All trajectories used a 1 fs timestep and were 

thermostated to 300 K, no constraints were used. MD simulations in the gas phase were 

performed without non-bonded cutoffs, using a Langevin integrator with a friction 

coefficient of 5 ps−1 on all atoms. These simulations were 50 ns long, with coordinates saved 

every 1000 steps for later post-processing. The aqueous phase was modeled by 1492 TIP3P 

water molecules filling a truncated octahedron box inscribed in a 38.60 Å cube. Long range 
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electrostatics were represented using smooth particle mesh Ewald summation, Darden et al. 

[1993]; Essmann et al. [1995] while Lennard-Jones interactions were continuously switched 

off between 10 and 12 Å. A Nosé-Hoover thermostat Hoover [1985] maintained the 

canonical ensemble. Soft-core potentials Beutler et al. [1994]; Zacharias et al. [1994] were 

used to avoid the so-called “van der Waals endpoint problem”. Aqueous phase simulations 

were 1 ns long and coordinates were saved every 20 steps for later post-processing. All 

simulations were repeated in triplicate with different random seeds, to obtain a simple 

estimate the statistical uncertainty. Condensed phase simulations were initially equilibrated 

using a Langevin piston barostat for 0.1 ns and further equilibrated for 0.1 ns in the 

canonical ensemble. This approach neglected the work contribution, which is expected to be 

very small for these systems, to expedite the MD calculations.

HFE from classical simulations were calculated by turning off all non-bonded solute 

interactions, both in the gas and aqueous phases. This alchemical mutation was carried out 

in five steps. In step 1, the charges on the gas phase solute were decremented to zero over six 

states (λ = 0.00, 0.05, 0.15, 0.40, 0.80 and 1.00). We refer to this process as “uncharging”. 

In step 2, we decremented the Lennard-Jones interactions in the gas phase over seven states 

(λ = 0.00, 0.15, 0.35, 0.65, 0.80, 0.90 and 1.00). We refer to this process as “vanishing”. In 

step 3, we transfer the non-interacting ligand, A(n,Ø), from the gas to the aqueous phase. The 

free energy of this process is equivalent to zero. Step 4 negates the vanishing process in the 

aqueous phase, this required thirteen states (λ = 0.00, 0.05, 0.10, 0.20, …, 0.90, 0.95 and 

1.00). Finally, step 5 negates the uncharging process in the aqueous phase, this required 

twelve more states (λ = 0.00, 0.05, 0.10, 0.20, …, 0.90 and 1.00). Thus, in total, the MM 

HFE was calculated in five steps,

(7)

where + denotes the fully-charged states, and n denotes uncharged states.

To enhance sampling, Hamiltonian Replica Exchange Sugita and Okamoto [1999]; Sugita et 

al. [2000] was used to periodically exchange structures between neighboring λ-states. 

Because all of these λ-states are already necessary to estimate the HFE using a purely MM 

Hamiltonian, or using a hybrid QM/MM approach, multiplexing the alchemical states 

together via replica exchange provides accelerated convergence, for marginal cost. 

Exchanges were attempted every 1000 steps. In the gas phase, the average acceptance rate of 

attempted exchanges was 43%, while in the aqueous phase, it was 24%.

2.3. QM Optimization

All QM calculations in this work were performed using Gaussian 09. Frisch et al. [2009] 

Pure QM HFE were calculated using either a “vertical” or “adiabatic” protocol. In the 

vertical scheme, geometry optimizations were performed exclusively in the gas phase, and 

then a single point energy calculation (SPC) was performed on that static geometry in the 

aqueous phase, as modeled by an implicit solvent. In the adiabatic scheme, geometry 

optimizations are carried out in both the gas and aqueous phases. Next, the Hessian matrices 
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are computed for both phases, and these are used to compute the thermal corrections (to 

298.15 K) for each molecule in the harmonic limit. Finally, a SPC was optionally computed 

on the static geometries using a larger (triple-ζ) basis set, in both phases, to attempt to 

further improve the computed HFE, and to explore the efficacy of triple-ζ basis sets. All QM 

optimizations were performed with “Tight” wave function and geometry convergence 

criteria. For DFT calculations, “UltraFine” numerical quadrature was used as required for 

the M06-2X functional, and also such that fair comparisons could be made across all 

selected methodologies. To mimic the effects of bulk aqueous solvent, both the default 

implicit solvent in Gaussian 09 (keyword “SCRF=IEFPCM”) Scalmani and Frisch [2010] 

and the SMD Marenich et al. [2009b]; Ribeiro et al. [2010]; Marenich et al. [2009a] implicit 

solvent (keyword “SCRF=SMD”) models were used. An extensive range of QM methods 

(M06-2X, Zhao and Truhlar [2007, 2008] B3LYP, Becke [1993] PBE0, Adamo and Barone 

[1999] OLYP, Handy and Cohen [2001]; Hoe et al. [2001]; Lee et al. [1988]; Miehlich et al. 

[1989] BLYP, Lee et al. [1988]; Miehlich et al. [1989] M06-L, Zhao and Truhlar [2006] 

Hartree-FockRoothaan [1951] and MP2 Head-Gordon et al. [1988]) and basis sets 

(6-31G(d), Ditchfield [1971] 6-31+G(d), Hariharan and Pople [1974] DZP, 2Dunning [1970] 

def2-SV(P)Weigend and Ahlrichs [2005] and cc-pVDZ Dunning [1989]) were used 

throughout this benchmarking study.

2.4. pKa Calculation

While a majority (17 of 21) of the molecules in the SAMPL4 blind set are electrostatically 

neutral at pH = 7.4, four molecules (21, 22, 23 and 24) were believed to possibly have 

contributions from non-neutral states at equilibrium. To account for this, and mitigate its 

effect upon our results and guidance, we estimated the pKa values for these molecules using 

adiabatic QM solvation calculations. The M06-2X/6-31+G(d) method was used for these 

calculations in a manner consistent with the QM optimization protocol as described above. 

An additional SPC at the M06-2X/6-311++G(d,p) level was also carried out.

A detailed description of the nuances of the computational estimation of pKa values is 

beyond the scope of this work, the reader is directed to the recent review literature. Seybold 

and Shields [2015]; Casasnovas et al. [2014] Briefly, the objective is to compute the free 

energy of deprotonating a ligand, AH+, in the aqueous phase. This quantity, ΔGaq, can then 

be readily converted into a pKa using eq. 9, where R = kB/NA is the usual gas constant. The 

relative populations of the various protomers, and hence the free energy of relaxing the 

protomer constraint, is obtained by application of the Henderson-Hasselbalch equation at pH 

= 7.4.

(8)

2This is the version of Dunning’s DZP basis set that appears in the Psi4 quantum chemistry package. Turney et al. [2012]
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(9)

In the absolute scheme, calculation of ΔGaq is accomplished with the standard 

thermodynamic cycle, shown in Figure 3. Values for  and G(Aaq) are obtained 

directly from the QM calculations. The value of  is analytic, while ΔGsolv(H+) is 

experimentally determined. Tissandier et al. [1998] A final factor of RT ln(24.46) is also 

included to account for change of standard state from 1 atm·L−1, denoted “∘”, in the gas 

phase to 1 mol·L−1, denoted “*”, in the aqueous phase. Physically, this term corresponds to 

the loss of entropy when compressing an ideal gas from 1 atm to 24.46 atm (1 M), this is 

approximately 1.89 kcal·mol−1 at 298.15 K. This scheme is generally robust, but is often 

imprecise. Errors from the solvation of charged ligands and uncertainties associated with the 

experimental value of hydrating a free proton (ΔGsolv(H+) = −265.9 kcal·mol−1), Tissandier 

et al. [1998] are thought to be the main culprits.

2.5. QM/MM- and QM-NBB Calculations

When calculating the HFE using NBB between a hybrid QM/MM surface and a classical 

MM surface (QM/MM-NBB), we use the “indirect” scheme (Figure 1) for computing the 

free energy difference between two states, as pioneered by Gao and co-workers and Warshel 

and co-workers, Gao and Xia [1992]; Gao et al. [1993]; Gao and Freindorf [1997]; Vaidehi 

et al. [1992]; Luzhkov and Warshel [1992]; Wesolowski and Warshel [1994] and combine it 

with the NBB free energy estimator. That is, to vastly reduce computational costs, instead of 

performing NBB between every pair of adjacent intermediate λ states, we only connect the 

QM/MM surface to the MM surface at the endpoints, i.e. from λ0 → λ1 and from λK−1 → 
λK, where λ0 and λK correspond to the physical states of interest. This is necessary from a 

practical perspective, because the full “direct” NBB calculation for all K intermediate states, 

with N configurations drawn from each state, would require KN expensive QM/MM energy 

evaluations, a prohibitively expensive endeavor. Furthermore, the direct approach does not 

necessarily increase accuracy, since the convergence of the free energy method strongly 

depends on the overlap between MM and QM. Dybeck et al. [2016]; Jia et al. [2016] 

Instead, the indirect NBB approach only requires only 4N QM/MM energy evaluations, 

while the free energy difference between the remaining interior λk states (where k ∈ {1, …, 

K − 1}) are treated using the MM potential with the standard BAR approach. Provided 

sufficient overlap exists in the two NBB calculations, the direct and indirect approaches 

yield equivalent results, because free energy is a state function.

When estimating the HFE using NBB combined with pure QM and an implicit solvent, the 

BAR calculation on the interior λ states may be avoided completely. This is because the 

solvent water molecules are now removed, and sufficient overlap exists, with NBB biasing, 

to connect λ0 → λK directly. In this case, 4N QM calculations are still required, and the 

NBB equation simplifies to the following.
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(10)

(11)

QM/MM-NBB calculations use DFT to model the solute and TIP3P to model the solvent 

explicitly. These calculations were performed using Q-Chem Shao et al. [2006] as 

implemented by the Q-Chem/CHARMM interface. Woodcock III et al. [2007] The implicit 

solvent QM calculations were performed using Gaussian 09. The solvent was modeled 

implicitly using SMD. To speed up the QM calculations, coarser integration grids and looser 

wave function convergence criteria were used than for the analogous QM optimized 

calculations. This increased performance ca. five-fold and incurred a loss of < 0.005 

kcal·mol−1 precision.

3. Results & Discussion

3.1. QM Optimization

To efficiently gauge basis set and DFT functional effects upon the QM-NBB calculations of 

HFE, we first calculated the HFE using several standard QM protocols as described above. 

These benchmarking calculations allowed us to efficiently try different protocols for the 

SAMPL4 test set, Guthrie [2014] and ultimately guided our choice of functional, basis set 

and solvation method for the expensive QM-NBB calculations.

Table 1 shows the RMSD of our adiabatic HFE calculations with harmonic frequency 

corrections applied using the SMD implicit solvent. This HFE protocol produced 

consistently strong results across all choices of functional and basis set (average RMSD of 

1.95 kcal·mol−1). Using a vertical HFE protocol (Table 8) also provided very strong results 

(average RMSD 1.82 kcal·mol−1) for the SAMPL4 data set, and for a significantly reduced 

cost relative to the adiabatic HFE calculations. For small, rigid molecules, which tend to 

dominate the SAMPL4 blind set, the assumption implicit in using the vertical protocol – 

namely that the geometric reorganization free energy is small relative to the solvation free 

energy – are generally valid, however in general, when dealing with larger and more flexible 

ligands, the solute might undergo significant reorganization as it moves from gas phase to 

aqueous phase, and the adiabatic protocol may yield better results.

Including a triple-ζ SPC (Table 9), along with harmonic corrections and the SMD solvent, 

gives a marginal improvement overall, RMSD 1.75 kcal·mol−1. Unfortunately this 

improvement not uniformly distributed, as 15 of the 40 methods tested experience worse 

performance with a triple-ζ basis than with a double-ζ basis. The most expensive hybrid 
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functionals, especially M06-2X, gain the most benefit from larger basis sets, while the 

performance of the affordable pure functionals suffers tremendously. This result is especially 

disappointing, as the three top performing methods (OLYP/DZP, BLYP/DZP and M06-L/

DZP), all have significantly worse results with the analogous TZ2P basis set. These three 

methods also all provide predictions which are of equal quality to the very best triple-ζ 
predictions, with the notable exception of the MP2/6-311++G(3df,3pd) results, which are 

too expensive to consider for QM-NBB, and are provided for comparison purposes only. 

While disappointing, these results are consistent with the well established literature 

demonstrating the irregular convergence behavior of certain density functionals, Wang and 

Wilson [2004, 2005]; Wang et al. [2005] especially pure functionals, such as BLYP and 

OLYP. Because of the computationally expensive nature of these triple-ζ basis set 

corrections, and their inconsistent performance, we chose not to pursue them further in this 

work, and cannot recommend them in general for the SMD implicit solvent model. The 

IEFPCM implicit solvent, the Gaussian 09 default, generally gave very poor results. For 

example, adiabatic frequency corrected IEFPCM calculations (Table 7) resulted in average 

RMSD of 2.94 kcal·mol−1, so we cannot recommend this approach either. Finally, while the 

SMD implicit solvent was parameterized using the M05-2X/6-31G(d) method, Zhao et al. 

[2006] our results demonstrate its broad compatibility with many combinations of functional 

and basis set, beyond those with which it was initially conceived.

If we attempt to account for the presence of non-neutral equilibrium structures via pKa 

calculations, we can further reduce our RMSD values. Using the protocol for absolute pKa 

calculations described in the methods section, we predict 21 has a pKb of 8.74, 22 has a pKa 

of 5.71, 23 has a pKb of 6.30 and 24 has a pKb of 5.69. From these equilibrium constants, 

we can readily calculate the free energy correction from the reference neutral molecule, 

upon which the QM calculations were performed, to the equilibrium conditions at pH = 7.4. 

Combining these pKa corrections with the adiabatic protocol (Table 10) decreases the 

average RMSD from 1.95 kcal·mol−1 to 1.82 kcal·mol−1. Combining them with the vertical 

protocol (Table 11), yields more dramatic improvement, reducing the average from 1.82 

kcal·mol−1 to 1.57 kcal·mol−1.

Based upon this analysis, we chose six QM methods to use in our implicit solvent QM-NBB 

protocol. Five methods were chosen overall, two of these methods (OLYP/DZP and BLYP/

DZP) were chosen because of their strong performance in our QM optimization 

benchmarking studies using the adiabatic HFE scheme (Table 1), and the remaining three 

(M06-2X/6-31G(d), B3LYP/6-31G(d) and PBE0/6-31G(d)) because of their ubiquity within 

the field of quantum chemistry. The sixth method, BLYP/def2-SV(P), was chosen because of 

its poor performance in our benchmarking studies, and it will serve as a negative control in 

our QM-NBB calculations, and subsequent analysis.

For our six QM methods, we present fine grained results for each molecule the test set. The 

RMSD is repeated from the previous tables for convenience, as well as three additional non-

parametric statistical estimators: the Theil–Sen estimator (T-S), Theil [1950] the Kendall 

rank correlation coefficient (τ) Kendall [1938] and the median signed deviation from 

experiment (MdnSD). These non-parametric estimators may be more robust than their 

parametric counterparts, especially for data with outliers. For example, if we calculate the 
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standard Pearson’s R correlation coefficient for the six QM methods presented in Table 2, 

we obtain values between 0.94 and 0.96, implying nearly perfect linear correlation between 

our predicted values and experiment. However, if we discard the predictions for molecule 1, 

which are significantly more hydrophilic than the rest of the members of data set, our 

correlation values drop significantly into the range of 0.62 – 0.74, with the BLYP/def2-

SV(P) data now responsible for the, significantly, worst correlation. The Kendall’s τ rank 

correlation metric properly discriminates between the predictions with good and bad 

correlation a priori. Similarly, the Theil–Sen estimator is able to robustly capture the slope of 

the linear fit between the QM optimized predictions and the experimental data. Finally, the 

median signed error is used to gauge the extent to which certain methods systematically 

underpredict (+) or overpredict (−) hydrophilicity. With these non-parametric estimators, we 

are able to robustly account for the disproportionate effect of molecules such as 1, which are 

significant outliers to the rest of the set, or molecules such as 21–24, where we are either 

ignoring, or imperfectly modeling significantly challenging chemical phenomena, such as 

deprotonation.

3.2. Implicit Solvent QM-NBB

The application of the NBB free energy estimator to QM potential energy calculations with 

implicit solvent consistently yields higher quality HFE predictions. For all six QM methods 

tested, the QM-NBB protocol reduces the RMSD of the predicted HFE with respect to 

experiment (Table 3). Figure 4 shows the consistency of the RMSD reduction by using MM 

trajectories for sampling. Helpfully, the RMSD reduction is greater for QM methods that 

were already most effective for the QM optimization calculations. Even the extremely 

poorly performing BLYP/def2-SV(P) method enjoys a marginal decrease in RMSD. Our 

other statistical estimators also indicate an improvement in the quality of our predictions, as 

the Theil–Sen estimator indicates the slope of our predictions approaches unity. More 

significant, is the consistent improvement in the rank ordering coefficient, τ. This shows that 

QM-NBB might be an effective method for ranking the affinity of ligands relative to each 

other, an important property for the potential application of this method in the field of drug 

discovery. The median signed error is largely unchanged, and still relatively small for the 

better performing QM methods. Our best QM-NBB HFE predictions were calculated using 

the OLYP/DZP method. With a RMSD of 0.89 kcal·mol−1, this is the most accurate set of 

HFE predictions on the SAMPL4 blind data set to be found in the literature. This is very 

advantageous result from an efficiency perspective, as OLYP is a pure functional, and does 

not have a kinetic energy density term, nor a Hartree–Fock exchange. This makes it much 

cheaper to use than other accurate functionals, such as M06-2X.

While the QM-NBB protocol is consistently more effective than the analogous QM-

optimization protocol, this gain in accuracy is expensive. In the present work, each HFE 

prediction from QM-NBB required 40,000 primitive QM single point energy calculations. 

While these QM calculations are embarrassingly parallel, and efforts to optimize the 

configurational sampling rate could reduce the number of QM energy evaluations, Rosta and 

Hummer [2009] a large quantity of raw QM data is required by the QM-NBB estimator. The 

associated expense of generating this QM data is significantly greater than for the QM-

optimization protocol, underscoring the need for thorough methodological benchmarking.
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As Figure 5 illustrates, QM-NBB with M06-2X/6-31G(d) effectively reduces the extent of 

the worst outliers that we encounter in the analogous QM optimization calculations. This is 

likely a direct consequence of the “ensemble” nature of the QM-NBB calculations. Unlike in 

the case of QM optimizations, where one conformation dominates the calculation, the NBB 

approach allows for ensemble averaging, benefiting our predictions in two ways. First, this 

effect may be partially due to the fact that with QM optimizations, a bad initial guess of the 

geometry can get trapped in a local energy minimum and yield poor results. QM-NBB 

calculations use an ensemble average, and poor initial conditions can be compensated in the 

equilibration and production stages of the MM simulations. Second, the QM-NBB 

calculations should also outperform QM optimizations in cases where the potential energy 

surface of a ligand is broad and shallow, or multiple low-lying energy minima are present. In 

this case, QM optimizations will dramatically over emphasize the global minimum structure, 

while the QM-NBB calculations will correctly draw from a much more balanced set of 

conformational states, and properly balance the relative contributions of entropy and 

enthalpy. This effect, and QM-NBB’s outperformance of QM optimizations, should be more 

pronounced for larger, floppier molecules. We observe exactly this in M06-2X/6-31G(d) 

calculations, where QM-NBB calculations dramatically shift the predictions of some of the 

largest molecules (21, 22, 23 and 24). This effect can also be thought of as including non-

harmonic conformational entropy from the ligand. Typical QM schemes only account for the 

contribution of entropy from the region of phase space immediately surrounding the global 

minimum structure via the simple harmonic oscillator approximation.

Another aspect that is partially neglected by the vertical or adiabatic HFE schemes is the 

balance of the conformational preferences in the gas phase versus the aqueous phase. In the 

gas phase, the solute can stabilize itself by forming intramolecular hydrogen bonds, which is 

known as the “self-solvation” effect. Roseman [1988]; König and Boresch [2009]; König et 

al. [2013] While the formation of intramolecular hydrogen bonds is also possible in the 

aqueous phase, it is competing with the formation of intermolecular hydrogen bonds to the 

solvent. This effect alone demands that a single conformational structure cannot possibly be 

representative of the entire hydration process.

The effect of the conformational preferences in gas phase and solution is illustrated on the 

left side of Fig. 6. The plot shows the distributions of the vertical hydration free energies of 

different conformations sampled by MM in both gas phase (gray) and in aqueous solution 

(turquoise). The error bars indicate the mean and standard deviations of more than 10,000 

conformations drawn from each trajectory and analyzed with OLYP/DZP/SMD. A striking 

feature is that the gas phase conformations tend to underestimate the solvent affinity, while 

the conformations in aqueous solution tend to overestimate the solvent affinity. 

Correspondingly, the gas phase conformations would lead to an RMSD of 1.5 kcal·mol−1, 

while the solvent phase conformations would lead to and RMSD of 1.1 kcal·mol−1. By 

combining the data from both phases according to their appropriate weights, QM-NBB leads 

to an RMSD of 0.9 kcal·mol−1 (right side of Fig. 6).

Unfortunately, combining the QM-NBB calculations with the same pKa corrections that 

were effective with the QM optimized calculations significantly increases the RMSD with 

respect to experiment for most of the effective QM methods (the negative control benefits 
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marginally). This might be due to the fact that the pKa corrections themselves were drawn 

from a single QM optimized structure, and thus our pKa calculations suffer from many of the 

same limitations and drawbacks that we have discussed above. It is also important to note 

that the very same molecules that are likely to exhibit significant contributions from non-

neutral states under equilibrium conditions, are also the same large, floppy molecules where 

QM-NBB predictions diverge the most from the single conformer QM optimized 

predictions. Furthermore, the artifacts associated with the overrepresentation of a particular 

conformer are exacerbated even more, due to the presence of a large net charge on the 

ligand. To properly treat these effects, the pKa corrections for the QM-NBB predictions 

should be repeated with a NBB protocol for molecules 21 – 24. Finally, while obvious, it is 

important to mention the difficulty in drawing strong conclusions from such a small set, four 

in the SAMPL4 data set (4 molecules with protonizable groups).

3.3. Explicit Solvent QM/MM-NBB

Among our various submissions to SAMPL4 challenge, König et al. [2014a] our explicit 

solvent B3LYP/6-31(d)/TIP3P calculations enjoyed the lowest RMSD with respect to 

experiment (RMSD = 1.6±0.6 kcal·mol−1). To follow up on this work, we were interested in 

exploring alternative QM methods. Due to the extremely expensive nature of these 

QM/MM-NBB calculations, and our initial benchmarking calculations using QM 

optimizations, we chose the M06-2X/6-31G(d)/TIP3P method, believing it produced the 

most consistently high quality HFE predictions. Unfortunately the predictions using the 

more expensive M06-2X functional are remarkably similar to those from our SAMPL4 

submission, and show consistency even with predictions for specific individual molecules 

from the SAMPL4 set. In addition to having a relatively high RMSD (1.54 kcal·mol−1), the 

rank correlation is also poor (τ = 0.59), being effectively equivalent to that from our negative 

control calculations using the BLYP/def2-SV(P) method with SMD implicit solvent.

This QM/MM-NBB result is consistent, yet better than one obtained in a recent study based 

on the same set of molecules and using the same QM/MM method with the MESS-E 

(multiple-environment single-system with Fock matrix extrapolation) method (RMSD = 

2.18 kcal·mol−1). König et al. [2016] This approach approximates a full QM/MM 

calculation by approximating the effect of the classical solvent molecules as a perturbation 

to the gas phase wave function, instead of treating it in a fully self consistent manner. This 

requires constraining both the solute and solvent molecules to rigid bodies, however it 

increases the speed of the QM/MM energy calculations by several orders of magnitude 

relative to the regular procedure. Since the MESS approach uses rigid solute molecules, but 

allows for solvent relaxation, the improvement of our calculations by RMSD of ca. 0.6 

kcal·mol−1 with respect to experiment in comparison with MESS indicates that solute 

entropy contributes significantly to the HFE. Such contributions become highly relevant 

when attempting to reach “chemical accuracy” of 1 kcal·mol−1.

It is also interesting to observe that our HFE predictions from QM/MM-NBB are also 

significantly too hydrophilic (MdnSD = −0.65 kcal·mol−1). It might be related to the amount 

of Hartree–Fock exchange in the hybrid functionals as discussed in Reference 96. This may 

also be due to the prepolarized nature of the TIP3P explicit solvent, which exaggerates the 
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partial charges to better mimic bulk water properties. Furthermore, because TIP3P uses point 

charges, instead of a more physically accurate delocalized charge distribution, the solvent 

molecules may over polarize the QM wave function at short range in the interfacial region. 

This result is consistent with other QM/MM explicit solvent HFE studies. König et al. 

[2016]; Shaw et al. [2010] Water models that explicitly account for polarization and charge-

penetration effects may mitigate these issues, and studying their effectiveness will be the 

subject of followup work.

4. Conclusions

In this work we computed hydration free energies for 21 molecules in the blind SAMPL4 

data set to determine an effective choice of QM method to use in combination with the QM-

NBB free energy protocol. Our initial benchmarking calculations were carried out using 

standard QM optimization protocols, indicating that several well known (M06-2X/6-31G(d) 

and PBE0/6-31G(d)) and less well known (OLYP/DZP and BLYP/DZP) QM methods might 

produce superior results when used in conjunction with the NBB free energy method than 

the corresponding pure QM method. This same benchmarking work indicated that 

calculations using an additional single point triple-ζ basis correction did not significantly 

outperform calculations without the SPC, and that the SMD implicit solvent significantly 

outperforms the IEFPCM implicit solvent. While pKa corrections seemed to improve the 

results of the QM optimization calculations with respect to experiment, this was not the case 

with the QM-NBB calculations. This is a disappointing result, as we expect significant 

contributions from non-neutral states for molecules 22, 23 and 24. However given the 

relative lack of data on titratable molecules present in this data set, it is difficult to draw a 

strong conclusion from this result. The QM/MM-NBB calculations carried out using the 

popular M06-2X/6-31G(d) method produced results that were inferior to those from the 

same method with the SMD implicit solvent. Overall, the QM-NBB method with SMD 

implicit solvent produced HFE predictions that correlated very strongly with those from QM 

optimizations. These QM-NBB HFE predictions were found to have smaller RMSD values 

with respect to experiment for all six QM methods tested. Our best overall results (RMSD = 

0.89 kcal·mol−1) were produced using the QM-NBB free energy estimator in combination 

with the OLYP/DZP QM method with the SMD implicit solvent, and are the best known 

results in the literature for the blind SAMPL4 data set. We have applied this QM method 

together with the NBB free energy estimator in the recently completed SAMPL5 distribution 

coefficient challenge, Rustenburg et al. [2016] and strongly endorse it for making HFE 

predictions. We have shown that the QM-NBB method with SMD implicit solvent, while 

more expensive than typical QM optimization calculations, consistently improves the quality 

of hydration free energy predictions by including configurational entropy that is impossible 

to account for using standard QM techniques. The NBB method with implicit SMD solvent 

can be used as a drop in replacement for standard QM techniques in situations where highly 

accurate hydration free energy predictions are of paramount importance.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The thermodynamic cycle used for indirect free energy calculations in this work.
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Figure 2. 
The 21 molecules from the blind portion of the SAMPL4 hydration free energy challenge.
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Figure 3. 
The thermodynamic cycle used for absolute pKa calculations in this work.
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Figure 4. 
Comparison of RMSD of different QM protocols based on pure QM optimized structures 

(abscissa) and MM trajectories that we analyzed with QM-NBB (ordinate). The use of MM 

trajectories consistently improves the results by accounting for conformational entropy.
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Figure 5. 
Comparison of QM-NBB data against QM-Opt data for the M06-2X/6-31G(d) level of 

theory. Molecule 1 has been omitted from the figure and from the best fit line, because of its 

disproportionate influence. The titratable molecules 21, 22, 23 and 24 are explicitly labeled 

in red (QM-optimization) and blue (QM-NBB).
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Figure 6. 
Comparison of the underlying implicit solvent free energies for conformations in the gas 

phase (gray) and in aqueous phase (turquoise) on the left side with the resulting QM-NBB 

results (red) on the right side. All data is based on the OLYP/DZP QM method with the 

SMD implicit solvent.
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Table 5

Detailed results for our QM/MM-NBB calculations using M06-2X/6-31G(d) with TIP3P solvent, with and 

without pKa corrections applied. Free energies reported in kcal·mol−1

without pKa corrections with pKa corrections Expt.

1 −22.05 ± 0.7 −23.62 ± 0.3

2 −3.87 ± 1.0 −2.49 ± 0.9

3 −5.83 ± 0.3 −4.78 ± 0.3

4 −5.69 ± 0.8 −4.45 ± 0.2

5 −5.69 ± 0.4 −5.33 ± 0.1

6 −5.22 ± 0.3 −5.26 ± 0.2

9 −10.00 ± 1.3 −8.24 ± 0.8

10 −6.89 ± 0.8 −6.24 ± 0.4

11 −7.88 ± 0.9 −7.78 ± 0.8

12 −4.64 ± 0.3 −4.44 ± 0.2

13 −6.00 ± 0.5 −5.03 ± 0.4

14 −5.54 ± 0.3 −4.09 ± 0.2

15 −6.38 ± 0.3 −4.51 ± 0.1

16 −4.44 ± 0.3 −3.20 ± 0.3

17 −4.87 ± 0.6 −2.53 ± 0.3

19 −4.43 ± 0.6 −3.78 ± 0.1

20 −2.61 ± 0.1 −2.78 ± 0.1

21 −9.31 ± 0.4 −9.31 ± 0.4 −7.63 ± 0.1

22 −3.87 ± 2.1 −6.18 ± 2.1 −6.78 ± 0.1

23 −6.12 ± 1.0 −6.77 ± 1.0 −9.34 ± 0.6

24 −5.56 ± 0.7 −6.87 ± 0.7 −7.43 ± 0.6

RMSD 1.54 ± 0.3 1.29 ± 0.2

T-S 0.81 0.86

τ 0.59 0.72

MdnSD −0.65 −1.05
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