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ABSTRACT Genetic pleiotropy is when a single gene influences more than one trait. Detecting pleiotropy and understanding its causes
can improve the biological understanding of a gene in multiple ways, yet current multivariate methods to evaluate pleiotropy test the
null hypothesis that none of the traits are associated with a variant; departures from the null could be driven by just one associated
trait. A formal test of pleiotropy should assume a null hypothesis that one or no traits are associated with a genetic variant. For the
special case of two traits, one can construct this null hypothesis based on the intersection-union (IU) test, which rejects the null
hypothesis only if the null hypotheses of no association for both traits are rejected. To allow for more than two traits, we developed a
new likelihood-ratio test for pleiotropy. We then extended the testing framework to a sequential approach to test the null hypothesis
that k1 1 traits are associated, given that the null of k traits are associated was rejected. This provides a formal testing framework to
determine the number of traits associated with a genetic variant, while accounting for correlations among the traits. By simulations, we
illustrate the type I error rate and power of our new methods; describe how they are influenced by sample size, the number of traits,
and the trait correlations; and apply the new methods to multivariate immune phenotypes in response to smallpox vaccination. Our
new approach provides a quantitative assessment of pleiotropy, enhancing current analytic practice.
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GENETIC pleiotropy iswhen a single gene influencesmore
than one trait. Detecting pleiotropy, and understanding

its causes, can improve the biological understanding of a
gene in multiple ways: (1) There is potential to expand
understanding of the medical impact of a gene, such as in
phenome-wide association studies (Denny et al. 2013); (2)
the pharmacologic genetic target could affect multiple traits
or diseases, allowing a drug developed for a disease to be
repurposed for other diseases or suggesting that a toxicity
should be monitored for multiple traits; and (3) joint analysis
of multiple traits can increase accuracy of phenotype predic-
tion (Maier et al. 2015). Yet, understanding pleiotropy can be
challenging. A gene can be associated with more than one
trait for many reasons, such as when a single genetic variant
directly influences multiple traits or when different variants
within a gene influence different traits. Alternatively, the as-
sociation of a gene with some of the traits can be indirect,

such as when a gene directly influences a trait, and that trait
directly influences a second trait; the gene and the second
trait are indirectly associated. The association of a gene with
multiple traits can also result from spurious associations. One
cause of spurious association is when subjects with more than
onedisease symptomaremore likely ascertained for a study than
if they had only one symptom—called Berkson’s bias (Berkson
1946). A second cause is misclassification between two similar
traits, a common problem for some psychiatric conditions. A
third cause is when a genetic marker is in linkage disequilibrium
with each of two causal loci (Gianola et al. 2015). These types of
biases, and a thorough review of pleiotropy with numerous ex-
amples, are nicely summarized elsewhere (Solovieff et al. 2013).
Despite the great deal of attention given to pleiotropy, most
statistical tests do not formally test pleiotropy. Rather, they test
the null hypothesis that no trait is associated with a variant;
rejecting this null could be due to just one associated trait, not
a situation of pleiotropy. The aim of this report is to provide a
formal statisticalmethod to assess pleiotropy to infer the number
of traits associated with a variant.

Statistical methods to evaluate pleiotropy have been de-
veloped from different angles, ranging from comparison of
univariate marginal associations of a genetic variant with
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multiple traits, to multivariate analyses with simultaneous
regression of all traits on a genetic variant, to reversed re-
gression of a genetic variant on all traits. A brief survey of
statistical methods for pleiotropy is provided here, with more
details provided elsewhere (Schriner 2012; Yang and Wang
2012; Solovieff et al. 2013; Zhang et al. 2014). Univariate
analyses are often based on comparison of variant-specific
P-values across multiple traits. Although simple and feasible
for meta-analyses, this approach ignores correlation among
the traits and is based on post hoc analyses. More formal
meta-analysis methods aggregate P-values to test whether
any traits are associated with a variant, yet a significant
association could be driven by just one trait. A slightly more
sophisticated approach, also based on summary P-values,
tests whether the distribution of P-values differs from the
null distribution of no associations beyond those already
detected (Cotsapas et al. 2011). Descriptions of additional
univariate methods are given elsewhere (Solovieff et al.
2013).

Multivariate methods have been popular for quantitative
traits. Although different statistical methods have been pro-
posed, some of them result in the same statistical tests. The
following three approaches to analyze quantitative traits re-
sult in the same F-statistic to test whether any of the traits are
associated with a genetic variant: (1) simultaneous regres-
sion of all traits on a single variant [for example, using the
statistical software R function lm(Y� g), where Y is a matrix
of traits and g a vector for a single genetic variant coded as 0,
1, 2 for the dose of the minor allele], (2) regression of
the minor allele dose on all traits (lm(g � Y)), and (3) canon-
ical correlation of Y with g [using either plink.multivariate
(Ferreira and Purcell 2009) or R code given in Appendix
A]. The regression of the dose of the minor allele on all traits
is a convenient approach, particularly if some of the traits are
binary. A slightly different approach is to account for the
categorical nature of the dose of the minor allele: Instead
of using linear regression, use ordinal logistic regression of
the dose on the traits [R MultiPhen package (O’Reilly et al.
2012)]. An advantage of this approach is that it allows for
binary traits, unlike most methods that assume traits are
quantitative with a multivariate normal distribution. How-
ever, score tests for generalized linear models, based on
estimating equations, have been developed as a way to simul-
taneously test multiple traits, some of which could be binary
(Xu and Pan 2015). An approach somewhat between univar-
iate and multivariate is based on reducing the dimension of
the multiple traits by principal components (PC) and using a
reduced set of PCs as either the dependent or the indepen-
dent variables in regression. A comparison of univariate and
multivariate approaches found that multivariate methods
based on multivariate normality {e.g., canonical correla-
tion, linear regression of traits on minor allele dose, re-
verse regression, MultiPhen, and Bayes methods [BIMBAM
(Stephens 2013) and SNPTEST (Marchini et al. 2007)]} all
had similar power and were generally more powerful than
univariate methods (Galesloot et al. 2014).

Thepoweradvantageofmultivariateoverunivariatemeth-
ods occurs when the direction of the residual correlation is
opposite from that of the genetic correlation induced by the
causal variant (Liu et al. 2009; Galesloot et al. 2014). In
addition to the methods discussed above, a few new ap-
proaches have been proposed, but have not yet been com-
pared with others. An interesting approach is to scale the
different traits by their standard deviation and then assume
that the effect of a single-nucleotide polymorphism (SNP) is
constant across all traits to construct a test of association with
1 d.f.—so-called “scaled marginal models” (Roy et al. 2003;
Schifano et al. 2013). Finally, an approach based on kernel
machine regression extended the sequential kernel associa-
tion test (Wu et al. 2010) to multiple traits, providing a si-
multaneous test of multiple traits with multiple genetic
variants in a genomic region (Maity et al. 2012).

A limitation of all current approaches is that they test
whether any traits are associated with a genetic variant,
and small P-values could be driven by the association of the
genetic variant with a single trait. Hence, post hoc analyses
are required to interpret the possibility of pleiotropy. This can
be quite challenging when scaling up to a large number of
genetic variants. Another significant challenge is to distin-
guish direct from indirect associations. When there is evi-
dence that a secondary trait is associated with a genetic
marker, and one wishes to distinguish whether the same ge-
netic marker has a direct effect on a primary trait vs. an in-
direct effect, with the secondary trait acting as a mediator
between the genetic marker and the primary trait, ideas from
causal modeling have proved useful. For example, disentan-
gling direct from indirect effects can be achieved by regress-
ing the primary trait on the secondary trait, the genetic
marker, and all other covariates shared between the primary
and secondary traits. Results from this regression can be used
to construct an adjusted primary trait that can then be used in

Figure 1 Example to illustrate why the pleiotropy LRT has an approxi-
mate x2

p21 distribution when only one bj differs from zero. For this ex-
ample, b1 6¼ 0 and bj 5 0 ðj 6¼ iÞ: Then, t1 will be the minimum because
it measures the sum of squared differences of the fitted values for the
unconstrained ordinary least-squares model and the constrained model,
which in this case is correctly specified. Because all other tjðj 6¼ 1Þ repre-
sent misspecified models, their values can become arbitrarily large as n
increases. Hence, the correctly specified model will have the smallest
values of tj : And the distribution of tj for a correctly specified model is
x2
p21:
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subsequent analyses (Vansteelandt et al. 2009). Another ap-
proach is based on Bayesianmethods to partition associations
into unassociated, indirect, and direct associations. However,
it is difficult to accurately classify the type of causal associa-
tion, particularly when residual correlations are large (e.g., it
is difficult to discriminate between direct and indirect effects)
(Stephens 2013).

The above methods are used to test whether a single
genetic variant is associatedwithmultiple traits.When scaling
up to genome-wide data, it has been useful to use all the
genetic markers to estimate the marker-predicted heritability
of a trait. This has recently been extended tomultiple traits to
estimate pleiotropy as the genetic correlation of multiple
traits. Mixed models are used to partition the phenotype
correlations into genetic correlation (i.e., correlation of poly-
genic total genetic values) and environmental correlation
(Korte et al. 2012; Lee et al. 2012; Zhou and Stephens
2014; Furlotte and Eskin 2015). Although this approach does
not evaluate whether particular SNPs or particular genomic
regions are the cause for phenotype correlations, it has the
potential to guide design of studies that focus on pleiotropy.
For example, the correlation of two phenotypes can be par-
titioned as rP 5 h1h2rg 1 e1e2re; where h2i is the heritability
of trait i, e2i 5 12 h2i ; rg is the genetic correlation, and re is
the environmental correlation (Falconer and Mackay 1996,
p. 314). Heritability in the narrow sense is the percentage
of the variance of the trait explained by additive genetic fac-
tors. This illustrates that if both traits have low heritability,
the phenotype correlation is primarily due to environmental
correlation (and nonadditive genetic effects that are missed
by rg), implying that large sample sizes would be needed to
test pleiotropy when there are small genetic effects.

We have emphasized that current methods to evaluate
pleiotropy do not perform a formal test of the null hypothesis
of no pleiotropy. For the special case of two traits, one can
construct a null hypothesis of no pleiotropy based on the
intersection-union (IU) test (Silvapulle andSen2004). Consider
the regression equation yj 5 bo;j 1b1;jg1 ej; where yj is the
vector of values for the jth trait, bo;j is the intercept, b1;i is the
slope association parameter of interest, g is the vector of doses
for the minor allele, and ej is a vector of residuals. The union
null hypothesis is H0 :b1;1 5 0 or b1;2 5 0; and the intersec-
tion alternative hypothesis is H1 : b1;1 6¼ 0 and b1;2 6¼ 0: Test-
ing each b1;i at a desired type I error, say a 5 0:05; the null is
rejected only if both tests reject. There is no need to correct
for multiple testing, because the type I error rate is not
inflated by this procedure. But this approach can be conser-
vative, particularly if the two tests are uncorrelated. The IU
test can be extended to p. 2 traits, but rejection of the null
would occur only when all p tests are significant at the spec-
ified a: For our situation, we wish to reject the null if at least
two of the p tests reject. One approach would be to apply the
IU test to each pair of traits and reject the null if at least one
of the IU tests rejects. But this would entail many pairs of
tests, and for this situation one would need to correct for
testing multiple pairs. Bonferroni correction would lead to
an overly conservative test.

Because of current limitations, we developed a likelihood-
ratio test for testing the null hypothesis of no pleiotropy—the
null hypothesis that one or no traits are associated with a
genetic variant vs. the alternative hypothesis that two or
more traits are associated. We then extended the testing
framework to test the null hypothesis that k or fewer traits
are associated vs. the alternative hypothesis that more than k

Table 1 Empirical type I error rate for common correlation
structure when b1 5 1 and all other bj 5 0 ðj 6¼ 1Þ; based on
multivariate normal distribution

Sample size No. traits
Trait

correlation
Nominal

type I error rate

0.05 0.01
100 4 0.2 0.072 0.020

0.5 0.070 0.016
0.8 0.066 0.014

10 0.2 0.105 0.036
0.5 0.092 0.032
0.8 0.094 0.029

500 4 0.2 0.056 0.017
0.5 0.058 0.011
0.8 0.058 0.009

10 0.2 0.061 0.010
0.5 0.056 0.011
0.8 0.068 0.019

1000 4 0.2 0.052 0.012
0.5 0.058 0.008
0.8 0.051 0.010

10 0.2 0.057 0.012
0.5 0.052 0.010
0.8 0.046 0.007

Underlined values are for when empirical type I error exceeds the upper 95% C.I.

Table 2 Empirical type I error rate for random correlation
structure when b1 5 1 and all other bj 5 0 ðj 6¼ 1Þ; based on
multivariate normal distribution

Sample size No. traits
Trait

correlation
Nominal type I

error rate

0.05 0.01
100 4 0–0.2 0.066 0.011

0.2–0.5 0.065 0.013
0.5–0.8 0.055 0.011

10 0–0.2 0.077 0.018
0.2–0.5 0.106 0.029
0.5–0.8 0.112 0.039

500 4 0–0.2 0.065 0.007
0.2–0.5 0.049 0.015
0.5–0.8 0.047 0.008

10 0–0.2 0.049 0.011
0.2–0.5 0.067 0.016
0.5–0.8 0.053 0.012

1000 4 0–0.2 0.042 0.007
0.2–0.5 0.055 0.009
0.5–0.8 0.043 0.009

10 0–0.2 0.072 0.012
0.2–0.5 0.056 0.012
0.5–0.8 0.056 0.011

Underlined values are for when empirical type I error exceeds the upper 95% C.I.
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traits are associated (k 5 0; 1; :::p2 1). By this generaliza-
tion, we propose sequential testing to test the null hypoth-
esis that k11 traits are associated, given that the null
hypothesis of k traits are associated was rejected. This se-
quential approach provides a refined approach to evaluate
how many traits, and which traits, are associated with a
genetic variant, accounting for correlation among the traits
and possibly adjusting for covariates that could differ across
the traits.

Methods

Likelihood-ratio test of pleiotropy: null of one or
fewer traits

Suppose that p traits are measured on each of n subjects. Let
y9j 5 ðyj1; :::; yjnÞ denote the vector of measures on the jth trait
for n subjects. Assume that each trait is modeled by linear
regression, denoted

yj 5 xbj 1 ej;

where x is the dose of the minor allele for n subjects. Also
assume that all yj and x are centered, so intercepts can be
ignored. For simplicity of presentation, we ignore adjusting
covariates, but our methods are general and allow for trait-
specific covariates. By stacking vectors, we can express the
model as y 5 Xb1 e; where y9 5 ðy91; :::; y9pÞ; X 5 diagðxÞ;
b9 5 ðb91; :::;b9pÞ; and e9 5 ðe91; :::; e9pÞ: The error term
e � Nð0;VÞ; where V 5 S5I; I is an n3 n identity matrix,
5 is the Kronecker product, and the p3 p matrix S is the
covariance matrix for the within-subject covariances of the
errors. Under this model, the log-likelihood function of ðb;SÞ
is given by

lnðb;SÞ5 2
n
2
log jS j 2 1

2
ðy2XbÞ9

�
S215I

�
ðy2XbÞ:

Suppose that the covariance S is known; otherwise, we can
obtain a consistent estimate by maximum-likelihood estima-
tion. For example, we can estimate b by using methods from
seemingly unrelated regression, an approach called feasible
generalized least squares. Separate ordinary linear regression
for each trait can be used to obtain residuals to estimate bS; and
then this is used in the generalized least-squares (GLS) solution,

bb5
h
X9
�bS21

5I
�
X
i21

X9
�bS21

5I
�
y:

Note that the feasible generalized least squares is asymptot-
ically equivalent to maximum-likelihood estimation (MLE).
There are two special cases when separate ordinary regres-
sions and GLS result in the same solution: (1) when S is a
diagonal matrix and (2) when the regressors in X j are the
same for all traits. Hence, for the case where each trait is
regressed on the same x, without additional adjusting cova-
riates, separate ordinary least-squares regression and GLS
give the same results. The covariance matrix of the residuals
then provides a consistent estimate of S: Then, the Cholesky
decompositon ofV isV 5 V1=2V1=2; whereV1=2 5 S1=25I
and V21=2 5 S21=25I: We then decorrelate the data by
~y 5 V21=2y and ~X 5 V21=2X; to transform the model to
~y 5 ~Xb1~e; where ~e 5 V21=2e � Nð0; InpÞ; which has log-
likelihood lnðbÞ 5 2 ð1=2Þð~y2 ~XbÞ9ð~y2 ~XbÞ: Based on this
log likelihood, we derived the likelihood-ratio test (LRT) to
test the null hypothesis of no pleiotropy: One or no traits
are associated with a genetic variant. Below we outline
how to compute the LRT and provide details of the deriva-
tions in Appendix B.

Table 3 Empirical type I error rate for common correlation
structure when all bj 5 0; based on multivariate normal
distribution

Sample size No. traits
Trait

correlation
Nominal type I

error rate

0.05 0.01
100 4 0.2 0.005 0.002

0.5 0.006 0.001
0.8 0.009 0.002

10 0.2 0.015 0
0.5 0.011 0
0.8 0.014 0.003

500 4 0.2 0.003 0
0.5 0.005 0.001
0.8 0.011 0.001

10 0.2 0.005 0.001
0.5 0.003 0.001
0.8 0.009 0.001

1000 4 0.2 0.005 0
0.5 0.008 0
0.8 0.004 0.001

10 0.2 0.011 0.002
0.5 0.012 0
0.8 0.009 0.002

Table 4 Empirical type I error rate for random correlation
structure when all bj 5 0; based on multivariate normal
distribution

Sample size No. traits
Trait

correlation
Nominal type I

error rate

0.05 0.01
100 4 0–0.2 0.005 0

0.2–0.5 0.012 0.001
0.5–0.8 0.014 0.001

10 0–0.2 0.018 0.002
0.2–0.5 0.01 0.002
0.5–0.8 0.029 0.004

500 4 0–0.2 0.004 0
0.2–0.5 0.009 0
0.5–0.8 0.007 0.001

10 0–0.2 0.009 0
0.2–0.5 0.009 0.001
0.5–0.8 0.019 0.005

1000 4 0–0.2 0.006 0.001
0.2–0.5 0.006 0
0.5–0.8 0.004 0

10 0–0.2 0.01 0.002
0.2–0.5 0.01 0
0.5–0.8 0.01 0
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The null hypothesis of no pleiotropy can be expressed as

H0 : Of the parameters b1;:::;bp; there exists at most

one that is nonzero 4H1 : otherwise:

The null hypothesis is equivalent to testingwhether one of the
following p1 1 tests holds,

Hk0 : bk 6¼ 0;bj5 0ð j 6¼ kÞ;

for k 5 0; . . . ; p: Note that H00 represents all bk 5 0
ðk 5 1; . . . ; pÞ; while for k.0; Hk0 allows bk 6¼ 0 while all
other bj 5 0 ð j 6¼ kÞ: To represent these p 1 1 hypotheses,
we use Hk0   : Vkb 5 0: Let V0 be a matrix such that
H00 : V0b 5 0 tests whether all bj 5 0: This is the usual mul-
tivariate test. In this case, V0 is the identity matrix of dimen-
sion p: To construct Vk ðk. 0Þ; create an identity matrix of
dimension p and then remove the kth row. This results in
Vkb 5 ðb1; :::;bk21;bk11bpÞ9: Then, the null hypothesis is
equivalent to

H0 : There exists one of Hk0 : Vkb5 0;  for k5 0; . . . ; p:

To construct the LRT, center y and x about their means, use
ordinary least squares to estimate b; use the residuals to
estimate S; and then use S to decorrelate y and X according
to ~y 5 V21=2y; ~X 5 V21=2X; where V21=2 5 S21=25I:
Then, for each k 5 0; . . . ; p; compute

tk5 ~y9~X
�
~X9~X

�21
Vk

"
Vk

�
~X9~X

�21
V9k

#21

Vk

�
~X9~X

�21
~X9~y:

An alternative way to express tk is tk 5
��~Xbn2~XbVk

��2; the
squared l2 norm between the fitted values based on the ordi-

nary least-squares estimates, bn; and the fitted values based
on the constrained estimates, bVk

(see Appendix B).
As shown in Appendix B, the LRT is

T5 min
k50;...;p

tk:

Because tj is based on the sum of squared differences of the
fitted values between the unconstrained and constrained
models, for a correctly specified constrained model, tj has a
x2 distribution. But the distribution of T is more complicated.
The statistic T has two different asymptotic distributions
depending on when b ¼ 0 or not. When b 5 0; the asymp-
totic distribution of each tj is a x2 distribution, yet the distri-
bution of the minimum of them, T; is unknown. Alternatively,
when b 5 0; we can use the commonly used x2 test for the
null hypothesis that all bj 5 0: This motivates us to do the test
by two stages. The first stage is to just test H00 : b 5 0; using
the statistic t0 � x2

p as the test statistic, so we reject H00 if
t0 . x2

pðaÞ; where x2
pðaÞ is the 12a quantile of the x2 distri-

bution with p d.f. If H00 cannot be rejected, then the H0 of no
pleiotropy cannot be rejected. If H00 is rejected, we turn to the
second stage to test the null hypothesis that one Hk0 holds for
k 5 1; . . . ; p: For this we ignore t0 and use the test statistic

T1 5 min
k5 1;...;p

tk:

Since T1 � x2
p21; we reject the null hypothesis that only one

Hk0 holds for k 5 1; . . . ; p if T1 . x2
p21ðaÞ: Then, the null hy-

pothesis H0 of no pleiotropy is rejected only if both H00 is
rejected and the null hypothesis that only one Hk0 holds is
rejected ðk 5 1; . . . ; pÞ:

To provide intuition why T1 has a large sample x2 distri-
bution with (p 2 1) d.f. when only one bj differs from
zero, while all others equal zero, we present an example in

Table 5 Empirical type I error rate when b1 5 1 and all other
bj 5 0 ðj 6¼ 1Þ; based on multivariate t distribution with 3 d.f.,
with common correlation structure

Sample size No. traits
Trait

correlation
Nominal type I

error rate

0.05 0.01
100 4 0.2 0.042 0.011

0.5 0.067 0.019
0.8 0.057 0.015

10 0.2 0.088 0.018
0.5 0.104 0.028
0.8 0.094 0.030

500 4 0.2 0.059 0.011
0.5 0.038 0.007
0.8 0.043 0.009

10 0.2 0.041 0.016
0.5 0.059 0.021
0.8 0.050 0.010

1000 4 0.2 0.052 0.006
0.5 0.047 0.006
0.8 0.054 0.009

10 0.2 0.054 0.010
0.5 0.058 0.015
0.8 0.055 0.016

Underlined values are for when empirical type I error exceeds the upper 95% C.I.

Table 6 Empirical type I error rate when all bj 5 0; based on
multivariate t distribution with 3 d.f., with common correlation
structure

Sample size No. traits
Trait

correlation
Nominal type I

error rate

0.05 0.01
100 4 0.2 0.009 0

0.5 0.007 0
0.8 0.011 0.002

10 0.2 0.015 0.001
0.5 0.015 0.002
0.8 0.013 0.003

500 4 0.2 0.003 0
0.5 0.005 0
0.8 0.005 0

10 0.2 0.009 0.001
0.5 0.008 0
0.8 0.008 0.001

1000 4 0.2 0.004 0.001
0.5 0.009 0.001
0.8 0.007 0.001

10 0.2 0.011 0.001
0.5 0.002 0
0.8 0.011 0.001
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Figure 1. In this example b1 6¼ 0 and bj 5 0 ð j 6¼ 1Þ: As
shown in Appendix B (Corollary 1), the distribution of tj for
a correctly specified model is x2

p21: In contrast, the incorrect
models result in arbitrarily large values of tj (see Corollary 2
in Appendix B). This means that t1 will be minimum and
T 5 t1 � x2

p21:

General likelihood-ratio sequential testing: null of K
associated traits

The above sequential approach is based on testing the null
hypothesis H00 : b 5 0; and then if this rejects, to turn to the
second stage to test the null hypothesis that only one
Hk0 : bk 6¼ 0;bj 5 0 ð j 6¼ kÞ holds for k 5 1; . . . ; p: The
advantage of this approach is that if H00 is rejected and the
null hypothesis that only one Hk0 holds is accepted, we can
conclude that there is only one nonzero b: But if the null
hypothesis that only one Hk0 holds is rejected, we cannot
make a firm conclusion about the number of traits associated
with a genetic variant. To provide a more rigorous testing
framework, we extended our approach to sequentially test
the null hypothesis that a specified number of b’s are non-
zero. So, if the null hypothesis that k b’s are nonzero is
rejected, but the null hypothesis that k1 1 b’s are nonzero
is accepted, we can conclude there are k11 traits associated
with a genetic variant. Furthermore, because the sequential
testing is based on a likelihood-ratio framework, evaluating
all possible combinations of nonzero b’s, the combination
that fails to reject the null hypothesis provides evidence of
which traits are associated with the genetic variant. The de-

tails of the statistical procedures of this general sequential
testing method are provided in Appendix B, as well as a proof
that the type I error is controlled. In summary, this general
sequential procedure provides a formal way to determine not
only they number of traits associated with a genetic variant,
but also which traits are associated.

Simulations

To evaluate the adequacy of the x2 distribution for the LRT,
we performed simulations. For the pleiotropy null, we per-
formed two sets of simulations. The first one assumed that all
bj 5 0; the usual null for multivariate data. The second one
fixed b1 5 1 and all other bj 5 0 ð j 5 2; :::; pÞ: The value of
b1 5 1 was chosen because the power for detecting this mar-
ginal effect size was very large for our setup. We assumed
three different sample sizes, n 5 100; 500; 1000; and two
different values of p 5 4; 10: The small sample size of
n 5 100was used to evaluate the adequacy of our asymptotic
derivations for small samples. The variance of the errors was
assumed to be 1, and the covariance was assumed to be either
a constant r for all pairs of traits (i.e., exchangeable correla-
tion structure) or a range of covariances. For the range of
covariances, we randomly chose covariances from a specified
range, assuming a uniform distribution of the covariances.
With a specified covariance structure, we simulated the ran-
dom errors from either amultivariate normal distribution or a
multivariate t distribution with 3 d.f., to evaluate the impact
of heavy-tailed distributions. For all simulations, a single SNP
was simulated, assuming a minor allele frequency of 0.2.

To evaluate the power of our proposed LRT for pleiotropy,
we simulated10 traits fromamultivariate normal distribution
with variances of 1 and equal covariances among the traits, set
at r 5 0:2; 0:5; or0:8; for a total of n ¼ 500 subjects. The
number of traits associated with the SNP ranged over two,
three, or five. The marginal effect of a trait was set at
b 5 0:25: This effect size explains 2% of the variation of a
trait, and there is 90% power to detect a marginal effect of this
size, using nominal a 5 0:05:We also set themarginal effect to
b 5 0:2; which corresponds to an explained 1.2% of the varia-
tion of a trait, and there is 70%power to detect amarginal effect
of this size. All simulations were repeated 1000 times.

Data application

Our newly developed LRT for pleiotropywas applied to a data
set that has 10 immunologic phenotypes measured in re-
sponse to primary smallpox vaccination. These phenotypes
included measures of humoral immunity (neutralizing anti-
body titer) and cellular immunity [two separate IFNg
ELISPOT assays and cytokine secretion upon viral stimulation
as measured by ELISA (IL-1b, IL-2, IL-6, IL-12p40, IFNa,
IFNg, TNFa)]. All 645 subjects included in the presented
analyses were of Caucasian ancestry. All subjects provided
informed consent for use of their samples and this study
was approved by the Mayo Clinic Institutional Review Board.
A genome-wide association of the 10 phenotypes was per-
formed, with each phenotype adjusted for relevant covariates

Figure 2 Quantile–quantile plots of P-values to test the null hypothesis
of no pleiotropy. Sample size was 1000 with four equally correlated
traits ðr 5 0:2 or 0:8Þ: All but one b was zero; the nonzero b was
chosen such that there was either 30% or 90% power to detect its
marginal effect using a 5 0:001: A total of 10,000 simulations were
performed.
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(i.e., P-value ,0.10 for association of a covariate with the
phenotype, including eigenvectors to adjust for potential
population stratification). Details of the study can be found
in prior published reports (Kennedy et al. 2012a,b;
Ovsyannikova et al. 2012a,b, 2013, 2014).

Data availability

Software implementing the proposed tests for pleiotropy for
quantitative traits is available as anRpackage called “pleio” in
the Comprehensive R ArchiveNetwork (https://cran.r-project.
org/web/packages/pleio/index.html).

Results

Simulation results

The type I error rates based on simulations are presented in
Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6. For
all simulations, we show results from the two-stage test (us-
ing t0 for stage 1 and T1 5 minftk; k 5 1; :::; pg for stage 2),
but in all cases, the results from the two-stage test were
identical to those from the compound pleiotropy test
T 5 minftk; k 5 0; :::; pg. The results for when only one bj
differs from zero (Table 1, Table 2, and Table 5) illustrate
that the LRT can have inflated type I error rates for small
sample sizes ðn 5 100Þ; with more extreme inflation as p in-
creased from 4 to 10. In contrast, for moderate to large sam-
ple sizes ðn 5 500; 1000Þ; the type I error rates were close to
the nominal level, with only an occasional slight inflation.
The inflated type I error rate for small sample sizes seems
to be caused by the need to estimate the covariance matrix
of the residuals. When we simulated errors that were in-
dependent and used the identity matrix for the residual
correlations, the simulated type I error rates were very close
to the nominal rates for all sample sizes. In contrast, when
all bj were zero (Table 3, Table 4, and Table 6), the LRT has
conservative type I error rates. This, however, is not of con-
cern, because controlling the type I error rate when only
one bj differs from zero is the major error that should be con-
trolled when testing pleiotropy. These results were consistent

for different amounts and patterns of residual correlations and
for multivariate normal and multivariate t distributions.

To further evaluate the adequacy of our asymptotic ap-
proximations for large samples, we performed 10,000 simu-
lations for 1000 subjects and four traits that had a common
correlation structure. All but one b was zero; the nonzero
b was chosen such that there was either 90% or 30% power
to detect its marginal effect using a 5 0:001: This scenario
reflects modern large-scale genomic studies that use more
stringent significance thresholds. The quantile–quantile plots
in Figure 2 show that the asymptotic x2 distribution to test
pleiotropy provides adequate P-values over the entire range of
P-values for when the marginal effect of one b is small (power
of 30%) or large (power of 90%) and for when the correlation
of the traits is small ðr 5 0:2Þ or large ðr 5 0:8Þ:

The simulation-based power is illustrated in Table 7 and
Table 8. The general patterns show that the power to detect
two or more associated traits increases with the number of
truly associated traits, the effect size of each trait, and larger
residual correlations among the traits.

To provide insights into the properties of our proposed
sequential testing of multiple traits, we simulated six traits
with a common correlation structure such that three of the
traits were associated with a genetic variant (i.e., three true
nonzero b’s). The effect sizes of the associated traits were
chosen to havemarginal power of 0.3, 0.7, or 0.9 for a sample
size of 1000 subjects. These marginal effect sizes correspond
to 0.2%, 0.6%, and 1.0% explained variation of the marginal
trait. A total of 1000 simulations were performed. The results
are presented in Table 9. The frequency of accepting the null
hypothesis that all b’s ¼ 0 (e.g., no b’s selected to be associ-
ated with the genetic variant) ranged from 0.646 for when
power was 0.3 to 0.015 when power was 0.9—not surprising
that greater power resulted in greater frequency of selecting
at least one b to be nonzero. Table 9 also presents the fre-
quency for which the three true nonzero b’s were selected,
conditional on at least one of the six b’s was selected. For
weak marginal power (e.g., power of 0.3), the frequency of
selecting all three nonzero b’s was small (0.034–0.213,

Table 8 Power to detect pleiotropy when associated traits have
b 5 0:2 (explain 1.2% trait variation; power 5 70% for marginal
effect)

No. associated
traits ðb 5 0:2Þ

Trait
correlation

Nominal type I
error rate

0.05 0.01
2 0.2 0.220 0.069

0.5 0.393 0.165
0.8 0.964 0.850

3 0.2 0.494 0.255
0.5 0.715 0.478
0.8 1.000 0.991

5 0.2 0.842 0.636
0.5 0.907 0.750
0.8 1.000 1.000

Shown is a multivariate normal distribution with equal correlation structure, for a
sample size of 500 subjects and minor allele frequency of genetic variant set to
0.20.

Table 7 Power to detect pleiotropy when associated traits have
b 5 0:25 (explain 2% trait variation; power 5 90% for marginal
effect)

No. associated
traits ðb 5 0:25Þ

Trait
correlation

Nominal type I
error rate

0.05 0.01
2 0.2 0.503 0.237

0.5 0.801 0.581
0.8 0.971 0.900

3 0.2 0.859 0.677
0.5 0.956 0.858
0.8 0.999 0.998

5 0.2 0.980 0.928
0.5 0.999 0.985
0.8 1.000 1.000

Shown is a multivariate normal distribution with equal correlation structure, for a
sample size of 500 subjects and minor allele frequency of genetic variant set to 0.20.
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depending on the trait correlation). Yet the frequency of
selecting at least one of the three nonzero b’s was reasonable
(0.747–0.862). The frequency of correctly selecting all three
nonzero b’s increased as either marginal power increased or
trait correlation increased. For example, for marginal power
of 0.7, the frequency of selecting all three nonzero b’s was
0.179 for weak correlation (r ¼ 0.2), and was 0.851 for
strong correlation (r ¼ 0.8). For marginal power of 0.9, the
frequency of selecting all three nonzero b’s was 0.472 for
weak correlation (r ¼ 0.2), and was 0.956 for strong correla-
tion (r ¼ 0.8). In contrast to selecting true nonzero b’s, we also
present in Table 9 the frequency of wrongly selecting b’s that
are truly zero. Not surprisingly, when marginal power is weak
(power of 0.3), if at least one b is selected, there is a significant
chance of wrongly selecting a true-zero b (e.g., frequency of
0.209 when r ¼ 0.2). This type of error decreased as the
marginal power for traits increased and the trait correlation
increased. For example, when power was 0.9 and trait corre-
lation was r ¼ 0.8, the frequency of selecting one true-zero b

was 0.034, approaching the nominal type I error rate of 0.05.
Table 9 illustrates that although there is a chance of wrongly
selecting one true-zero b; the frequency of selectingmore than
one true-zero b was small.

Data application results

Based on the traditionalmultivariate regression of all 10 traits
on each SNP, we found a strong association of at least one of
the traits with SNPs in a region on chromosome 5 (see Figure
3). Figure 4 illustrates the traditional multivariate test ðt0Þ in
a small region of chromosome 5 (left panel) and the LRT of
pleiotropy in the same region (right panel). The test for plei-
otropy provides strong evidence that the signal of association
was driven by a single phenotype. This is confirmed qualita-
tively in Figure 5, which shows the individual marginal trait
associations for the chromosome 5 region. Although the in-
dividual marginal associations in Figure 5 give the visual
impression that only one trait is strongly associated with
the chromosome 5 SNPs, the LRT of pleiotropy provides a
formal statistical test that accounts for the correlations
among the traits.

Discussion

Genetic pleiotropy has beenof scientific interest since the time
of Gregor Mendel, as he described different traits in peas
controlledbygenes, suchaspeacoat colorand texture, colorof
flowers, and whether there were axial spots. In current re-
search, understanding pleiotropy can aid the understanding
of complex biological mechanisms of genes (as shown in our
vaccine response data), as well as aid the development of
pharmacologic andvaccine targets. Yet the statisticalmethods
to assess pleiotropy have resorted to ad hoc comparison of
univariate statistical tests or multivariate methods that test
the null hypothesis of no trait associations. Because a formal
statistical test of pleiotropy was lacking, we developed a
novel LRT statistic. The statistic is easy to compute, basedTa
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on well-known linear regression methods for quantitative
traits. Our simulations show that the LRT closely follows a
x2 distribution when only one trait is associated with a ge-
netic variant and that the LRT tends to be conservative
when no traits are associated. We proposed a sequential
testing procedure, where the null hypothesis of no associ-
ated traits could be tested first (using standard multivariate
regression methods) and, if significant, be followed by a
test of whether only one trait is associated. If the test of
only one associated trait rejects, we proposed sequential
testing the null of j associated traits ( j ¼ 2, . . ., p2 1), until
the sequential test fails to reject the null hypothesis. This
approach provides a way to assess the number of traits
associated with a genetic variant, accounting for the corre-
lations among the traits. A limitation of our approach, and
most other methods for associations of genetic variants with
multiple traits, is that it has limited power when an allele is
rare. An alternative approach is to compare the similarity of
multiple traits with the similarity of rare-variant genotypes
across a genetic region, for pairs of subjects (Broadaway
et al. 2016). The benefit of this approach is balanced with
the limitation of not knowing which genotypes are associ-
ated with which traits. Our proposed sequential testing
might provide a worthy follow-up procedure if some vari-
ants are not too rare.

Although our proposed methods assumed the subjects are
independent, it is straightforward to extend our approach to
pedigree data. To do so, the variance matrix of residuals for
independent subjects, VðeÞ 5 ðS5IÞ;would be replacedwith
VðeÞ 5 ðS5KÞ: The matrix K contains diagonal elements

Kii 5 11 hi; where hi is the inbreeding coefficient for subject
i, and off-diagonal elements Kij 5 2uij: The parameter uij is
the kinship coefficient between individuals i and j, the prob-
ability that a randomly chosen allele at a given locus from
individual i is identical by descent to a randomly chosen allele
from individual j, conditional on their ancestral relationship.
For subjects from different pedigrees, uij 5 0; so K can be
structured as a block-diagonal matrix, with diagonal block
Ki for the ith pedigree. With this adjustment, our methods
can be used for pedigree data or for data with population
structure where matrix K is an estimate of genetic relation-
ships (Schaid et al. 2013).

Application of our new approach to a study of immune
phenotypes in response to smallpox vaccination strongly

Figure 3 Manhattan plot of the multivariate regression of 10 traits on each SNP, using statistic t0; to test whether any of the traits are associated with
an SNP. The upper red horizontal line corresponds to a P-value of 531028 and the lower blue line to a P-value of 1025:

Figure 4 Zoomed-in region of chromosome 5, comparing the tradi-
tional multivariate regression of 10 traits on each SNP (left) with the
pleiotropy LRT for the same traits and region (right).
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suggests that only 1 of 10 correlated traits is statistically
associated with SNPs in a region on chromosome 5. The
benefit of this type of analysis is that it provides strong
guidance on follow-up functional studies for genome-wide
association studies withmultiple traits. In our case, it allowed
investigators to focus on the single immunologic trait truly
associated with the chromosome 5 SNPs, rather than con-
ducting labor-intensive, expensive, and time-consuming ex-
periments on unrelated immune response traits.

We recognize that our proposed LRT depends on the
assumption that residuals have a multivariate normal distri-
bution. Our simulations with a multivariate t distribution
(3 d.f.) suggest that the LRT is robust to heavy-tailed distri-
butions. To ensure robustness with the traditional multivar-
iate regression, it is common practice to transform the data to
have at least normally distributed marginal distributions,
such as use of normal quantile transformation. This is a rea-
sonable approach for our proposed LRT.

A limitation of our method is that each of the traits is
assumed tobequantitative. If all traits arebinary, or if there is a
mixtureof quantitative andbinary traits, then thedependence
of the LRT on an assumed likelihood would need to be
reconsidered. One approach is to consider a general multi-
variate exponential family of models (Prentice and Zhao
1991; Zhao et al. 1992; Sammel et al. 1997). Another ap-
proach would be to consider the reverse regression of an
SNP dose on all traits, like the ordinal logistic MultiPhen
approach of O’Reilly et al. (2012), yet develop an LRT for

pleiotropy whereby one of the b’s is allowed to be uncon-
strained under the null. An alternative approach that we
are developing is based on generalized linear models and
generalized estimating equations. The theoretical underpin-
nings of these alternate approaches, and their computational
challenges, are topics of future research.
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Appendices

Appendix A

R code to compute F-statistic for canonical correlation of matrix Y with vector x.
library(CCA)
cc.fit ,- cc(Y,x)
cc.fstat ,- function(cc.fit){
rho ,- cc.fit$cor
lambda ,- 1 - rhô 2
dimx ,- max(dim(cc.fit$xcoef))
dimy ,- max(dim(cc.fit$ycoef))
k ,- max(c(dimx, dimy))
n ,- nrow(Y)
fstat ,- ((1-lambda)/lambda) * ((n-k-1)/k)
pval ,- 1-pf(fstat, k, n-k-1, ncp¼0)
return(list(fstat¼fstat, pval¼pval))
}

Appendix B: Hypothesis Tests for Linear Model

Notation and model

Based on the regression model described in the main text, suppose that p traits are measured on each of n subjects, with
y9j 5 ðyj1; :::; yjnÞ the vector of measures on the jth trait for n subjects, and stack the vectors as y9 5 ðy91; :::; y9pÞ: Let X 5 diagðxÞ;
where x is a vector of length n. We assume that y and x are centered on their means. We can express the model as y 5 Xb1 e;

where e9 5 ðe91; :::; e9pÞ: The error term e � Nð0;VÞ; where V 5 S5I and the p3 p matrix S is the covariance matrix for the
within-subject covariances of the errors. Then, the Cholesky decompositon of V is V 5 V1=2V1=2; where V1=2 5 S1=25I
and V21=2 5 S21=25I: Using ~y 5 V21=2y; ~X 5 V21=2X; the model can transform to independent standard normal random
variables, ~y 5 ~Xb1~e; where ~e 5 S21=2

e � Nð0; InpÞ; and with log likelihood lnðbÞ5 2 ð1=2Þð~y2~XbÞ9ð~y2 ~XbÞ:

Theorem 1. Let V be a k3 p matrix of rank k ðk# pÞ: Then the minimizer of
��~y2~Xb

��2 under the constraint Vb 5 0 is

bV 5bn2b*
V ;

where bn 5 ð ~X9~XÞ21 ~X9~y is the ordinary least-squares (OLS) estimate and

b*
V 5

�
~X9~X

�21
V9

"
V
�
~X9~X

�21
V9

#21

V
�
~X9~X

�21
~X9~y:

Furthermore, ��~y2~XbV
��2 5 ��~y2~Xbn

��2 1 ��~Xb*
V

��2: (B1)

Proof. Denote b* 5 bn2b: Note that��~y2~Xb
��2 5  

��~y2~Xbn1~Xðbn2bÞ��25k~y2Xbnk2 1b9* ~X9~Xb  *1   2
�
~y2~Xbn

�
9~Xb  *5

��~y2~Xbn
��21b9  * ~X9~Xb  *:

The last above step results from 2ð~y2~XbnÞ9~Xb* 5 0; because ~y~X 5 b9n ~X9~X:
Under the constraint Vb 5 0; Vb* 5 Vbn: Applying the Lagrange multiplier method, we minimize

Q
�
b*; l

�
5

��~y2~Xbn
��21b* ~X9~Xb*1   2l

�
Vb* 2Vbn

�
:

By taking the derivative of Qwith respect to b and l;we obtain the solution b*
V 5 ð ~X9~XÞ21V9½Vð ~X9~XÞ21V9�21Vð ~X9~XÞ21 ~X9~y and

the estimate of b is bV 5 bn 2b*
V :

Therefore, we have
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��~y2~XbV
��2 5��~y2~Xbn

��21b*
V9

~X9~Xb*
V :

This completes the Proof.

Remark. Equation B1 illustrates that the residual sums of squares (ssq) for the constrained model
���~y2~XbV

��2� are

partitioned into two parts: (1) the ssq for the OLS fit
���~y2~Xbn

��2� and (2) the sum of squared differences of the fitted values

for the OLS model and the constrained model
���~Xb*

V

��2 5
��~Xbn2~XbV

��2�:
Corollary 1. Under the null hypothesis, Vb 5 0;��~Xb*

V

��2 5"
V
�
~X9~X

�21
V9

#21�����V� ~X9~X
�21

~X9~e

�����
2

� x2k :

Proof.

��~Xb*
V

��25 �����~X� ~X9~X
�21

V9

"
V
�
~X9~X

�21
V9

#21

V
�
~X9~X

�21
~X9~y

�����
2

5 ~y9~X
�
~X9~X

�
21V9½V

�
~X9~X

�
21V9�21V

�
~X9~X

�
21 ~X9~X

3
�
~X9~X

�
21V9½V

�
~X9~X

�
21V9�21V

�
~X9~X

�
21 ~X9~y

5 ~y9~X
�
~X9~X

�21
V9

"
V
�
~X9~X

�21
V9

#21

V
�
~X9~X

�21
~X9~y

5 ~e9~X
�
~X9~X

�
21V9½V

�
~X9~X

�
21V9�21V

�
~X9~X

�
21 ~X9~e:

The substitution of ~ywith~e in the last step of the above Proof can bemade because by the assumed linearmodel, ~y 5 ~Xb1~e;we
find that

V
�
~X9~X

�21
~X9~y5V

�
~X9~X

�21
~X9
�
~Xb1~e

�
5Vb1V

�
~X9~X

�21
~X9~e5V

�
~X9~X

�21
~X9~e:

The last step above results because Vb 5 0 under the null hypothesis.
It is easy to verify that thematrix PV 5 ~Xð ~X9~XÞ21V9½Vð ~X9~XÞ21V9�21Vð ~X9~XÞ21 ~X9is idempotent and is of rank k if the rank of V

is of rank k: Because ~e 5� Nð0; InpÞ and PV is idempotent, ~e9PV~e � x2
k; completing the Proof.

Corollary 2. If Vb0 6¼ 0; then ��~Xb*
V

��2 5OðnÞ/N:

Proof. It follows from the Proof of Corollary 1 that
��~Xb*

V

��2 5 ~y9PV~y: By the linear model, we have

��~Xb*
V

��5 ~y9PV~y5b90 ~X9PV ~Xb01 e9PVe12b90 ~X9PVe:

It is clear that e9PVe � x2
k 5 Opð1Þ and b90 ~X9PVe 5 Opðn1=2Þ: In addition, b90 ~X9PV ~Xb0 5 ðVb0Þ9½Vð ~X9~XÞ21V9�21Vb 5

nðVb0Þ9½Vðn21 ~X9~XÞ21V9�21Vb 5 OðnÞ since Vðn21 ~X9~XÞ21V9/VðE ~X9~XÞ21V9 5 Oð1Þ in probability. Combining all three facts
yields Corollary 2.

Hypothesis tests
Now we consider the null hypothesis of no pleiotropy:

H0 : Of the parameters b1;:::;bp; there exists at most one that is nonzero4H1 : otherwise:

The null hypothesis is equivalent to testing whether one of the following p11 tests holds:
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Hk0   : bk 6¼ 0;bj 50 ðj 6¼ kÞ;

for k 5 0; . . . ; p: Note that H00 represents all bk 5 0 ðk 5 1; . . . ; pÞ; while for k. 0; Hk0 allows bk 6¼ 0 while all other
bj 5 0 ð j 6¼ kÞ:

To represent these p1 1 hypotheses, we use Hk0 : Vkb 5 0: Let V0 be a matrix such that H00 : V0b 5 0 tests whether all
bj 5 0: In this case, V0 is the identity matrix of dimension p: To construct Vk ðk. 0Þ; create an identity matrix of dimension p
and then remove the kth row. This results in Vkb 5 ðb1; :::;bk21;bk11bpÞ9: Then, the null hypothesis is equivalent to

H0 : there exists one of Hk0 : Vkb50;  for k5 0; . . . ; p  :

For k 5 0; 1; . . . ; p; set tk 5 ~y9PVk
~y: Then it follows from Theorem 1 that

tk5
��~XbVk

��2 2 ��~Xbn
��2;

where bVk
is the least-squares estimate under the constraint Vkb 5 0 and

PVk 5 ~X
�
~X9~X

�21
V9k

"
Vk

�
~X9~X

�21
V9k

#21

Vk

�
~X9~X

�21
~X9:

Then we have the following corollary.

Corollary 3. The LRT, 22 3 log of ratio of likelihoods, is given by

T5 min
k5 0;...;p

tk:

If H00 holds, then

tk5 e9PVke;

and t0 � x2
p; tk � x2

p21 for k 5 1; . . . ; p:
If only one Hk0 ðk. 0Þ holds, then

T � x2p21:

From Corollary 3, we can see that the test statistic T has two different asymptotic distributions whenb¼ 0 or not.Whenb 5 0; the
asymptotic distribution of T is unknown. Alternatively, when b 5 0; we can use the commonly used x2

p test for the null hypothesis
that allbj 5 0: Thismotivates us to do the test by two stages. Thefirst stage is just test H00   :b 5 0; using the statistic t0 � x2

p as the
test statistic, sowe reject H00 if t0 .x2

pðaÞ;where x2
pðaÞ is the 12a quantile of a x2 distributionwith p d.f. If H00 cannot be rejected,

then H0 cannot be rejected. If H00 is rejected, we turn to the second stage to test the null hypothesis that one Hk0 holds for
k 5 1; . . . ; p: Thenwe can use the test statistic T1 5 mink51;...;ptk: Since T1 � x2

p21;we reject the null hypothesis that oneHk0 holds
for k 5 1; . . . ; p if T1 . x2

p21ðaÞ: Then, the null hypothesis H0 is rejected only if bothH00 is rejected and the null hypothesis that one
Hk0 holds is rejected ðk 5 1; . . . ; pÞ: Since both tests are conducted at type I error rate ofa; and this is based on the principal of the IU
test (Silvapulle and Sen 2004), the type I error rate for rejecting H0 is no more than a:

Remark. If p is too large, it might be beneficial to ignore the t0 and directly use T1 � x2
p21 to construct the rejection region.

Sequential test of nonzero betas
The above solutions can be easily extended to test the following null hypothesis:

H0 : There exist at most K nonzero components of b  4H1 : otherwise  :

With appropriately defined V matrices (there are Cp
K matrices), the LRT reduces to
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T5 min
k51;...;Cp

K

kPVk
~yk2;

where PVk 5 ~Xð ~X9~XÞ21V9k½Vkð ~X9~XÞ21V9�21
k Vkð ~X9~XÞ21 ~X9:

In the above, Vk is a ðp2KÞ3 p matrix. For example, if for indexes 1# i1 ,⋯, iK # p; we test

  bi1 6¼ 0; . . . ;biK 6¼  0 and bj5 0; j 6¼  i1; . . . ; iK ;

thenwe can constitute the correspondingmatrixVi1;...;iK as follows: (i) Constitute a p3 p identitymatrix and (ii) delete the rows
for indexes i1; . . . ; iK :

Then we can use the following multistage test:

i. First test H00 : b 5 0: Reject if t0 . x2
pðaÞ: If reject, go to the next stage; otherwise stop and conclude H00 is true.

ii. For s 5 1; . . . ;K2 1; test Hs0   : there are only s components of b 6¼ 0. Reject Hs0 if Ts .x2
p2sðaÞ; where

Ts 5 min1# i1 ,⋯, is # p
~y9PVi1 ;...;is

~y: The indexes range over the Cp
s choices. If reject, continue testing by incrementing s

by 1. If fail to reject Hs0; stop testing and conclude there are s traits associated with x.

The type I error rate of this sequential testing is no greater than the nominal a level. To understand this, suppose there are K
nonzero b’s, and define the type I error as concluding there are .   K nonzero b’s. Note that the test statistic Ts at each stage is
based on the minimum of statistics, where each statistic is based on

��~Xb*
V

��2 5
��~Xbn2~XbV

��2; a measure of distance between
fitted values based on the unconstrained OLS model and the constrained model determined by V. If one of the constrained
models is correct, then by Corollaries 1 and 2, Ts � x2: If, however, none of the constrainedmodels are correct, Ts 5 OðnÞ/N:

This means that at testing stage j,K; the probability of rejecting the null hypothesis at stage j depends on the power to detect
the misspecifiedmodels, which approach 1 as n increases. With this background, we can formally evaluate the type I error rate.
Define rj as an indicator of whether the null hypothesis is rejected at stage j. The probability of a type I error is the probability of
rejecting the sequential stage testing up to and including stage K. This joint probability can be expressed as

Pðr0; r1; r2; :::; rKÞ5Pðr0ÞPðr1 j r0ÞPðr2 j r0; r1Þ::PðrK j r0; r1; :::; rK21Þ: (B2)

The last term inexpression(B2) represents theprobabilityof rejecting thenull hypothesiswhen thenullhypothesis is true, soone
of the constrained models is correct. The test statistic at stage K follows a x2

p2K distribution, so PðrK j r0; r1; :::; rK21Þ 5 a: All
other terms in (B2) approach 1 as n increases, because all stagesj,K represent misspecifiedmodels. This proves that the type I
error rate is no greater than the specified a level.
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