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ABSTRACT Two broad paradigms exist for inferring dN/dS, the ratio of nonsynonymous to synonymous substitution rates, from
coding sequences: (i) a one-rate approach, where dN/dS is represented with a single parameter, or (i) a two-rate approach, where dy
and ds are estimated separately. The performances of these two approaches have been well studied in the specific context of proper
model specification, i.e., when the inference model matches the simulation model. By contrast, the relative performances of one-rate
vs. two-rate parameterizations when applied to data generated according to a different mechanism remain unclear. Here, we compare
the relative merits of one-rate and two-rate approaches in the specific context of model misspecification by simulating alignments with
mutation—selection models rather than with dN/dS-based models. We find that one-rate frameworks generally infer more accurate
dN/dS point estimates, even when ds varies among sites. In other words, modeling ds variation may substantially reduce accuracy of
dN/dS point estimates. These results appear to depend on the selective constraint operating at a given site. For sites under strong
purifying selection (dN/dS < 0.3), one-rate and two-rate models show comparable performances. However, one-rate models signif-
icantly outperform two-rate models for sites under moderate-to-weak purifying selection. We attribute this distinction to the fact that,
for these more quickly evolving sites, a given substitution is more likely to be nonsynonymous than synonymous. The data will therefore
be relatively enriched for nonsynonymous changes, and modeling ds contributes excessive noise to dN/dS estimates. We additionally
find that high levels of divergence among sequences, rather than the number of sequences in the alignment, are more critical for

obtaining precise point estimates.
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A variety of computational approaches have been devel-
oped to infer selection pressure from protein-coding
sequences in a phylogenetically aware context. Among the
most commonly used methods are those that compute the
evolutionary rate ratio dN/dS, which represents the ratio of
nonsynonymous to synonymous substitution rates. Begin-
ning in the mid-1990s, this value has been calculated using
maximum-likelihood (ML) approaches (Goldman and Yang
1994; Muse and Gaut 1994), and since then, a wide variety of
inference frameworks have been developed to infer dN /dS at
individual sites in protein-coding sequences (Nielsen and
Yang 1998; Yang et al. 2000; Yang and Nielsen 2002; Yang
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and Swanson 2002; Kosakovsky Pond and Frost 2005;
Kosakovsky Pond and Muse 2005; Lemey et al. 2012; Murrell
et al. 2012b, 2013).

Typically, the performance of evolutionary models is exam-
ined using simulation-based approaches wherein sequences are
simulated according to the model being examined, and infer-
ences are subsequently performed on the simulated data. This
approach ensures that simulated and inferred parameters cor-
respond. Although useful, this strategy fundamentally assumes
that the data being analyzed were generated by the same
mechanism that the inference model used, and hence the model
has been correctly specified. Crucially, this scenario does not
apply to the analysis of natural sequence data. Indeed, real
genomes evolve according to a variety of interacting evolution-
ary forces, not according to a phylogenetic model of sequence
evolution. As such, it remains unclear how well evolutionary
models perform when they are applied to sequence data
that have been technically misspecified, i.e., where the data
do not conform to the inference model’s assumptions. Indeed,
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ML-based inference methods are guaranteed to converge
upon the true parameter value when the model is properly
specified (provided there are sufficient data), but there is no
such guarantee when the data violate critical model as-
sumptions and/or when the model is misspecified (White
1982; Yang 2006).

We therefore seek to we extend our understanding of
dN /dS-based inference model performance by studying how
well these models infer site-specific dN/dS point estimates
when the model is mathematically misspecified. To this end,
we simulate sequences not under a dN/dS-based model, but
instead using the mutation-selection (MutSel) modeling
framework. Unlike dN/dS-based models, MutSel models are
based on population genetics principles and describe the site-
specific evolutionary process as a dynamic interplay between
mutational and selective forces (Halpern and Bruno 1998;
Yang and Nielsen 2008). Therefore, many regard MutSel
models as more mechanistically representative of real coding-
sequence evolution than dN/dS-based models, which are
primarily phenomenological in nature (Thorne et al. 2007,
2012; Holder et al. 2008; Rodrigue et al. 2010; Tamuri et al.
2012; Liberles et al. 2013). For this reason, MutSel-based
simulation approaches have been used to study the behavior
of phylogenetic and evolutionary rate inferences (Holder
et al. 2008; McCandlish et al. 2013; dos Reis 2015; Spielman
and Wilke 2015b).

Recently, we introduced a mathematical framework that
allows us to accurately calculate a dN/dS ratio directly from
the parameters of a MutSel model (Spielman and Wilke
2015b). This framework gives rise to a robust benchmarking
strategy through which we can simulate sequences using a
MutSel model, infer dN/dS on the simulated sequences using
established approaches, and then compare the inferred to the
expected dN/dS given by the parameters of the MutSel
model. We have previously successfully used such an ap-
proach to identify biases in dN/dS inference approaches for
whole-gene evolutionary rates (Spielman and Wilke 2015b).
Here, we employ this approach to evaluate the performance
of site-specific dN/dS-based inference approaches.

Because the dN/dS models used for inference are mathe-
matically misspecified to the data, we can expect inferences
to feature statistical biases, which in turn illuminate how
these models might behave in more complex scenarios. Sev-
eral important distinctions between dN /dS and MutSel mod-
els contribute to the model misspecification examined here.
Most importantly, while dN/dS models assume that all non-
synonymous substitutions occur at the same rate, MutSel
models assume different rates for each type of nonsynony-
mous substitution and similarly for synonymous substitutions
in certain contexts. This distinction gives rise to a key differ-
ence in model assumptions. In particular, because the dN/dS
parameter is a rate constant, dN /dS models implicitly assume
that substitutions are Poisson distributed in time. By contrast,
in the MutSel model, dN/dS is not a rate constant, and thus
substitutions will be overdispersed relative to a Poisson
process.
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Two primary questions motivate the present study: (i) How
accurate are various inference frameworks for dN/dS point
estimation? And (ii) under what conditions does dN /dS capture
the long-term evolutionary dynamics of site-specific coding-
sequence evolution? For the first question, we focus our
efforts on distinguishing performance between two dN/dS
inference paradigms: one-rate and two-rate models. One-rate
models parameterize dN/dS with a single parameter for dy,
effectively fixing ds = 1 at all sites, whereas two-rate models
use separate parameters for dy and ds at each site. Some stud-
ies have suggested that the two-rate paradigm leads to more
robust positive-selection inference (Kosakovsky Pond and Muse
2005; Murrell et al. 2013), whereas others have suggested that
the extra ds parameter may actually confound positive selec-
tion inference (Yang et al. 2005; Wolf et al. 2009). Here, we do
not benchmark positive-selection inference, but we instead ask
how this parameterization affects dN/dS point estimation in
the context of model misspecification. We therefore must em-
phasize that this study applies primarily to sequences evolving
under equilibrium conditions and not necessarily to sequences
evolving under shifting selection pressures.

The second question arises naturally from our use of
MutSel models, which describe the equilibrium site-specific
codon fitness values. As a consequence, any dN /dS calculated
from MutSel model parameters represents, by definition, the
steady-state dN/dS (Spielman and Wilke 2015b). Since
dN/dS is an inherently time-sensitive measurement (Rocha
et al. 2006; Kryazhimskiy and Plotkin 2008; Wolf et al. 2009;
Mugal et al. 2014; Meyer et al. 2015), it is not necessarily true
that dN/dS measured from a given data set will reflect the
equilibrium value. Therefore, our approach additionally en-
ables us to identify the conditions under which site-specific
dN/dS ratios are expected to reflect long-term, rather than
transient, evolutionary dynamics.

Materials and Methods
Derivation of MutSel simulation parameters

We simulated heterogeneous alignments, such that each site
evolved according to a distinct distribution of codon fitnesses,
according to the Halpern and Bruno (1998) (HB98) MutSel
model using Pyvolve (Spielman and Wilke 2015a). The HB98
rate matrix is given by

Q(k) _ { ,LinJ_),l,},Fl.(J.k> single-nucleotide change 0
v 0 multiple-nucleotide changes,

where u, is the site-invariant mutation rate, where x;; is the
focal nucleotide before mutation and y;; the focal nucleotide
after mutation during the substitution from codonitoj. Fi(jk) is
the fixation probability from codon i to j at site k and is de-
fined as

(k)
S
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where Sfjk> is the scaled selection coefficient from codon i to j
at site k (Halpern and Bruno 1998). Thus, this model is spec-
ified using a nucleotide-level mutation model (,uxy parame-
ters) and codon-level fitness values (F;; parameters).

We simulated four sets of alignments, all of which assumed
a Hasegawa et al. (1985) (HKY85) mutation model with the
transition—-transversion bias parameter « set to 4. Two align-
ment sets assumed equal nucleotide frequencies (7; = 0.25
for i € {A,C,G,T}), and the other two alignment sets as-
sumed unequal nucleotide frequencies (arbitrarily set to
ma = 0.32, mpr = 0.28, m¢ = 0.18, 7 = 0.22), to incorpo-
rate underlying nucleotide compositional bias. We refer to
these parameterizations, respectively, as Ilequa and Iynequal-
For each mutational parameterization, we simulated an
alignment set where all synonymous codons shared the same
fitness value (no codon bias) and an alignment set where
synonymous codons differed in fitnesses (codon bias). The
Ilequa and Ilypequal Simulations without codon bias used the
same sets of fitness parameters, and similarly the Ilequa and
IMynequar simulations with codon bias used the same sets of
fitness parameters.

Following previous work showing that site-specific amino
acid frequencies in natural protein alignments tend to follow a
Boltzmann distribution (Porto et al. 2004; Ramsey et al.
2011), we simulated 100 site-specific amino acid frequency
distributions from a Boltzmann distribution:

N exp(—Aq)
1 Sexp(-ad) )

Here, F(a) is the state frequency of amino acid a, a and b
index amino acids from O to 19, and the parameter A in-
creases with evolutionary rate (Ramsey et al. 2011). For each
frequency distribution, we sampled a value for A from a uni-
form distribution ¢/(0, 3), and we selected a random rank-
ing for all amino acids. These frequency calculations formed
the basis of our derivation of fitness values used in all
simulations.

Importantly, when a symmetric nucleotide mutation model
is assumed (e.g., sy, = W,,), codon fitness values can be cal-
culated directly as the logarithm of codon equilibrium fre-
quency values (Sella and Hirsh 2005). Therefore, we
directly computed codon fitness values from the derived fre-
quency values, under the assumption that synonymous co-
dons shared the same fitness. These fitness parameters were
employed for both Ilequa and Ilypequar simulations without
codon bias.

To derive fitness parameters for simulations with codon
bias, we randomly selected a preferred codon for each amino
acid. We assigned a state frequency of yF(a), where y was
drawn from a uniform distribution 2{(0.5,0.8), to the pre-
ferred codon, and we assigned the remaining frequency
(1 —y)F(a) evenly to all remaining synonymous codons. In
this way, the overall amino acid state frequency was un-
changed, but its synonymous codons occurred with differing
frequencies. Note that a single parameter y was selected for

each frequency distribution (i.e., each resulting alignment
position) and not for each set of synonymous codons. Again,
fitness distributions were directly computed from these
resulting codon frequencies for use in both Ileqa and
ITynequal simulations with codon bias.

Unlike the Ilequa simulations, the Ilypequal Simulations did
not contain symmetric mutation rates. Therefore, we
obtained stationary codon frequencies for the Il,pequal Simu-
lations, for use in dN/dS calculations, numerically as the
dominant eigenvector of each MutSel model’s matrix, which
was constructed from mutation rates and codon fitness val-
ues. In this way, all stationary codon frequency distributions
incorporated, by definition, information regarding both codon-
level fitness and nucleotide-level mutation.

We simulated heterogeneous alignments across an array of
balanced phylogenies, containing 128, 256, 512, 1024, or
2048 sequences. For each number of taxa, we simulated se-
quences with varying degrees of divergence, with all branch
lengths equal to 0.0025, 0.01, 0.04, 0.16, or 0.64. Through-
out, we use N to refer to a given simulation’s number of taxa
and B to refer a given simulation’s branch length. We simu-
lated 50 alignment replicates for each combination of N and
B. We additionally simulated alignments, using only the
ITinequat parameterizations, along five different empirical
phylogenies (Table 1), again with 50 replicates each. For
these simulations, we directly used the original empirical
branch lengths.

dN/dS inference

For each simulated codon frequency distribution, we com-
puted dN/dS according to the method outlined in Spielman
and Wilke (2015b). For each simulated alignment, we
inferred site-specific dN/dS values with the HyPhy software
v2.2 (Kosakovsky Pond et al. 2005), using several ap-
proaches: fixed-effects likelihood (FEL) (Kosakovsky Pond
and Frost 2005), fast unconstrained Bayesian approximation
(FUBAR) (Murrell et al. 2013), and single ancestral counting
(SLAC) (Kosakovsky Pond and Frost 2005). We specified the
Muse and Gaut (1994) MG94 X HKY85 (Kosakovsky Pond
and Frost 2005) rate matrix with F1 X 4 codon frequencies,
which has been shown to reduce bias in dN/dS estimation
(Spielman and Wilke 2015b). We provide customized HyPhy
batchfiles, which enforce the F; X 4 codon frequency speci-
fication, in the Github repository: https://github.com/
sjspielman/dnds_1rate 2rate.

For both FEL and FUBAR, we inferred dN/dS with both a
one-rate model, in which dN/dS is represented by a single
parameter, and a two-rate model, in which dy and ds are
modeled by separate parameters (Kosakovsky Pond and Frost
2005). For the one-rate FUBAR inferences, we specified
100 grid points to account for the reduced grid dimensional-
ity caused by ignoring dg variation, and we specified the de-
fault 20 X 20 grid for two-rate FUBAR inferences (Murrell
et al. 2013). We left all other settings as their default values.
Similarly, for SLAC inference, we calculated dN/dS in two
ways. As SLAC enumerates dy and ds on a site-specific basis,
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Table 1 Empirical phylogenies

Data set Na Tree length Mean branch length (= SD) Source

amine? 3039 440.861 0.073 = 0.149 Spielman et al. (2015)

Camelid® 212 15.428 0.037 = 0.049 Kosakovsky Pond and Muse (2005); Murrell et al. (2012a, 2013)
vertrho? 38 12.815 0.183 = 0.159 Murrell et al. (2012a, 2013)

h3e 3854 5.951 0.0005 =+ 0.001 Meyer and Wilke (2015)

hivrt® 383 5.642 0.007 = 0.01 Murrell et al. (2012a)

? Number of taxa.

b Vertebrate biogenic amine receptors.

¢ Llama and dromedary partial heavy-chain antibody sequences.
9 Vertebrate rhodopsin.

€ Influenza strain H3N2 hemagglutinin.

"HIV-1 reverse transcriptase.

there exist two ways to calculate site-wise dN/dS: ds can be
considered site specific, or ds values can be globally aver-
aged, and this mean can be used to normalize all site-specific
dy estimates. The former calculations effectively correspond
to a two-rate model (SLAC2), and the latter calculations cor-
respond to a one-rate model (SLAC1). We conducted all in-
ferences using the true tree along which we simulated each
alignment.

As in Kosakovsky Pond and Frost (2005), we excluded all
unreliable dN/dS inferences when correlating inferred and
true dN/dS values. Specifically, we excluded FEL estimates
where dN/dS =1 and the P-value indicating whether the
estimate differed significantly from 1 was also equal to 1.
Such estimates represent uninformative sites where no mu-
tation has occurred (Meyer et al. 2015). In addition, we ex-
cluded SLAC2 estimates if the number of synonymous
mutations counted was 0, and hence the resulting dN/dS
was undefined. Finally, we excluded all FEL and FUBAR in-
ferences for which the algorithm did not converge as
uninformative.

Statistical analysis

Statistics were conducted in the R statistical programming
language. Linear modeling was conducted using the R pack-
age lme4 (Bates et al. 2012). We inferred effect magnitudes
and significance, which we corrected for multiple testing,
using the glht() function in the R package multcomp
(Hothorn et al. 2008). In particular, we built mixed-effects
linear models in the lme4 package with the general code
lmer(X ~ method + (1|replicate) + (1|N:B)), where X is
either the Pearson correlation between inferred and true
dN/dS or the root-mean-square deviation (RMSD) of the
inferred from the true dN/dS. RMSD is calculated as

RMSD(6) =
and 6 is the estimated value. Note that, for all mixed-effects

linear models, we excluded simulations under the
B = 0.0025 branch length condition.

(6—6)?, where 6 is the true parameter value

Data availability

All code and results are freely available from the Github re-
pository: https://github.com/sjspielman/dnds_1rate 2rate.
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Results
Approach

We simulated fully heterogeneous alignments under the
HB98 MutSel model (Halpern and Bruno 1998), using the
simulation software Pyvolve (Spielman and Wilke 2015a).
Our simulation strategy is described in detail in Materials
and Methods. Briefly, MutSel models are parameterized with
a nucleotide-level mutation model and a distribution of codon
fitness values. All simulations employed the HKY85 mutation
model (Hasegawa et al. 1985) with the transition—transversion
bias parameter k = 4.0. We simulated data under four pri-
mary conditions: specifying either equal or unequal nucleo-
tide frequencies in the HKY85 model and specifying no codon
bias or codon bias for the codon fitness values. Simulations
without codon bias assumed that all synonymous codons had
the same fitness, and simulations with codon bias assumed
that synonymous codons differed in fitness values. We refer
to simulations with equal nucleotide frequencies as Ilequal
and to simulations with unequal nucleotide frequencies as
l_[unequal-

Each simulated alignment contained 100 sites, and simu-
lations were conducted along balanced phylogenies with the
number of sequences N set as 128, 256, 512, 1024, or
2048 and with branch lengths B set as 0.0025, 0.01, 0.04,
0.16, or 0.64. For each of the 25 possible combinations of
parameters N and B, we simulated 50 replicate alignments.
Importantly, the site-specific evolutionary models were the
same within each simulation set, making inferences across
N and B conditions directly comparable. We note that the
extremely high divergence level in B = 0.64 simulations does
not represent real sequence data, but these simulations do
allow us to study dN/dS inference method performance un-
der the limiting condition of (approximately) infinite time.

We inferred site-specific dN/dS for each simulated align-
ment, using three approaches: FEL (Kosakovsky Pond and
Frost 2005), SLAC (Kosakovsky Pond and Frost 2005), and
FUBAR (Murrell et al. 2013). Each of these methods employs
a somewhat different approach when computing site-specific
dN/dS values. FEL fits a unique dN/dS model to each align-
ment site (Kosakovsky Pond and Frost 2005), SLAC directly
counts nonsynonymous and synonymous changes along the
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Figure 1 Pearson correlation coefficients between true and inferred dN/dS across inference approaches and N-8 conditions, for Ilynequal Simulations.
(A) Correlations for alignments simulated without codon bias. (B) Correlations for alignments simulated with codon bias. The label above each panel
indicates the branch lengths B of the balanced phylogeny along which sequences were simulated, and the x-axes indicate the number of sequences N.
Each point represents the correlation coefficient averaged across 50 replicates. Figure ST shows corresponding ITeqs simulations. Note that certain FEL2
points (at B =0.0025 and B =0.01/N = 128, for codon bias simulations) are not present because FEL2 generally failed to converge under these

conditions.

phylogeny where ancestral states are inferred with maxi-
mum likelihood (Kosakovsky Pond and Frost 2005), and
FUBAR employs a Bayesian approach to determine dN/dS
ratios according to a prespecified grid of rates (Murrell et al.
2013).

For each inference method, we inferred dN/dS at each site
in both a two-rate context (separate dy and ds parameters per
site) and a one-rate context (a single dN/dS parameter per
site). Although SLAC, as a counting-based method, always
enumerates both dy and dg on a per-site basis, one can derive
an effectively one-rate SLAC by normalizing each site-wise dy
estimate by the mean of all site-wise dg estimates. We refer to
one-rate inferences with these methods as FEL1, FUBARI,
and SLACI1 and similarly to two-rate inferences as FEL2,
FUBAR2, and SLAC2, respectively. Throughout, we use
method to refer to distinct algorithmic approaches (FEL,
FUBAR, and SLAC), and we use model to refer to a one-rate or
a two-rate parameterization. We use either framework or ap-
proach to more generally discuss one-rate vs. two rate methods.

We performed all dN/dS inference using the HyPhy batch
language (Kosakovsky Pond et al. 2005). Note that we did not
consider the popular random-effects likelihood methods in-
troduced by Yang et al. (2000) (e.g., M3, M5, and M8) be-
cause these methods are used predominantly in a one-rate
context. Available two-rate extensions to this framework are
computationally burdensome and cannot model the amount
of rate heterogeneity required to calculate per-site rates
(Kosakovsky Pond and Muse 2005). Finally, we computed

true dN/dS values from the MutSel parameters, using the
approach described in Spielman and Wilke (2015b).

Modeling synonymous rate variation may reduce
inference accuracy

After inferring site-wise dN/dS for all simulated alignments,
we quantified performance for all inference frameworks, us-
ing several metrics, primarily the Pearson correlation be-
tween true and inferred dN/dS. Importantly, our simulation
strategy necessitates a somewhat different interpretation of
results than would more traditional simulation approaches.
The true dN/dS ratios calculated from the MutSel parame-
terizations used during simulation correspond to the dN/dS
expected at steady state, i.e., the signature of natural selec-
tion at evolutionary equilibrium. We can expect to recover
this true dN/dS value only if the simulated data reflect the
stationarity condition. When either the simulated divergence
or the number of sequences analyzed is low, it not necessarily
possible to capture the true equilibrium distribution of co-
dons. Therefore, we considered the most accurate inference
frameworks as those that produced the highest dN/dS corre-
lations within a given choice of N and B.

In Figure 1, we show resulting Pearson correlation coeffi-
cients, averaged across all 50 replicates, between inferred
and true dN/dS for each inference framework, specifically
for Ilypequar simulations. Results for Ilequa simulations
showed virtually identical correlations (P = 0.68, ANOVA;
Supplemental Material, Figure S1). In the absence of codon
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bias, ds = 1 at all sites. As such, we expected that one-rate
inference frameworks would outperform two-rate inference
frameworks. We indeed found that one-rate inference frame-
works showed the highest correlations when there was no
synonymous selection (Figure 1A), in particular at low-to-
intermediate divergence levels (B € {0.01,0.04,0.16}). As
the sequences became more diverged, and hence more in-
formative, two-rate frameworks increasingly performed as
well as one-rate frameworks did. Even so, two-rate frame-
works almost never outperformed one-rate frameworks.

In the presence of codon bias, both dy and ds varied at each
site, and therefore we expected that two-rate frameworks would
be more well suited for these simulations. Surprisingly, however,
one-rate frameworks still outperformed two-rate frameworks
across N and B conditions, in spite of the pervasive site-wise dg
variation across sites (Figure 1B and Figure S1). Moreover, cor-
relation differences between one-rate and two-rate frameworks
were more pronounced for simulations with codon bias than for
simulations without codon bias. In other words, two-rate frame-
works performed worse on data simulated with codon bias than
they did on data simulated without codon bias.

To complement our correlation analysis, we calculated
several additional metrics to quantify accuracy: (i) RMSD
of the inferred dN/dS from the true dN/dS (Figure S2), (ii)
estimator bias for each inference framework (Figure S3), and
(iii) variance in residuals for a simple linear model regressing
inferred on true dN/dS (Figure S4). These metrics displayed
the same general trends as did correlation analysis: One-rate
frameworks were generally more accurate and precise (lower
RMSD, lower estimator bias, and lower residual variance)
than were two-rate frameworks, and these overarching
trends were more pronounced for simulations with codon
bias (all P<2 X 107'6, ANOVA). As divergence increased,
each metric dropped substantially for both one- and two-rate
frameworks, with error and/or bias for one-rate frameworks
dissipating more quickly than for two-rate frameworks. These
patterns were consistent between the Ilynequal and Iynequal
simulations for estimator bias and residual variance (both
P>0.2, ANOVA), although Il.qa displayed marginally
smaller RMSD values compared to Ilypequal (P = 0.04 with
an average difference of —4.45% 1073, ANOVA). Thus,
dN/dS inference was robust to the presence of nucleotide
compositional bias.

Rate parameterization affects dN/dS estimation more
strongly than does inference method

We next quantified performance differences among inference
frameworks more rigorously, using linear models. For each
simulation set, we built mixed-effects linear models with
either Pearson correlation or RMSD as the response, inference
approach as a fixed effect, and replicate as well as interaction
between N and B as random effects. We performed multiple-
comparisons tests, with corrected P-values, to ascertain the
relative performances across inference approaches.

Linear model analysis confirmed prior observations that
each one-rate method significantly outperformed its respec-
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Figure 2 Pairwise comparisons of correlation strength, RMSD, and vari-
ance in residual across methods, determined through multiple-comparisons
tests, for Iynequal Simulations. (A) Results for multiple-comparison tests of
correlation strength. (B) Results for multiple-comparison tests of RMSD.
Points indicate the estimated average difference between measurements
for the respective inference approaches, and lines indicate 95% confi-
dence intervals. Solid lines indicate that the performance difference be-
tween methods differed significantly from 0 (all P<0.01). Shaded lines
indicate that the difference was not statically significant (P>0.01). All
P-values were corrected for multiple testing. Corresponding multiple-
comparison results for ITeq,a simulations are in Figure S5.

tive two-rate counterpart (Figure 2 for Il equal simulations
and Figure S5 for Ileqa simulations). In addition, correla-
tions differences among one-rate methods were not statisti-
cally significant for any inferences performed on Ilynequal
simulations (Figure 2A). For Ilequa simulations, SLACI yielded
significantly higher correlations than did FUBAR1, although
the effect magnitude size was minimal, with a mean differ-
ence of r = 0.01 (Figure S5A).

For both Ilypequai and Ilequa Simulations, that one-rate
methods yielded less error in point estimates than did two-
rate methods (Figure 2B and Figure S5B). Unlike results from
linear models with correlation as the response, however,
RMSD analysis showed some more substantial differences
among one-rate methods. Overall, SLAC1 and FEL1 per-
formed comparably, but FUBAR1 showed lower RMSD than
both SLAC1 and FEL1, albeit with a very small effect magni-
tude. This result persisted across all simulation conditions.
Together, these findings suggest the number of parameters
used to model dN/dS mattered more than did the specific
inference method chosen.

We next examined whether linear modeling results, spe-
cifically those comparing correlation strength between meth-
ods, were driven by particular simulation conditions. We
directly compared correlations between one-rate and two-
rate inferences, for each method (FEL, SLAC, and FUBAR)
across N and B conditions, specifically for Il pequal Simula-
tions. These comparisons indicated that improvement of
one-rate over two-rate parameterizations was largely driven
by results for intermediate divergence levels (Figure S6). For
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example, under FEL inference, the greatest improvement of
FEL1 over FEL2 occurred where B € {0.04,0.16} and
N € {128,256,512}.

Data contain insufficient information for precise site-
wise ds estimation

We next sought to determine why one-rate frameworks out-
performed two-rate frameworks. Given the broad similarity
among inference methods and simulation sets, we considered
only FEL inferences on Il equal Simulations for these analyses.

To begin, we confirmed that simulations with codon bias
indeed led to ds variation in the data by comparing distribu-
tions of inferred ds, with FEL2, between simulations with and
without codon bias. If our implementation of codon bias in-
deed produced ds variation, the inferred dg distributions from
codon bias simulations should contain more variation com-
pared to the inferred ds distributions for simulations without
codon bias, whose inferences should be concentrated at
ds ~ 1. Indeed, dg distributions for codon bias simulations
displayed substantially more variation than did ds distribu-
tions for simulations without codon bias (Figure S7).

We next compared the optimized branch lengths inferred
by HyPhy during rate estimation to those used for simulation.
Because branch length parameters influence dN/dS estima-
tion, it is possible that biases in these parameters could influ-
ence the resulting rate inferences. Importantly, we should not
expect branch lengths used for a MutSel simulation to match
precisely those optimized under a dN/dS-based model, due to
differences in model assumptions, although branch lengths
should be consistently inferred across simulation conditions.
Across simulations, we found no significant difference among
distributions of optimized branch lengths, for a given set of
simulations using the same branch length B (Figure S8).
Therefore, differences in branch length optimization did
not seem to affect dN/dS inferences.

We proceeded to compare directly the inferred dN/dS
values across simulation conditions, for a single representa-
tive replicate (Figure S9, A and B). The relationship between
one-rate and two-rate dN/dS estimates featured consider-
able noise, across all simulation conditions. To determine
the source of this noise, we confirmed that dy estimates be-
tween one-rate and two-rate models were comparable. We
examined individual dy estimates between FEL1 and FEL2,
again for a single replicate. Aside from low-information con-
ditions (e.g., B=0.0025 and/or N = 128), dy estimates
were virtually identical between FEL1 and FEL2, for simula-
tions both with and without codon bias (Figure S9, C and D).
This result demonstrated that the added ds parameter in
two-rate inference methods did not affect dy estimation,
but rather it contributed substantial noise to the final dN/dS
estimate.

Finally, we assessed how well FEL2 estimated dy relative to
ds, specifically for simulations with codon bias, in which dg
variation exists. We found that FEL2 consistently estimated
dn more precisely than ds, measured using both correlations
and RMSD (Figure 3). Although accuracy for both dy and ds
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Figure 3 dy estimates are more precise than are ds estimates. Results are
shown for a subset of conditions for IT;nequal Simulations with codon bias,
inferred with FEL2. (A) Violin plots of Pearson correlations between
inferred and true dy and ds values. (B) Violin plots of RMSD of inferred
from true dy and ds values. Outlying points beyond the y-axis ranges have
been removed for visualization.

estimation increased as either B or N increased, dy estimates
universally displayed higher correlations and lower RMSD
than did ds estimates. As such, it appeared that ds was simply
statistically more difficult to estimate than was dy.

We hypothesized that this result was a direct consequence
of the relative amount of information in the alignments for
nonsynonymous vs. synonymous changes. Using the simu-
lated ancestral sequences within each simulated alignment,
we directly counted the number of nonsynonymous and syn-
onymous changes that had occurred across the phylogeny.
We observed that nonsynonymous changes occurred roughly
twice as frequently over the course of a simulation than did
synonymous changes (Figure 4). This result was fully com-
patible with the notion that statistical estimation of ds was
more challenging than that of dy because of sample size:
Alignments contained nearly double the amount of informa-
tion contributing to dy than to ds. As a consequence, ds esti-
mation was less precise and noisier across simulation
conditions, ultimately explaining why two-rate frameworks
yielded less precise dN/dS estimates compared to one-rate
frameworks.

One-rate frameworks outperform two-rate frameworks
primarily at weakly constrained sites

All previous analyses compared inferences across alignment
replicates. Yet each alignment featured an array of selective
constraints, with each site evolving with a different underlying
dN/dS. Whether the heterogeneous selective constraints
across sites influenced our previous results was not immedi-
ately clear. For example, according to the structure of
the genetic code, 74% of all possible single-nucleotide
changes are nonsynonymous, and the remaining 26% are
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Figure 4 Ratio of the number of nonsynonymous to
synonymous changes that occurred during simulations,
counted directly from simulated ancestral sequences.
Each boxplot represents, across 50 replicates, the per-

alignment ratio of the number of nonsynonymous
changes to synonymous changes averaged across sites.
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synonymous. Therefore, a neutrally evolving site, where both
nonsynonymous and synonymous changes are equally likely
to go to fixation, should experience approximately three
times more nonsynonymous than synonymous substitutions.
By contrast, sites under stringent selection pressure will tol-
erate few amino acids, and thus these sites may feature more
synonymous than nonsynonymous changes. Noting this dis-
tinction, we next examined whether one-rate or two-rate
frameworks performed differently, depending on a given
site’s evolutionary constraint.

We therefore reanalyzed our Ilpequal Simulations, specif-
ically under FEL1 and FEL2 inference, while considering sites
to be in one of two categories: having a relative enrichment
for synonymous substitutions or having a relative enrichment
for nonsynonymous substitutions (Figure 5). Across simula-
tion conditions, FEL1 and FEL2 models yielded virtually
identical correlations at sites enriched for synonymous sub-
stitutions (linear model, P > 0.4). By contrast, FEL1 consistently
outperformed FEL2 when sites contained more nonsynonymous
than synonymous substitutions, with an average correlation in-
crease of r = 0.1 (linear model, P < 2 X 10716). The B = 0.64
condition did not adhere to this general pattern and consistently
favored one-rate frameworks, likely due to difficulty in estimat-
ing ds due to mutational saturation at such high divergences.
Together, these results show that one-rate frameworks offered
the most improvement, relative to two-rate frameworks, when
sites had experienced more nonsynonymous changes. On the
other hand, when the data were enriched for synonymous
changes, one-rate and two-rate frameworks provided compara-
ble estimates.

To ascertain more broadly at which sites a one-rate dN/dS
inference framework may be preferred, we examined the re-
lationship between substitution counts and true dN /dS across
simulations (Figure 6). Figure 6A shows the relationship be-
tween true dN/dS and the mean ratio of nonsynonymous to
synonymous substitution counts, along the simulated phylog-
eny, specifically for N = 512 and B = 0.04. In Figure 6A, points
below the y = 1 line represent sites with, on average, a relative
enrichment for synonymous compared to nonsynonymous
changes, and similarly points above the y = 1 line represent
sites with an average enrichment for nonsynonymous com-
pared to synonymous changes. We found that sites under
stronger selective constraint indeed featured relatively more
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nonsynonymous changes, and sites under weaker constraint
featured relatively more synonymous changes.

To generalize across all simulation conditions, we calcu-
lated the true dN/dS where, on average, sites transitioned
from having more synonymous to more nonsynonymous
changes (Figure 6B). In general, sites became enriched for
nonsynonymous substitutions at dN/dS ~ 0.3. However, the
transition point was substantially larger for simulation con-
ditions with low levels of divergence, likely because substi-
tutions did not have sufficient time to accumulate. Taken
together, these results reveal that one-rate frameworks may
offer the most improvement over two-rate frameworks when
dN/dS=0.3, i.e., when sites are under moderate-to-weak
purifying selection. By contrast, one-rate and two-rate frame-
works showed minimal, if any, differences when applied to
sites subject to strong purifying selection (dN/dS < 0.3).

Divergence is more important than is the number of
sequences for identifying long-term
evolutionary constraint

We additionally observed that dN/dS inference accuracy in-
creased as both the number of sequences N and the branch
lengths B (divergence) grew (Figure 1, Figure S1, Figure S2,
Figure S3, and Figure S4), suggesting that large and/or
highly informative data sets are necessary for the inferred
dN/dS to capture the actions of natural selection at evolu-
tionary equilibrium. However, it was not immediately clear
whether N, B, or some combination of these conditions drove
this trend. Therefore, we next assessed the relative impor-
tance of N and B on estimating the equilibrium dN/dS rate
ratio.

We calculated the tree length for each N and B parame-
terization, specifically for Ilynequa Simulations. Note that, in
the context of our mutation—selection simulations, the tree
length indicates the expected number of substitutions per site
across the entire tree, relative to the number of neutral sub-
stitutions (Tamuri et al. 2012; Spielman and Wilke 2015a). If
N and B served roughly equal roles in terms of providing
information, then any combination of N and B corresponding
to the same tree length should have produced similar dN/dS
correlations. We did not, however, observe this trend; in-
stead, all else being equal, B had a significantly greater influ-
ence than did N on the resulting correlations. For example, as
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shown in Figure 7, we compared dN/dS correlations and
RMSD from FEL1 for three combinations of N and B condi-
tions that all yielded virtually the same tree lengths (162-
164). Simulations with lower N and higher B resulted in far
more accurate dN/dS estimates, even though all simulations
in Figure 7 experienced the same average number of substi-
tutions. This increase was highly significant; for data simu-
lated without codon bias, correlations increased an average
of ~28%, from B = 0.04 to B = 0.64, and similarly RMSD
decreased an average of ~50% (both P<10~'°, linear
model). For data simulated with codon bias, correlations in-
creased an average of ~33%, from B = 0.04 to B = 0.64, and
RMSD decreased an average of ~52% (both P < 10715, linear
model). Therefore, the relative importance of divergence
over number of taxa held for simulations with and without
codon bias alike.

Simulations along empirical phylogenies recapitulate
observed trends

While the balanced-tree simulations described above pro-
vided a useful framework for examining overarching patterns
in inference-framework behaviors, they did not necessarily
reflect the properties of empirical data sets. We therefore
assessed how applicable our results were to real data analysis
by simulating an additional set of alignments along five
empirical phylogenies (Table 1). Importantly, we considered
the original empirical branch lengths for this analysis, so
these phylogenies featured a range of number of taxa and
divergence levels representative of empirical studies. We sim-
ulated alignments using the Ilypequa MutSel parameteriza-

tions, with both no codon bias and codon bias. We simulated
50 replicate alignments for each phylogeny and parameteriza-
tion, and for efficiency we inferred dN/dS using only FUBAR1
and FUBAR2.

We identified the same general trends in these empirical
simulations as we observed for simulations along balanced
trees: FUBAR1 estimated dN/dS more precisely than did
FUBAR2, and phylogenies with higher divergence levels
yielded more accurate estimates (Figure 8). Furthermore,
FUBAR2 estimated dy more accurately than ds (Figure
S10), again reflecting the relative difficulty in estimating ds
compared to dy. Importantly, most empirical phylogenies
showed mean correlations with true dN/dS of 0.4 <r < 0.6,
with the key exception of the biogenic amine receptor phy-
logeny (“amine”), whose extremely high number of taxa and
divergence yield exceptionally high correlations with both
FUBAR1 and FUBAR2. Therefore, we found that under more
realistic conditions, estimated dN/dS will correlate with the
equilibrium dN/dS ratio with only moderate strength.

In addition, results for simulations along the empirical
phylogenies supported our findings regarding the relative
importance of divergence vs. number of taxa, in particular
through the juxtaposition of results for camelid and verte-
brate rhodopsin (“vertrho”) simulations. These phylogenies
showed similar tree lengths, but the camelid tree length was
driven by the number of sequences, and the vertebrate rho-
dopsin tree length was driven by its larger branch lengths
(Table 1). Correlations and RMSD revealed a far higher in-
ference accuracy for the vertebrate rhodopsin simulations
than for the camelid simulations. On average, vertebrate
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rhodopsin correlations were 0.08 higher than were camelid
correlations, and vertebrate rhodopsin RMSD was 0.1 lower
than was camelid RMSD (both P <5 X 10~ !, linear model).
These metrics were consistent between simulations with and
without codon bias (both P> 0.5, linear model test for in-
teraction effect of presence of codon bias). Therefore, even
for data simulated along empirical phylogenies, sequence di-
vergence proved more important than did the number of taxa
for accurately estimating the equilibrium dN/dS rate ratio.

Discussion

In this study, we have examined the relative accuracy of one-
rate and two-rate site-specific dN/dS inference approaches.
Importantly, we performed these analyses in the specific con-
text of dN/dS point estimation in the presence of model mis-
specification. We have found that one-rate inference models
usually yielded more accurate inferences than did two-rate
models, across a variety of inference algorithms. More spe-
cifically, we provide evidence that one-rate models may im-
prove upon two-rate models predominantly for sites subject
to moderate-to-weak purifying selection. By contrast, one-
rate and two-rate models infer dN/dS point estimates with
comparable accuracy when sites are under stronger purifying
selection. These results hold for sequences both without co-
don bias (synonymous codons are equally fit) and with codon
bias (synonymous codons differ in fitness), suggesting that
two-rate models are not necessarily more reliable than are
one-rate models even when ds variation exists. We attribute
these results to the relative amounts of information present in
the data used for estimating dy and ds parameters. When
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relatively more information is available to estimate dy, the
ds parameter becomes overly influenced by noise and hence
reduces accuracy in dN/dS estimates.

Our study provides novel insight into how dN /dS inference
frameworks behave specifically when they are misspecified to
the data. Indeed, real genomes do not evolve according to a
dN/dS model, and thus virtually all applications of dN/dS
models will be misspecified to some degree. Although it is
certainly true that mutation-selection models also do not
precisely capture real sequence evolution, this simulation
framework provides a starting place to uncover model prop-
erties and limitations in an explicitly misspecified context.

We have demonstrated that two-rate frameworks do not
necessarily accomplish their intended goal of modeling syn-
onymous rate variation. Logically, one would presume that,
when ds differs among sites, estimating ds separately across
sites would produce more accurate dN/dS estimates than
would fixing dg to a constant value. Indeed, an assumed pres-
ence of synonymous substitution-rate variation is the very
justification for using a two-rate dN/dS model (Kosakovsky
Pond and Muse 2005). However, if the data do not contain
sufficient information for inferring ds, then two-rate param-
eterizations may suffer from excessive amounts of noise, and
hence in certain circumstances, one-rate models may be
preferable.

Our use of MutSel models for simulations raises several
important caveats that directly affect how to interpret our
results. Asdescribed, our results are contingent on the fact that
our simulation model did not match our inference model, and
hence the inference model was mathematically misspecified.
In other words, we ask how dN/dS-based models perform in
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estimating a parameter that the MutSel model does not ex-
plicitly contain, although it can be calculated from the MutSel
parameters. As a consequence, certain biases arise during
dN/dS inference. For example, comparable performance of
SLAC, an approximate counting-based method, with FEL and
FUBAR, both of which employ more rigorous statistical pro-
cedures, may be directly attributed to model misspecification.
Indeed, previous studies using data simulated under the in-
ference model have suggested that SLAC may be a biased
estimator when correctly specified, particularly at high diver-
gences (Kosakovsky Pond and Frost 2005). Therefore, it is
certainly possible that a two-rate dN/dS framework would
outperform a one-rate dN/dS framework if the model were
correctly specified. Indeed, previous studies have shown that
two-rate dN /dS models perform well for data simulated with
explicit dy and ds constant parameters (Kosakovsky Pond
and Frost 2005; Kosakovsky Pond and Muse 2005; Murrell
et al. 2012b, 2013).

Second, the substitution process under a MutSel models
is not necessarily temporally homogeneous, whereas in
dN/dS-based models, substitutions are Poisson distributed
over time. As a consequence, sequence divergence will have
a strong effect on inference accuracy for data generated in a
MutSel framework. Indeed, dN/dS can be calculated only
based on the substitutions that have occurred in the sequence
data examined. If, for example, sequences were not highly
diverged, then dN/dS estimates will be biased based on
which substitutions have had an opportunity to occur. Con-
versely, for data simulated under a dN/dS framework, which
particular substitutions had a chance to occur will matter far
less, as all nonsynonymous changes occur at the same rate.
Because the temporal inhomogeneity of the MutSel process
does not match the corresponding homogeneity of the
dN/dS-based model process, our observed correlations be-
tween inferred and true dN/dS (Figure 1) were generally
lower than they would have been if sequences were simu-
lated with a dN/dS-based model.

Third, because MutSel models can correspond only to sites
evolving under an evolutionary equilibrium [i.e., under either
purifying selection or neutral evolution where dN/dS=1
(Spielman and Wilke 2015b)], our results do not immedi-
ately apply to contexts where sequences do not evolve under
equilibrium or for the specific application of positive-selection
inference (dN/dS = 1). For example, dN /dS inference is perhaps

most commonly used to study sequences evolving along a
changing fitness landscape, as would be the case for viral
and/or pathogen evolution (Delport et al. 2008; Murrell
et al. 2012a; Demogines et al. 2013; Meyer et al. 2015;
Meyer and Wilke 2015) By contrast, the MutSel model used
here assumes that the fitness landscape is static across the
phylogeny. As such, our results may or may not have any
bearing on parameterizations used for positive-selection
inference.

Finally, our codon bias simulations assumed that dg vari-
ation was driven by selection on synonymous codons. In
other circumstances, synonymous rate variation might emerge
when a given gene contains mutational hotspots, e.g., regions
with a strongly elevated nucleotide mutation rate. In such
circumstances, it is possible that a two-rate model would
outperform a one-rate model if the variation in mutational
processes were sufficiently large (Kosakovsky Pond and Frost
2005).

Our results build on the well-documented time depen-
dency of the dN/dS metric, a phenomenon studied primarily
in the context of polymorphic data (Rocha et al. 2006;
Kryazhimskiy and Plotkin 2008; Wolf et al. 2009; Mugal
et al. 2014; Meyer et al. 2015). Our results extend these
findings and indicate that this time dependency is more gen-
eral and pertains also to circumstances where the data con-
tain only fixed differences. This finding makes intuitive sense:
As divergence increases, sites will be more likely to visit the
full range of selectively tolerated states, at which time the
long-term evolutionary constraints will become apparent. It
is therefore likely that most dN/dS measurements will be
biased by time to some degree, even if all differences are fixed
and not polymorphic. Our results suggest that this bias can be
ameliorated by focusing data set collection to include fewer,
more divergent sequences rather than as many sequences as
one can obtain. Increasing the number of taxa in a given
analysis may be beneficial only if the new sequences are sub-
stantially diverged from the existing sequences. These find-
ings should also inform studies that seek to relate site-specific
protein evolutionary rate (i.e., dN/dS) to structural proper-
ties, such as relative-solvent accessibility or weighted contact
number (Echave et al. 2016). Our findings predict that more
diverged data sets should provide more meaningful informa-
tion about long-term evolutionary constraints, which struc-
tural quantities reflect.
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Figure S1 Pearson correlation between true and inferred dN/dS across methods and simulation conditions.
A) Correlation between true and inferred dN/dS for simulations with no

) Correlation between true and inferred dN/dS for simulations with codon bias. Note that certain FEL2 points
(B =0.0025/N € {128,256} and B = 0.01/N = 128, for codon bias simulations) are not present because FEL2 generally failed
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