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ABSTRACT Lateral gene transfer is an important mechanism for evolution among bacteria. Here, genome-wide gene insertion and
deletion rates are modeled in a maximum-likelihood framework with the additional flexibility of modeling potential missing data. The
performance of the models is illustrated using simulations and a data set on gene family phyletic patterns from Gardnerella vaginalis
that includes an ancient taxon. A novel application involving pseudogenization/genome reduction magnitudes is also illustrated, using
gene family data from Mycobacterium spp. Finally, an R package called indelmiss is available from the Comprehensive R Archive
Network at https://cran.r-project.org/package=indelmiss, with support documentation and examples.
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LATERAL gene transfer is an important, yet traditionally
underestimated, mechanism for microbial evolution

(McDaniel et al. 2010; Treangen and Rocha 2011). Whole
gene insertions/deletions, referred to as indels here in the
context of lateral gene transfer, can be deduced from exam-
ining gene presence/absence patterns on a phylogenetic tree
of closely related taxa. Systematic investigation of the rates of
such indels can be done via several methods. Parsimony
methods can be used (Hao and Golding 2004); however,
these are known to underestimate the number of events in
phylogeny reconstruction (Felsenstein 2004). Sequence
characteristics such as codon usage bias and G+C content
have also been investigated in the past, but these are not
always reliable (Koski and Golding 2001). Alternatively, phy-
logenies can also be constructed for individual genes, and a
comparison of trees among individual genes can yield in-
sights on the acquisition of foreign genes.

Maximum-likelihood techniques have previously been
used to estimate gene indel rates (Hao and Golding 2006;

Marri et al. 2006; Cohen and Pupko 2010). Traditionally,
such likelihood-based analyses have required that the closely
related sequences being investigated have complete genome
sequences available. This ensures that no genome rearrange-
ment masks a homolog (Hao and Golding 2006). Here,
likelihood-based models are investigated that can also account
for potentially unobserved or missing data.

The term “missing” here is used in a loose and informal
sense. It is meant to measure the degree to which unobserved
data may nevertheless contribute to a taxon’s data set, given
the inferred rates from related taxa. Two different kinds of
missing data are used here for illustration purposes.

In thefirst example, consider a taxonora few taxa thathave
only subsets of their genome sampled. This could be due to
genomedegradation, errors in sequencing, errors in assembly,
or incomplete next generation sequencing (NGS) studies. In
bacterial evolution, genes are continually being inserted or
deleted and the goal here is to estimate howmuch of the data
has been missed within this background of continuous gene
insertion/deletion.

As a second example, consider an intracellular pathogenic
bacteria. It is well known that such species will adapt to their
host by deleting unnecessary genes. Here, the missing data
allude to the magnitude of genome reduction beyond the
normal levels of genome flux. The goal, in this case, is to
estimate this reduction while simultaneously estimating
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phylogenetic insertion/deletion rates. Not accounting for
these missing data will bias estimates of indel rates.

As an illustration, see Figure 1. Here, sequences for coding
genes (shaded rectangles) are available for five closely related
taxa. Unexpectedly, the data available for the third taxon seem
to differ from those for the other taxa, and this taxon appears to
be missing some genes that are present in the others. If these
are closely related taxa, they should have approximately similar
amounts of coding information. Hence, the data recorded for
the third taxon seem to be unusual in comparison to related
taxa. Indeed, it seems that more deletion has occurred in this
taxon relative to the others. In this case, assuming that the third
taxon hasmissing data as discussed above (via either of the two
scenarios), modeling of the insertion and deletion rates for
genes for all five of the taxa directly would lead to an over-
estimate of the deletion rate for the entire clade. However,
accounting for this unexpected event would provide better es-
timates for the insertion/deletion rates and at the same time
give an estimate of the proportion of missing data. Such a
methodology would permit the separation of the confounded
effects of missing data from normal gene gain and loss over
time. The method cannot determine the reason that the data
are missing but can estimate the magnitude. Note that while
methods exist for handlingmissing data, ambiguous states, and
sequencing error for nucleotides (Felsenstein 2004; Kuhner
and McGill 2014; Yang 2014), this article is the first to propose
dealing with missing data using such models on gene family
membership data and to illustrate their performance.

As evolutionary rates can vary among different clades or
lineages on a tree, the analyses presented also include results

from models that relax the assumption of homogeneity of
gene insertion and deletion rates across all branches on the
phylogeny. Such models can yield unique estimates of in-
sertion and deletion rates for specific clades (or branch and
node groupings) chosen based on evolutionary time or prior in-
formation. AnRpackage called indelmiss (insertiondeletion
analysis while accounting formissing data) is provided that
allows for efficientfitting of all models discussed (Appendix D).
The rest of this article is structured as follows. Materials and
Methods includes details on the likelihood calculations and
the formulation of a model that incorporates missing data.
Results illustrates model performance using simulations and
data based on gene phyletic patterns from Gardnerella vaginalis
andMycobacterium spp. Finally, some conclusions and ideas
for future work are discussed in the Discussion section.

Materials and Methods

To model gene evolution, a two-state (presence or absence)
continuous-time Markov chain is used. Genes are assumed to
be inserted or deleted independently of other genes and at
constant rates. To eliminate the problem of paralogs, only the
presence or absence of gene families is considered in the
fashion of Hao and Golding (2004, 2006). Any paralogs are
clustered as a single gene family and only one member of a
family is retained. The criteria for being considered as be-
longing to a gene family are given in Results. For the Markov
chain, an operational taxonomic unit (OTU) having a gene
family present or absent is represented by a 1 or a 0.

Let the instantaneous rates of insertion and deletion be n

and m; respectively. Then, the rate matrix Q can be written

as
�
2m m
n 2n

�
; where the rows (and columns) represent

presence and absence in the current (future) state, respec-
tively. The transition rate matrix representing the probabili-
ties of a transition from one state to the next can be easily
derived (cf. Hao and Golding 2006),

1
mþ n

3

�
n þ m exp ð2ðmþ nÞtÞ m2m exp ð2ðmþ nÞtÞ
n2 n exp ð2ðmþ nÞtÞ mþ n exp ð2ðmþ nÞtÞ

�
;

where, as for Q; the rows (and columns) represent
presence and absence in the current (future) state, respec-
tively. For example, the probability of gene pres-
ence in a descendant OTU ðPdÞ given that it was also
present in the ancestral OTU ðPaÞ is given here
by pðPdjPa; tÞ ¼ pPaPd ¼ ðmþ nÞ21 3 ðn þ mexpð2ðmþ nÞtÞÞ:

Figure 1 An illustration of the scenarios being modeled. The shaded bars
on the right indicate gene content (presence/absence) within the ge-
nomes of five species related according to the phylogeny given on the
left. The third species is missing some gene blocks that are present in the
other species.

Table 1 The proportion ðdiÞ of data that is unexpectedly missing in
the data for species i compared to closely related taxa on the
phylogenetic tree

Observed

True “0” “1”

“0” 1 0
“1” di 12 di
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Hence, the values of n and m measure the rate of gene inser-
tions (deletions) per gene family. This method requires a
known phylogenetic tree to be provided as it is not designed
to generate a tree. It is also possible to have different indel
rates assigned to different parts of the phylogenetic tree if
desired.

Evaluating the likelihood on a given phylogenetic tree is
straightforward (Felsenstein 1973, 1981). As in Yang (2014),
LiðgiÞ is defined as the conditional probability of observing
data at the tips that are descendants of node i, given that the
state at node i is gi:Here, gi can be either gene presence (P) or
absence (A). Traditionally, LðiÞðgiÞ ¼ 1 if gi is observed at
node i and 0 otherwise. However, LðiÞ are not restricted to
sum to one because they are not probabilities of different
outcomes but rather probabilities of the same observation
conditional on different events (Felsenstein 2004). Here,
the “missingness” of the data is accommodated using this
definition. If a gene is recorded as absent at tip i, the vector
of conditional probabilities is LðiÞðAÞ ¼ ðd; 1Þ9; i.e., the prob-
ability of observing gene absence given a gene is truly present
(absent) is d ð1Þ: In effect, without such a correction, the
conditional probability of observing gene presence given true
gene presence is being underestimated. Similarly, if a gene is
recorded as present at tip i, the vector of conditional proba-
bilities is LðiÞðPÞ ¼ ð12 d; 0Þ9; i.e., the probability of observing
gene presence given a gene is truly present (absent) is 12 d ð0Þ:
Here, d is the proportion of data that is unexpectedly missing
compared to closely related taxa on the phylogenetic tree.
Extending this formulation to multiple taxa, a vector of miss-
ing proportions can be constructed as d ¼ ðd1; . . . ; dsÞ9 for s
number of taxa, where d 2 ½0; 1�: Table 1 summarizes the
corrections necessary for the conditional probabilities.

Then, for a node iwith two daughter nodes j and k times tj
and tk apart, respectively,

LiðgiÞ ¼
"X

gj

  pgigjðtjÞLjðgjÞ
#
3

"X
gk

  pgigkðtkÞLkðgkÞ
#
:

This conditional probability vector can be calculated for each
node in the tree in a postorder tree traversal fashion. Finally,
the probability vector is weighted by the root probability ðpx0Þ
of the states at the root of the tree. This yields the probability
of the observed hth gene family presence/absence data given
the tree as

f ðxhÞ ¼
X
x0

  px0L0ðx0Þ  :

The log-likelihood for the n observed gene family patterns
can then be calculated as lðQÞ ¼ PN

h¼1logðf ðxhjQÞÞ: Typi-
cally, when the same rates are being fitted to the entire
tree (homogeneous rates), stationarity is assumed. How-
ever, the probability of the observed gene family presence
can also be estimated at the root within the maximum-
likelihood framework. This improves the fit if the process of
gain and loss has not reached stationarity (Spencer and
Sangaralingam 2009).

However, genes that are not observed as present in any of
the taxa, e.g., ancient genes that have been lost, are obviously
omitted in the data. This reflects the sampling bias. A correc-
tion for the sampling bias (Felsenstein 1992; Lewis 2001;
Hao and Golding 2006; Cohen and Pupko 2010) can be im-
posed such that the probability is conditional on observing
the gene in at least one species,

Lhþ ¼ Lh

12 Lh2
;

where Lh2 is the probability of gene h being absent in all taxa.
Here, Lh2; computed by calculating likelihood on the tree of
interest using a vector of zeros as observed data, is the same
for all genes.

Certain assumptions are made here that can be relaxed in
future work. First, genes can be regained after having been
deleted. Note that removing this assumption did not improve
the results in Hao and Golding (2006). Next, paralogues are
excluded in the construction of gene families. Finally, it is
assumed that each gene has an equal probability of not being
recorded as present; i.e., the missingness is equally prevalent
among different sites in the genome.

Four models are used for the analyses here. These four
models estimate indel rates (where the deletion rate is the
same as the insertion rate, i.e., m ¼ n), indel rates with pro-
portions of missing data for taxa of interest ðdÞ; unique in-
sertion and deletion rates, and unique insertion and deletion
rates with proportions of missing data for taxa of interest,
respectively. These models are referred to as models 1–4
hereon. This is the first article to investigate fitting and esti-
mating proportions of missing data (models 2 and 4) on gene

Table 2 Mean estimates for indel rates and proportion of missing data along with the ranges across 100 runs for simulation set 1

Recovered

Expected Model 1 Model 2 Model 3 Model 4

m ¼ 1 1.00 (0.94, 1.08) 1.00 (0.93, 1.06) 1.00 (0.93, 1.08) 1.00 (0.93, 1.06)
n ¼ 1 1.00 (0.94, 1.08) 1.00 (0.93, 1.06) 1.01 (0.90, 1.39) 1.00 (0.90, 1.39)
d ¼ 0 — 0.00 (0.00, 0.02) — 0.01 (0.00, 0.03)
Best (AIC) 76 8 14 2
Best (BIC) 100 0 0 0

No missing data were simulated but possible missing data were estimated for tip 1 (of six tips). The last two rows give the number of times the AIC or the BIC selected the
model in the column.
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family membership data. The models were implemented in R
(R Core Team 2014) and are available as a package (Appen-
dix D). Parameter estimates and standard errors are obtained
from numerical optimization, using PORT routines (Gay
1990) as implemented in the nlminb function in R and
the hessian function in package numDeriv (Gilbert and
Varadhan 2012), respectively.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article and the {\sf R} package available online.

Results

The likelihood-ratio test is known to favor parameter-rich
models in large molecular data sets (Yang 2014, p. 146).
However, choosing a best-fitted model from a set of models
can be done conveniently with penalized likelihood-based
model selection criteria. Here, we make use of both the
Akaike information criterion (AIC) (Akaike 1973) and the
Bayesian information criterion (BIC) (Schwarz 1978) to pick
a model with superior fit to the data,

BIC ¼ 2lðQ̂Þ2 log N3m

AIC ¼ 2lðQ̂Þ2 23m;

where lðQ̂Þ is the log-likelihood at the maximum-likelihood
estimates, N is the number of gene phyletic patterns, andm is
the number of parameters estimated for the model.

Simulations

Multiple simulations were conducted to evaluate parameter
recovery and judge the efficacy of themodel selection criteria.

Simulation set 1:Onehundred randomsamplesof5000gene
presence/absence phyletic patterns were simulated for six
taxa with m ¼ n ¼ 1; using the phangorn package
(Schliep 2011) in R. For simulating each sample, a tree was
randomly generated using the APE package (Paradis et al.
2004) in R with the branch lengths sampled from a beta
distribution with shape parameters 1 and 4 (to simulate
closely related taxa). Here, missingness was not simulated.
Models 1–4 were run on these. All models yielded insertion
and deletion rate estimates close to generating values. A
Kruskal–Wallis rank sum test for the m estimates and n esti-
mates from the four models yielded P-values of 0.645 and
0.781, respectively (note that ANOVA with a Welch correc-
tion for homogeneity also does not yield enough evidence to
reject the null). This implies that the models fitting a missing
data proportion yielded rate estimates that were similar to
the estimates from models 1 and 3. The BIC and AIC picked
the generating model (model 1) 100 and 76 times, respec-
tively. For models 2 and 4, a missing data parameter was
fitted for the OTU at tip 1 in each of the 100 runs. Model 4,
which fitted insertion and deletion rates along with a missing

data proportion, yielded on average m̂ ¼ 0:998; n̂ ¼ 1:003;
and d̂ ¼ 0:005 (median d̂ ¼ 0:001) across the 100 runs (Ta-
ble 2).

This simulation was repeated with unequal deletion and
insertion rates: m ¼ 0:67 and n ¼ 2; respectively. Models
3 and 4 were run on these (Table 3). The BIC and AIC picked
the generating model (model 3) 99 and 92 of 100 times, re-
spectively. Both model 3 and model 4 yielded average esti-
mates ofm and n that were very close to the values used in the
simulation. Model 4 estimated an average d̂ ¼ 0:002 (for the
OTU at tip 1) with a median d̂ ¼ 0:000: Welch two-sample
two-sided t-tests (not assuming equal variance) comparing m
and n estimates (from models 3 and 4) yielded P-values of
0.476 and 0.824, respectively.

Again, this last simulation was repeated with unequal
deletion and insertion rates: m ¼ 0:67 and n ¼ 2; respec-
tively. But, after the phyletic patterns were generated, a pro-
portion of genes that were originally present for a single
taxon (tip 1; same across runs) were recorded as absent in
each run. This proportion was sampled in each simulation
from a uniform distribution between 0 and 0.6. Note that
the upper limit of 0.6 is arbitrary and used for convenience;
a higher upper limit could easily have been used. The BIC and
AIC picked the generating model (model 4) 95 and 97 times,
respectively (Table 4). As expected, the model selection cri-
teria picked model 3 on those occasions where the estimated
missing data proportion was very small and so model 4 did
not result in a substantially better fit to the data. Model 3,
which cannot account for a missing data proportion, yielded
an average m̂ ¼ 1:127 and n̂ ¼ 2:765 across the 100 runs. On
the other hand, model 4 averaged m̂ ¼ 0:665; n̂ ¼ 1:982; and
d2 d̂ ¼ 0:001 for tip 1 (median d̂ ¼ 0:000). Clearly, model
4 yields insertion and deletion rate estimates close to the gen-
erating values while providing a reasonable estimate of the
proportion of missing data. Table 4 also shows tighter ranges
for the estimates for model 4 across the 100 runs. Welch two-
sample two-sided t-tests comparing m and n estimates (from
models 3 and 4) yielded p-values equal to 3:0593 1028 and
1:9763 1024; respectively. A Welch two-sample one-sided
t-test comparing deletion rate estimates from models 3 and
4 suggests that model 3 yields, on average, a higher estimate
for deletion rate than model 4 (p-value ,   1:5293 1028).
This supports our thesis that artificially inflated deletion

Table 3 Mean estimates for indel rates and proportion of missing
data along with the ranges across 100 runs for simulation set 1

Recovered

Expected Model 3 Model 4

m ¼ 0:67 0.66 (0.62, 0.71) 0.66 (0.62, 0.70)
n ¼ 2 1.98 (1.80, 2.09) 1.98 (1.80, 2.09)
d ¼ 0 — 0.00 (0.00, 0.02)
Best (AIC) 92 8
Best (BIC) 99 1

No missing data were simulated but possible missing data were estimated for tip
1 (of six). Unequal values of m and n are used. The last two rows give the number of
times the AIC or the BIC selected the model in the column.
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rates are inferred if missing data are not explicitly accounted
for in these indel rate models.

Simulation set 2: As noted in the Introduction, evolutionary
rates can vary amongdifferent clades or lineages on a tree and
so here, heterogeneous gene insertion and deletion rates
among different lineages are simulated and analyzed in the
presence of missing data. Five hundred random samples of
5000 gene presence/absence phyletic patterns were simu-
lated for 10 taxa (Figure 2). First, a tree with 10 taxa was
generated with branch lengths sampled from a beta distribu-
tion with shape parameters 1 and 8 (to simulate closely re-
lated taxa). The patterns simulated using the phangorn
package were based on base deletion rates sampled from
between 0.625 and 1.167 with the insertion rates exploring
the interval between 0.875 and 2.500. The branch lengths for
the clades with the branches in blue and black in Figure 2
were multiplied by scaling factors sampled independently
from the interval ½1; 3�; respectively. As a result, the deletion
(insertion) rates for the blue clade over the 500 samples
were generated from ½0:652; 3:375� ð½0:925; 7:275�Þ: Simi-
larly, the deletion (insertion) rates for the black clade
over the 500 samples were generated from ½0:627; 3:383�
ð½0:875; 7:154�Þ: Missing data were simulated at tips
f1; 3; 5; 6; 9g by randomly and independently sampling from
a uniform distribution between 0 and 0.6. For the analy-
ses, tips f1; 2; 3; 5; 6; 8; 9g were allowed a missing data
proportion.

Model 4 was run on all 500 samples. Moreover, the prob-
ability of gene family presence was also estimated at the root.
Both models, with and without estimating the probability of
gene family presenceat the root, performwell onaverage. The
parameter estimates are close to the sampled parameters. For
example, for themodel that did not estimate the probability of
gene family presence at the root, the difference in given and
estimated parameters for the unique insertion and deletion
rates for the three colored clades centered on 0.009 (median
0.006) for the 500 samples (see Figure 3).

Moreover, the estimated proportions of missing data are
also close to the given parameters (Table 5). A note of caution
for the reader: If the same 500 random samples are fitted
with a missing data proportion for the 10th tip (where
1000 genes are then recorded as absent during data simula-

tion) instead of the 9th tip, the overall estimates do not vary
by much. However, if the same samples are fitted with miss-
ing data proportions for all tips (1–10), the models become
overparameterized and while the recovered parameter esti-
mates are reasonable on average, parameter estimates can
deviate wildly, especially for longer trees (see Discussion). In
the context of accounting for sequence errors in nucleotide
models, Yang (2014) recommends that at least one genome
be free of sequence errors. Here, we err on the side of caution,
and for the real data analyses, a minimum of three taxa are
assumed to not possess any missing data and are modeled
without missing data proportions.

In Appendix E, we test cases where only the lineages with
the highest apparent gene data loss are modeled with a pro-
portion of missing data. This is a type of model misspecifica-
tion. Nevertheless, the results are reasonably good despite
the inappropriateness of the test.

Two examples

G. vaginalis data: Data containing gene presence/absence
measurements on 2036 genes for 35 OTUs of G. vaginalis
(Figure 4) are analyzed. G. vaginalis is known to be associ-
ated with bacterial vaginosis (Verhelst et al. 2004; Menard
et al. 2008). One of these OTUs is a draft genome (labeled
Troy), generated from the remains of a fossilized concretion
from Troy, Western Anatolia (present-day Turkey). The tree
was rooted on the branch leading to JCP7659, using Figtree
(Rambaut 2014). These data yielded 746 distinct phyletic
patterns of gene presence and absence. Of the total
2036 genes, 558 genes were present in all OTUs. But another

Table 4 Mean estimates for indel rates and proportion of missing
data along with the ranges across 100 runs for simulation set 1

Recovered

Expected Model 3 Model 4

m ¼ 0:67 1.13 (0.63, 5.09) 0.67 (0.62, 0.70)
n ¼ 2 2.77 (1.74, 14.72) 1.98 (1.80, 2.12)
d2 d̂ ¼ 0 — 0.00 (20:01; 0.01)
Best (AIC) 97 3
Best (BIC) 95 5

For models 3 and 4, missing data were simulated for tip 1 (of six) with a random
proportion sampled from a uniform distribution between 0 and 0.6. The last two
rows give the number of times the AIC or the BIC selected the model in the column.

Figure 2 Phylogram for the simulated data set 2. Here, colored clades
were simulated with different indel rates.
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151 genes were present in all OTUs except the ancient ge-
nome Troy (see Appendix A).

Method A: Models 1–4 were fitted to these gene phyletic
patterns, assuming homogeneity of gene insertion and de-
letion rates across all branches on the phylogeny. In addi-
tion, for models 2 and 4, a missing data parameter was fitted
for all taxa except three (cf. Figure 4). The estimate for
m ¼ n is �   2:955ðSE ¼ 0:067Þ: This implies that during
the evolutionary time period required for one substitution
per nucleotide site (on average), an entire gene could pos-
sibly have been inserted/deleted three times. Model 2,
which fits a proportion of missing data as well, yielded
m̂ ¼ n̂ ¼ 1:875ðSE ¼ 0:052Þ: Clearly, estimating the propor-
tion of missing data leads to a lower indel estimate. As in the
simulations, this implies that not fitting a proportion of
missing data explicitly can lead to artificially inflated indel
estimates. Twenty-seven of the missing data proportions
were estimated to be between 0 and 0.05, with four taxa
between 0.05 and 0.1 and the Troy strain yielding an esti-
mate of�   0:248ðSE ¼ 0:013Þ: Note that this model yielded
superior AIC and BIC values to those of model 1. Moreover,
the high missing data proportion for the Troy strain cannot
be explained away by estimating unique insertion and de-
letion rates as in model 3. This latter model yielded
m̂ ¼ 2:442ðSE ¼ 0:065Þ and n̂ ¼ 3:760ðSE ¼ 0:090Þ; sug-
gesting high rates of gene insertion and deletion; however,
this model yielded inferior AIC and BIC values to those
of model 2. This implies that accounting for possible
missing data is more important to the model fit on these
data than fitting deletion and insertion rates separately.
Of all the models, model 4 results in the best fit to the
data in terms of AIC ð243437:13Þ and BIC ð243628:18Þ
values. After accounting for the missing data proportions,
m̂ ¼ 1:326ðSE ¼ 0:046Þ and n̂ ¼ 2:577ðSE ¼ 0:067Þ: Fur-
thermore, note that d̂Troy ¼ 0:245ðSE ¼ 0:013Þ; i.e., the
missing data proportion for the Troy strain remained much

higher than expected (median estimated missing data pro-
portion is 0.015). The insertion and deletion rates suggest that
insertion is occurring at almost twice the rate of deletion after
accounting for possible missing data. Accounting for the miss-
ing data proportions dramatically reduces the estimate (close
to half) for deletion rate between models 3 and 4.

Method B: Models 2 and 4 were also run assuming that all
branches follow the same insertion and deletion rates but that
the only taxon of interest with amissing data proportion is the
Troy strain. This was done to check whether models 2 and
4 in method A were overparameterized and a simpler model
could yield an equivalent fit. Similar results to those observed
for method A were obtained. AIC and BIC values indicate
that model 2 yields a superior fit to models 1 and 3 from
method A. Estimates for d̂Troy from models 2 and 4 were
0:238  ðSE ¼ 0:013Þ and 0:236ðSE ¼ 0:013Þ; respectively.
However, note that AIC and BIC values for method B models
were consistently lower than for equivalent method A
models.

Method C: Models were fitted with different insertion and
deletion rates for specific clades (cf. colored branches in Fig-
ure 4). Here, the root probability of gene family presence was
also estimated. Not doing so, when fitting clade-specific in-
sertion and deletion rates, resulted in inferior AIC and BIC
values. The clades with different insertion and deletion rates
were chosen based on the major distinct phylogenetic group-
ings (cf. colored branches in Figure 4). Ideally, this grouping
should be informed by biological intuition. In this case, we
have used clade membership. In other cases, branch lengths
may also be used as a proxy to cluster branches. Preferably, a
priori information should be used. As in method A, missing
data proportions were also fitted. Model 4 yielded the best fit
(Table 6). The probability of gene family presence at the root
was estimated to be 0:590ðSE ¼ 0:011Þ: From this model,
28 of the missing data proportions were estimated to be

Figure 3 Histograms of the difference
between the given and the estimated
insertion (n) and deletion (m) rates for
each clade for simulation set 2. The
three color annotations correspond to
the colors in Figure 2.
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between 0 and 0.05, with three taxa between 0.05 and
0.1 (ATCC14018, JCP7672, and A6420B all �0.063). The
estimated missing data proportion for Troy was again
0:228ðSE ¼ 0:013Þ; much higher than the median missing
data proportion (0.015). The estimate of 0.228 corresponds
to �273 genes. This supports Devault (2014) who noted,
based on genome size comparisons, that the true gene con-
tent of the G. vaginalis Troy strain may be underrepresented
by between 200 and 300 genes. The clade with the Troy
strain (green clade) has high estimated rates of inser-
tion n̂1 ¼ 10:536ðSE ¼ 0:339Þ with an estimated rate of
deletion m̂1 ¼ 0:927ðSE ¼ 0:158Þ after accounting for
missing data proportions. Estimated rates of deletion and
insertion for the red clade are m̂2 ¼ 1:888ðSE ¼ 0:305Þ
and n̂2 ¼ 7:001ðSE ¼ 0:385Þ; respectively. The blue clade is
found to have a low deletion rate of m̂3 ¼ 0:181ðSE ¼ 0:031Þ
with insertion rate estimated to be n̂3 ¼ 1:781ðSE ¼ 0:067Þ:
The branches and the taxa connected by black colored
branches, on the other hand, have a low estimated rate of
insertion n̂4 ¼ 0:906ðSE ¼ 0:050Þ with an estimated rate of
deletion m̂4 ¼ 0:785ðSE ¼ 0:047Þ after accounting for miss-
ing data proportions. Moreover, the model selection criteria
values suggest that the observed gene presence/absence data
for Troy are not explained as well by a gene insertion/
deletion model without accounting for potential missing
data. Other variations on the model variables in terms of
clades or groups of branches with unique rates were also
run (results not shown). However, model 4 from method
C discussed above yielded the best fit in terms of AIC
ð241; 065:98Þ and BIC ð241; 296:35Þ values among all
models and methods.

Pathogenic bacteria data: The genus Mycobacterium in-
cludes several causative agents of important diseases in hu-
mans and animals. For example, Mycobacterium tuberculosis
and M. leprae are known to be the causative agents of tuber-
culosis (Cole et al. 1998) and leprosy (Cole et al. 2001), re-
spectively. M. ulcerans is known to cause Buruli ulcers in
humans (Stinear et al. 2007). M. bovis causes tuberculosis
in cattle and M. avium causes disease in immunocompro-
mised individuals (Senaratne and Dunphy 2009).

The Mycobacterium genus contains many intracellular
bacteria. Among these, M. leprae is a known obligate intra-
cellular parasite. Most other species are facultative with the
exception of the recently discoveredM. lepromatosis that also
causes leprosy (Han et al. 2009; Han and Silva 2014). Obli-
gate intracellular bacteria are typically characterized by
smaller genome sizes compared to facultative intracellular

or free-living bacteria (Bordenstein and Reznikoff 2005).
Furthermore, close to half of the genome of M. leprae is
known to be pseudogenes and noncoding regions (Cole
et al. 2001). An analysis of gene insertion/deletion rates
can shed light on rates of lateral gene transfer while provid-
ing a maximum-likelihood estimate of how much coding ge-
netic material has been discarded (or become nonfunctional)
given the passage of evolutionary time and the evolutionary
relationships between congeneric Mycobacterium species.

To identify gene families, a procedure similar to that ofHao
and Golding (2004, 2006) was followed. This procedure was
applied to 10 congeneric Mycobacterium genomes down-
loaded from the NCBI as outlined in Appendix B. A phylogeny
forMycobacterium species has been proposed in the literature
(O’Neill et al. 2015). Details on the construction of the phy-
logenetic tree are provided in the above-mentioned article.
Here, we use a pruned version of the tree (Figure 5) from
O’Neill et al. (2015) and analyze the gene family presen-
ce/absence data as outlined in Appendix B. Note that the M.
leprae genome used in the construction of their tree was dif-
ferent: O’Neill et al. (2015) used M. leprae Br4923 with ac-
cession no. NC_011896.1 while we used M. leprae TN
(NC_002677.1) (Appendix C).

Models 1–4 were fitted to the gene phyletic patterns given
the tree constructed above, assuming homogeneity of gene
insertion and deletion rates across all branches on the phy-
logeny (method A). Missing data proportions were fitted for
all taxa except three (cf. Figure 5). Note that as seen for theG.
vaginalis analysis, models 2 and 4 fitted the data better in
terms of AIC and BIC values compared to models 1 and 3,
respectively. High missing data proportions were estimated
forM. leprae andM. ulcerans compared to themedianmissing
data proportions of 0.034 and 0.036 from models 2 and 4,
respectively. Model 4, which fits both insertion and deletion
rates, yielded estimates of d̂M: leprae ¼ 0:500ðSE ¼ 0:011Þ
and d̂M: ulcerans ¼ 0:242ðSE ¼ 0:007Þ: The high missing data
proportion estimate forM. leprae is in line with findings of an
extreme case of reductive evolution (Cole et al. 2001; Gómez-
Valero et al. 2007).

The assumption of homogeneous indel rates across all
brancheswas relaxedanddifferentmodelswerefittedaccord-
ing to different combinations of clades or branch groupings
with unique indel rates. In terms of AIC and BIC values,model
4withunique rates for eachof the coloredbranches inFigure5
fitted the best (method B; Table 7). For the best-fitting
model, the probability of gene family presence at the root
was also estimated (i.e., we do not assume that stationarity
has been achieved), which improved the fit of the model. The

Table 5 Ranges for differences between simulated and estimated proportion of missing data for the corresponding taxa over 500 samples
from simulation data set 2

Tip labels

Difference 1 2 3 5 6 8 9

di 2 d̂i (20:01; 0.02) (20:03; 0.00) (20:03; 0.02) (20:02; 0.02) (20:02; 0.02) (20:03; 0.00) (20:03; 0.03)

The average difference for each taxon was 0.00. The tree in Figure 2 is used with m, n, and di sampled from a range of values (see text).
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probability of gene family presence at the root was estimated
to be 0.066 (SE = 0.004). Using this model, missing data
proportions estimated for M. leprae and M. ulcerans are
0:543ðSE ¼ 0:011Þ and 0:239ðSE ¼ 0:009Þ (median esti-
mated missing data proportion is 0.024), corresponding to
�1660 and 869 genes, respectively.

The branches in red in Figure 5 had an estimated rate of
deletion m̂1 ¼ 1:097ðSE ¼ 0:061Þ and estimated rate of in-
sertion n̂1 ¼ 0:379  ðSE ¼ 0:024Þ: The low rate of insertion
and relatively low rate of deletion (high compared to the rate
of insertion) corresponds well with M. leprae being a niche
specialist. Indeed, a recent study found remarkable genomic
conservation and that very few large insertions or deletions
have taken place in a comparison of ancient and modern
M. leprae strains (Schuenemann et al. 2013). Moreover,
note also that M. kansasii had the largest number of genes
(cf. Table B1) among theMycobacterium spp. of interest here.
The estimated indel rates along with the large genome size of
M. kansasii also suggest a slow rate of evolution.

The blue group in Figure 5, on the other hand, yielded
m̂2 ¼ 0:886ðSE ¼ 0:796Þ and n̂2 ¼ 2:846ðSE ¼ 0:221Þ: The
high missing data proportion estimated for M. ulcerans rec-
onciles well with it evolving from M. marinum and undergo-
ing reductive evolution for niche adaptation (Rondini et al.
2007; Stinear et al. 2007; Demangel et al. 2009). The surpris-
ingly higher estimated insertion rate in the clade with
M. ulceransmight be attributed to the relatively higher num-
ber of genes that are unique toM. ulcerans (cf. Table B1) and
the short branch length leading to M. ulcerans compared to
M. leprae, the other species that underwent rapid gene loss.

This reflects the relatively older gene inactivation event of
M. leprae (Gómez-Valero et al. 2007) vs. the relatively recent
divergence of M. ulcerans (and reductive evolution) from
M. marinum (Stinear et al. 2000). The branches in green in
Figure 5 (M. tuberculosis complex) had an estimated rate
of deletion m̂3 ¼ 1:670ðSE ¼ 0:911Þ and an estimated rate
of insertion n̂3 ¼ 3:919ðSE ¼ 0:289Þ: Finally, the black
group in Figure 5 yielded m̂5 ¼ 0:394ðSE ¼ 0:042Þ and
n̂5 ¼ 0:221ðSE ¼ 0:015Þ: Model 3, which does not give an
estimate of missing data proportion (and fitted the data
poorly in terms of AIC and BIC values), yielded higher de-
letion rates for the red, blue, and green groups.

Finally, models were also fitted with the same branch
grouping topology as above except that the branches leading
to M. leprae, and M. ulcerans and M. marinum, were con-
strained to have the same insertion and deletion rates. This
model also yielded similarly high values of estimated missing

Figure 4 Phylogram for the G. vaginalis data. The coloring of the
branches corresponds to the grouping for model 4 from method C.
The + signs indicate that a missing data proportion was fitted for the
associated taxa. Appendix A gives references and strain information for
these taxa.

Table 6 Clade-specific rate estimates (and standard errors) from
model 4

Branch grouping

Rates Black Red Green Blue

m̂ 0.79 (0.05) 1.89 (0.31) 0.93 (0.16) 0.18 (0.03)
n̂ 0.91 (0.05) 7.00 (0.39) 10.54 (0.34) 1.78 (0.07)
d̂Troy 0.23 (0.01)
p̂root 0.59 (0.01)

The colors of the clades correspond to Figure 4. All but three taxa have the pro-
portion of missing data estimated. Only the estimates for Troy are shown here; the
remainder are listed in Appendix A.

Figure 5 Phylogram for the Mycobacterium spp. data from O’Neill et al.
(2015). The coloring of the branches corresponds to the grouping for the
model that best fitted the data. The + signs indicate that a missing data
proportion was fitted for the associated taxa.
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data. However, this model also gave an inferior fit in terms of
AIC and BIC values, suggesting that even though M. leprae
and M. ulcerans have both undergone genome reduction,
these should not be grouped together given the relative times
of emergence of M. leprae and M. ulcerans.

Often, when working with Mycobacterium data, the
PE/PPE genes are filtered out. Such a subset of the gene
family data set is analyzed in Appendix F. An alternate topol-
ogy for Mycobacterium spp. is also used for the data set con-
structed in this section to show sensitivity of themodels to the
given phylogenetic trees. Results based on this are discussed
in Appendix G. The results do not differ qualitatively in either
analysis.

Discussion

Here, a maximum-likelihood method to estimate gene
insertion/deletion rates with missing data is investigated.
This variant allows for much better fitting of gene phyletic
patterns when the data observed have unexpected pat-
terns. This can be manifested in two different ways: first,
where only a subset of the data was actually detected and
second, when the data correctly show much fewer coding
genes than closely related taxa. In these cases, the in-
terpretation of the estimated missing data proportion
differs. In the former case, the missing data could allude
to genome degradation, or errors in sequencing, or issues
in gene family creation, etc., while in the latter case, they
would allude to the proportion of discarded or nonfunc-
tional genes compared to closely related taxa. Accordingly,
two examples based on G. vaginalis and Mycobacterium
spp. gene families were analyzed. Simulations were con-
ducted that illustrated good parameter recovery and
showed that model selection criteria like AIC and BIC
perform well.

An R package that implements all models discussed in this
article is also announced (Appendix D). The phylogenetic
comparative methods investigated are numerically stable
and perform well on average for closely related taxa. Good
parameter recovery is shown via simulations. Note that pa-
rameter estimates tend to be better and with tighter confi-
dence intervals for shorter trees.

The user is also cautioned to be wary of overparameteri-
zation. Even thoughassigningmissingdata proportions to all

tips on a tree can sometimes result in reasonable answers
(especially on short trees, i.e., for very closely relatedOTUs),
our simulations show that parameter estimates can also
deviate wildly (especially for longer trees). This occurs
because the model uses information from other taxa to
determine the highest-likelihood parameters. If all taxa
are potentially missing data, then it is difficult to determine
the true underlying rates of indels relative to missing data.
In our experience, this overparameterization situation is
easily observable due to the resulting higher variances in
parameter estimates.

To choose between competing models, model selection
criteria like the AIC and BIC are utilized here. Overall, the
BIC is found to exhibit superior performance to the AIC in
picking the generating model in our simulations. On the
rare occasions this is not true, it is because the estimated
missing data proportionwas very small and so the BIC value
for the generating model (model 4 with a very small pro-
portion of missing data simulated) did not result in a sub-
stantially better fit to the data. Here, the AIC can (rarely)
perform better due to the smaller penalty in its functional
form.

Future extensions include mixture model generalizations
(Spencer and Sangaralingam 2009; Cohen and Pupko 2010)
that can allow for heterogeneous rates among gene families.
Gamma rate variation can also be incorporated for fitting
variable rates among different gene families. Combining
the models herein with partition models could also shed light
on gene family-category specific pseudogenization, e.g., the
proportion of nuclear genes vs. proportion of mitochondrial
genes pseudogenized.
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Table 7 Clade-specific rate estimates (and standard errors) from model 4

Branch grouping

Rates Black Red Green Blue

m̂ 0.39 (0.04) 1.10 (0.06) 1.67 (0.91) 0.89 (0.80)
n̂ 0.22 (0.02) 0.38 (0.02) 3.92 (0.29) 2.85 (0.22)
d̂M: leprae 0.54 (0.01)
d̂M: ulcerans 0.24 (0.01)
p̂root 0.07 (0.00)

The colors of the clades correspond to Figure 5. All but three taxa have the proportion of missing data estimated. Only the estimates for M. leprae andM. ulcerans are shown
here, the remainder are listed in Appendix B.
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Appendices

Appendix A: G. vaginalis Data

These data are presented in Devault (2014) and in A. M. Devault, T. D. Mortimer, A. Kitchen, H. Kiesewetter, J. M. Enk, G. B.
Golding, J. Southon, M. Kuch, A. T. Duggan, W. Aylward, S. N. Gardner, J. E. Allen, A. M. King, G. D. Wright, M. Kuroda, K.
Kato, D. E. G. Briggs, G. Fornaciari, E. C. Holmes, H. N. Poinar, and C. S. Pepperell (unpublished results), where the pipeline for
creating the gene family and phylogeny is discussed at length. A brief summary of the pipeline follows. It was not feasible to
construct a contiguousG. vaginalis genome due to lack of synteny in the ancient reads and high coverage variability. Hence, a de
novo approach was used to construct the Troy gene content using reads assembled to the annotated coding regions of extant G.
vaginalis strains (Table A1). Coding sequence (CDS) annotations extracted from 34 modern G. vaginalis full and scaffold
annotated genome sequences were concatenated into a reference genome. Trimmed paired-end Nod1_1h-UDG reads were
then assembled to the set of 34 CDS concatenated references. All paired and unpaired reads that mapped were extracted and
assembled using Velvet (Zerbino and Birney 2008). The 1207 contigs generated were analyzed using the nucleotide–nucle-
otide basic local alignment search tool (BLASTN) (Altschul et al. 1997) against the nonredundant (NR) database to detect any
non-G. vaginalis sequences. This step resulted in 20 contigs being excluded because the top hit in BLASTN was Staphylococcus
saprophyticus (previously determined to be a primary constituent of the sample), leaving a final set of 1187G. vaginalis contigs.
This set of genomic contigs resulted in 972 genes based on annotation using Prokka (Seemann 2014). Paired-end assembly of
Nod1_1h-UDG reads to the final set of contigs was done using Bowtie2 (Langmead and Salzberg 2012) followed by removal of
duplicates using SAMtools (Li et al. 2009). OrthoMCL (Li et al. 2003) was used to group protein sequences from the anno-
tations by Prokka, using an all vs. all BLAST. These groups were subsequently filtered for those containing all genomes of
interest and such that no proteins were present in more than one copy. The nucleotide sequences for the corresponding genes
were individually aligned with MAFFT (Katoh et al. 2002) and trimmed with trimAl (Capella-Gutiérrez et al. 2009). The
alignments were concatenated and core SNPs were obtained, excluding regions corresponding to a gap in any strain. Finally,
RAxML (Stamatakis 2014) was run on this core SNP alignment to create a phylogenetic tree. The support for the tree was
calculated using 100 bootstrap replicates.

The number of genes and the number of unique genes present for eachOTU in the gene database constructedwith 2036 total
number of genes are provided. A total of 558 genes were present in all OTUs. Note that the number of genes here refers to
membership in gene families, not the total number of genes for each OTU. The missing data proportions are from method C,
model 4 for the G. vaginalis analysis.

Appendix B: Mycobacterium Data

Even though the best BLAST hit is known to not always be the best indicator for the nearest phylogenetic neighbor or even an
orthologue (Koski and Golding 2001), building gene families typically relies on using sequence similarity. Briefly, coding
sequences were obtained for 10 congenericMycobacterium species from NCBI. These areM. leprae,M. ulcerans,M. africanum,
M. kansasii,M. tuberculosis,M.marinum,M. canettii,M. avium,M. bovis, andM. gilvum (Table B1). In the literature,M. canettii,
M. tuberculosis, M. bovis, and M. africanum are often grouped together as a M. tuberculosis complex. While most genomic
sequences were available in the RefSeq database, M. gilvum and M. marinum were not (at the time of data collection:
September 2014) and were obtained as GenBank files from NCBI. Insertion sequences, prophages, and transposases were
filtered out before the creation of a gene family database. To identify gene families, potential homologues were measured
according to sequence similarity, using BLASTP (Altschul et al. 1997). Here, the final alignment was built using the Smith–
Waterman algorithm (Smith and Waterman 1981) and soft masking was also employed (cf. Moreno-Hagelsieb and Latimer
2008). Reciprocal hits with expect values ,0.05 and match lengths (no gaps) that cover .85% of the query protein length
were retained. Protein sequences satisfying these criteria were allocated to the same gene family. Furthermore, all potential
paralogues were clustered in the same family under the conservative assumption that these were results of gene duplication
and not an insertion of a similar gene. Genes without any identified homologues (according to the above criteria) were
searched against the NR database. As above, genes that had hits with expect values ,0.05 and match lengths that
cover .85% of the query protein length were retained. As in Hao and Golding (2004, 2006), the “single link” method of
Friedman and Hughes (2003) was used to group genes into gene families. This means that the allocation of genes to a family is
associative in that if a query gene is similar to any of the genes in a gene family, the query gene belongs to the same family.
Genes retained from both all-vs.-all BLASTP steps between the Mycobacterium spp. under consideration and from the search
against the NR database were used to create a gene family database. Note that this database has been constructed based on
sequence similarity and hence should be treated as conservative. For example, a laterally transferred gene that shares
similarity to an existing gene might be treated as a paralogue when building the database. Our database construction method
would also falter if a single gene in a specific taxon is split into two reading frames by a frameshift or premature stop codon.
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These genes may not be allocated to the same gene family as they might no longer cover 85% of the query. This is another
mechanism of apparent gene gain, distinct from lateral gene transfer.

Appendix C: Gene Presence/Absence Patterns

The gene presence/absence patterns for theG. vaginalis andMycobacterium spp. alongwith the respective trees are provided in
a supplementary R package.

Appendix D: R Package

An R package namedindelmiss is available from the Comprehensive R Archive Network (CRAN). The package can fit four
models for estimating gene insertion/deletion rates. These four models estimate indel rates (where the insertion and
deletion rates are forced to be equal), indel rates and proportions of missing data for taxa of interest, unique insertion and deletion
rates, and unique insertion and deletion rates and proportions of missing data for taxa of interest, respectively (Table D1).

The package can also implement a correction for sampling bias, i.e, genes that were not observed for any of the OTUs. It is
possible to simulate gene phyletic patterns for indel analysis as well as to provide custom trees and data. Furthermore, in lieu of
weighting presence/absence contributions at the root of the tree by equilibrium frequencies (default behaviour), it is also
possible to use equal weighting and user-specified probabilities and to estimate the probabilities at the root, using maximum
likelihood.Moreover, cladeor evolutionary-grade specific insertionanddeletion rates canbeestimatedaswell. Themodelshave
been optimized for speedwith the recursive likelihood calculation written using theRcpp package (Eddelbuettel et al. 2011).
Note that packages markophylo (Dang and Golding 2016) and DiscML (Kim and Hao 2014) can fit models 1 and
3 (that do not account for missing data) as well.

Installation instructions
The following commands install indelmiss binaries from CRAN:
install.packages(“indelmiss”, dependencies = TRUE, repos = “http://cran.r-

project.org”)

Source package from CRAN
install.packages(“indelmiss”, dependencies = TRUE, repos = “http://cran.r-

project.org”, type = “source”)
If “-lgfortran” and/or “-lquadmath” errors are encountered on an OS X system, unpack fortran-4.8.2-darwin13.tar.bz2 from

http://r.research.att.com/libs/into/usr/local. This issue has cropped up in the past with Rcpp/RcppArmadillo. Also, see the
Rcpp FAQs vignette on https://cran.r-project.org/package=Rcpp/index.html.

Prior to installing anRpackage from source (download fromCRAN) that requires compilation onWindows,Rtoolsneeds
to be installed from http://cran.r-project.org/bin/windows/Rtools/. Rtools contains MinGW compilers needed for build-
ing packages requiring compilation of Fortran, C, or C++ code. The PATH variable should be allowed to be modified during
installation ofRtools. If this is not permitted, the PATHvariablemust be set to include “RTools/bin” and “Rtools/gcc-x.y.z/bin,”
where “x.y.z” refers to the version number of gcc, following the installation of Rtools. Then,

install.packages(c(“Rcpp”,”ape”,”phangorn”, “numDeriv”, “testthat”), repos =
“http://cran.r-project.org”)

install.packages(“indelmiss_1.0.7.tar.gz”, repos = NULL, type = “source”)
Make sure the version number of indelmiss reflects the latest version on CRAN.

Appendix E: Simulation Set 3

We investigated caseswhere only the lineageswith thehighest apparent genedata loss on agiven phylogeny aremodeledwith a
proportionofmissingdata. Similar to simulation set2, heterogeneousgene insertionanddeletion rates amongdifferent lineages
are simulated and analyzed in the presence of missing data. Five hundred random samples of 5000 gene presence/absence
phyletic patternswere simulated for 10 taxaon the same tree (with thedifferent-colored clades followingdifferent rates) asused
in simulation set 2 (Figure 2). The patterns simulated using thephangorn package followed the same parameters as those
followed in simulation set 2. However, here, missing data were simulated at tips f3; 5; 9g ðf1; 6gÞ by randomly and indepen-
dently sampling from a uniform distribution between 0.2 (0) and 0.6 (0.15). Hence, for tips 1 and 6, a smaller proportion of
missing data were randomly simulated than that for tips 3, 5, and 9. As in simulation set 2, no missing data were simulated at
tips 2 and 8. Only tips f3; 5; 9g were allowed a missing data proportion. In effect, only those taxa are modeled with missing
data proportions that have the highest apparent gene loss.

Model 4 was run on all 500 samples. The parameter estimates are close to the sampled parameters. We find that the results
differ cladewise. For example, tips 1 and 6 in Figure 2 are in the gray clade, in which we saw the highest amount of bias for
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missing data proportion for tip 5 (Table E1; also note the ranges of the differences for the three tips). Missing data proportions
for tips 3 and 9 are estimated very accurately but the missing data proportion for tip 5, although estimated with a reasonable
magnitude, is somewhat biased. Figure E1 shows the differences between true and estimated rates, standardized by the true
rates. Clearly, results based on the deletion rate for the gray clade (second row, middle column in Figure E1) are worse
compared to the others. Deletion rates tend to be overestimated for the gray clade. While these results are intuitive, we urge
caution in interpreting these results. Note that this is but one investigation of model misspecification. More work needs to be
done to investigate this phenomenon in these phylogenetic comparative models.

Appendix F: PE/PPE Genes

Whenworking withMycobacterium spp. data, the PE/PPE genes are often left out of the analysis. Here, the gene family data set
constructed in Two examples in the main text is filtered to remove such gene families. This is done by removing any gene
families with constituent genes that were associated with PE or PPE gene families as evidenced by their annotation in the
downloaded genomes. A total of 7683 gene families were left in the database. The best-fitting model from Two examples was
rerun here. The results are summarized in Table F1. Clearly, the parameter estimates here are close to the estimates in Two
examples.

Appendix G: Alternate Mycobacterium spp. tree

An alternate phylogenetic tree forMycobacterium spp. was also constructed using MrBayes (Ronquist and Huelsenbeck 2003).
This section illustrates the sensitivity of the studied models to the given phylogenetic trees. Multiple sequence alignments of
nucleotide sequences of 50 genes found in each taxon were constructed using MAFFT (Katoh et al. 2002). These alignments
were then concatenated and provided to MrBayes. A general time-reversible substitution model with gamma-distributed rate
variation was run (1; 000; 000 generations with 25% burn-in) withM. gilvum specified as the outgroup. A tree (without branch
lengths) constructed using the PATRIC bacterial bioinformatics resource center (Wattam et al. 2014) was provided to MrBayes
as a starting tree for the algorithm. Ten random perturbations of the start tree were specified in MrBayes. The unrooted result
from MrBayes had 100% support for every branch. Using Figtree (Rambaut 2014), this tree was rooted on the branch leading
to M. gilvum. The pruned tree used in Two examples differs in the placement of M. leprae (and branch lengths) from the tree
constructed using MrBayes. Here, we analyze the gene family data set constructed in Two examples, using the tree constructed
usingMrBayes in detail. Overall, the relative rates for the different-colored branches (see colored branches in Figure G1) in the
best-fitting model are in agreement with the analysis in Two examples.

Again, the best-fitting model from Two examples was rerun here. From this model,M. leprae andM. ulcerans had estimated
missing data proportions of d̂M: leprae ¼ 0:547ðSE ¼ 0:011Þ and d̂M: ulcerans ¼ 0:215ðSE ¼ 0:009Þ (median missing data pro-
portion is 0.026), respectively. The estimates of 0.547 and 0.215 correspond to �1687 and 758 genes, respectively. The
branches in red in Figure G1 had an estimated rate of deletion m̂1 ¼ 0:623ðSE ¼ 0:034Þ and estimated rate of insertion
n̂1 ¼ 0:143ðSE ¼ 0:010Þ:

The blue group in Figure G1, on the other hand, yielded m̂2 ¼ 0:846ðSE ¼ 0:544Þ and n̂2 ¼ 2:342ðSE ¼ 0:190Þ: The
branches in green (M. tuberculosis complex) had an estimated rate of deletion m̂3 ¼ 1:715ðSE ¼ 0:879Þ and an estimated
rate of insertion n̂3 ¼ 3:589ðSE ¼ 0:283Þ: Finally, the black group yielded m̂5 ¼ 0:749ðSE ¼ 0:051Þ and
n̂5 ¼ 0:099ðSE ¼ 0:007Þ: Here, the probability of gene family presence at the root was estimated to be 0:069  ðSE ¼ 0:004Þ:
Overall, the parameter estimates follow mostly the same qualitative trend as in Two examples.
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Figure G1 Phylogram for the Mycobacterium spp. data constructed us-
ing MrBayes with the branch lengths measured in expected substitutions
per site. The coloring of the branches corresponds to the grouping for
model 4 from method B. The + signs indicate that a missing data pro-
portion was fitted for the associated taxa. Appendix B gives references
and strain information for these taxa.

Figure E1 Histograms of the difference
between the given and the estimated
insertion (n) and deletion (m) rates for
each clade for simulation set 2. The
three color annotations correspond to
the colors in Figure 2.
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Table B1 NCBI accession numbers with genome sizes for 10 Mycobacterium sequences

Name Accession Size (bp) Genes Unique Missing

M. gilvumPYR-GCK CP000656.1 5,547,747 5241 1239 —

M. lepraeTN NC_002677.1 3,268,203 1605 204 0.543
M. canettiiCIPT 140010059 NC_015848.1 4,482,059 3861 61 0.004
M. africanumGM041182 NC_015758.1 4,389,314 3830 28 0.023
M. bovisAF2122/97 NC_002945.3 4,345,492 3918 144 0.029
M. tuberculosisH37Rv NC_000962.3 4,411,532 3906 80 0.024
M. kansasiiATCC 12478 NC_022663.1 6,432,277 5712 1112 0.000
M. ulceransAgy99 NC_008611.1 5,631,606 4160 284 0.239
M. marinumM CP000854.1 6,636,827 5423 460 —

M. aviumMAP4 NC_021200.1 4,829,424 4326 504 —

The number of genes represents the number of coding sequences downloaded from NCBI. The number of genes unique to each OTU in the gene database is provided. There
are 8034 total number of gene families in the database with a total of 959 genes present in all OTUs. The missing data proportions are from the best-fitting model 4 for the
Mycobacterium spp. analysis.

Table A1 NCBI accession numbers with genome sizes for 35 G. vaginalis strains

Name Accession Size (bp) Genes Unique Missing

A00703C2 ADEU00000000 1,546,682 1165 0 0.023
A00703B ADET00000000 1,566,055 1190 1 0.018
JCP8070 ATJK00000000 1,475,754 1125 0 0.002
JCP8522 ATJE00000000 1,470,487 1093 0 0.010
JCP8066 ATJL00000000 1,515,433 1130 0 0.004
JCP8151A ATJI00000000 1,556,353 1187 0 —

JCP8151B ATJH00000000 1,551,237 1186 0 0.000
JCP7275 ATJS00000000 1,560,434 1175 0 0.045
A1400E ADER00000000 1,716,325 1295 0 0.002
A55152 ADEQ00000000 1,643,189 1231 0 0.014
A41V AEJE00000000 1,659,370 1223 0 0.000
Troy NA 1,435,761 924 0 0.228
ATCC14019 NC_014644 1,667,350 1251 0 0.006
ATCC14018 ADNB00000000 1,604,161 1189 0 0.062
A75712 ADEM00000000 1,672,968 1257 0 0.016
HMP9231 NC_017456 1,726,519 1293 0 0.010
A284V ADEL00000000 1,650,838 1235 0 0.012
A0288E ADEN00000000 1,708,773 1291 0 0.002
JCP7672 ATJP00000000 1,600,533 1194 0 0.064
JCP7276 ATJR01000000 1,659,589 1253 0 0.035
A315A AFDI00000000 1,653,275 1250 0 —

A40905 NC_013721 1,617,545 1186 0 0.038
A51 ADAN00000000 1,672,842 1208 0 0.018
A6420B ADEP00000000 1,493,594 1092 2 0.064
AMD ADAM00000000 1,606,758 1166 1 0.007
A00703D ADEV00000000 1,490,797 1103 0 0.002
A101 AEJD00000000 1,527,495 1141 0 0.010
A6119V5 ADEW00000000 1,499,602 1114 0 0.005
A1500E ADES01000000 1,548,244 1118 2 0.023
JCP8481B ATJF00000000 1,569,779 1170 0 —

JCP8481A ATJG00000000 1,567,375 1165 0 0.012
JCP7719 ATJO00000000 1,559,149 1213 0 0.026
JCP8017A ATJN00000000 1,605,521 1283 0 0.019
JCP8017B ATJM00000000 1,599,351 1273 0 0.027
JCP7659 ATJQ00000000 1,532,641 1186 0 0.037
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Table D1 Gene insertion/deletion models available in indelmiss

Model m;n d

M1 E
M2 E ✓

M3 V
M4 V ✓

Here, m; n; and p are deletion rate(s), insertion rate(s), and proportion(s) of missing data for taxa of interest, respectively. Here, E implies that parameters m and n are equal,
while V implies that they are free to vary.

Table E1 Averages and ranges for differences between simulated and estimated proportions of missing data for the corresponding taxa
over 500 samples from simulation data set 3

Tip labels

Difference 3 5 9

di 2 d̂i 0.00 (20:02; 0.03) 0.03 (20:01; 0.08) 0.00 (20:02; 0.02)

The tree in Figure 2 is used with m, n, and di sampled from a range of values (see text). While missing data are simulated on five tips, only three of those are modeled with a
proportion of missing data.

Table F1 Inferred insertion and deletion rates on a subset of the gene family data (without PE/PPE genes)

Group m̂ n̂

Red 1:079  ðSE ¼ 0:060Þ 0:411  ðSE ¼ 0:026Þ
Green 2:034  ðSE ¼ 0:968Þ 3:522  ðSE ¼ 0:274Þ
Blue 1:173  ðSE ¼ 0:880Þ 2:600  ðSE ¼ 0:211Þ
Black 0:368  ðSE ¼ 0:042Þ 0:251  ðSE ¼ 0:017Þ
The branch group colors refer to the sets of branches fitted with unique insertion and deletion rates in Figure G1. This subset had a total of 7683 gene families. Missing data
proportions estimated for M. leprae and M. ulcerans are 0:537  ðSE ¼ 0:011Þ and 0:221  ðSE ¼ 0:009Þ; corresponding to �1610 and 765 genes, respectively. The median
estimated missing data proportion was 0.023. The probability of gene family presence at the root was estimated to be 0.073 (SE = 0.004).
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