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ABSTRACT The effective population size (Ne) is a major factor determining allele frequency changes in natural and experimental
populations. Temporal methods provide a powerful and simple approach to estimate short-term Ne: They use allele frequency shifts
between temporal samples to calculate the standardized variance, which is directly related to Ne: Here we focus on experimental
evolution studies that often rely on repeated sequencing of samples in pools (Pool-seq). Pool-seq is cost-effective and often outper-
forms individual-based sequencing in estimating allele frequencies, but it is associated with atypical sampling properties: Additional to
sampling individuals, sequencing DNA in pools leads to a second round of sampling, which increases the variance of allele frequency
estimates. We propose a new estimator of Ne; which relies on allele frequency changes in temporal data and corrects for the variance
in both sampling steps. In simulations, we obtain accurate Ne estimates, as long as the drift variance is not too small compared to the
sampling and sequencing variance. In addition to genome-wide Ne estimates, we extend our method using a recursive partitioning
approach to estimate Ne locally along the chromosome. Since the type I error is controlled, our method permits the identification of
genomic regions that differ significantly in their Ne estimates. We present an application to Pool-seq data from experimental evolution
with Drosophila and provide recommendations for whole-genome data. The estimator is computationally efficient and available as an
R package at https://github.com/ThomasTaus/Nest.
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DURING experimental evolution studies, populations are
maintained under specific laboratory conditions (Kawecki

et al. 2012; Long et al. 2015; Schlötterer et al. 2015). In sexually
reproducing organisms, the census population size is typically
kept fixed at fairly low numbers, rarely exceeding 2000 individ-
uals. With such small population sizes, genetic drift causes sto-
chastic fluctuations in allele frequencies. Under neutrality, the
level of random frequency changes is determined by the effec-

tive population size (Ne) (Wright 1931). Furthermore, the effi-
cacy of selection is influenced byNe: Forweakly selected alleles,
the probability of fixation is directly proportional to the product
ofNe and the intensity of selection (Fisher 1930; Kimura 1964).
As changes in allele frequency are greatly affected by the pop-
ulation size, it is fundamental to estimate Ne accurately to un-
derstand molecular variation in experimental evolution studies.

Krimbas and Tsakas (1971) estimated Ne using the stan-
dardized variance of allele frequency (F, see also Falconer and
Mackay 1996) from longitudinal samples in natural popula-
tions of olive flies. As F was calculated from these samples,
they accounted for the sampling variance that also contributed
to the true allele frequency variance. This approach was fur-
ther improved and used by several authors (Nei and Tajima
1981; Pollak 1983; Waples 1989; Jorde and Ryman 2007).

With the widespread availability of powerful computers,
also maximum-likelihood-based methods became popular
(Williamson and Slatkin 1999; Anderson et al. 2000; Wang
2001; Hui and Burt 2015) in addition to the moment-based
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approaches discussed above. Although these methods show
less bias than the moment-based approaches (Wang 2001),
they are still computationally demanding, in particular for
the large numbers of markers typically obtained with novel
sequencing technologies (Foll et al. 2015).

Estimating Ne with temporal methods requires samples col-
lected at least at two time points. Alternative methods that use
only a single timepoint are basedon linkagedisequilibrium(LD)
(Hill 1981; Waples and Do 2008, 2010; Waples and England
2011), heterozygote excess (Pudovkin et al. 1996), molecular
coancestry (Nomura 2008), sibship frequencies (Wang 2009,
2013), or combinations of summary statistics using approxi-
mate Bayesian computation (Tallmon et al. 2008). LD-based
methods are widespread but require haplotype or unphased
diploid genotype information, which limits their applicability.

Although the cost for sequencing has dropped considerably,
the separate sequencingof thousands of individuals in replicate
populations in experimental evolution studies is still out of
reach. Sequencing samples in pools (Pool-seq) can provide a
cost-effective alternative (Schlötterer et al. 2014). Pool-seq has
also been shown to outperform individual-based sequencing in
estimating allele frequencies and inferring population genetic
parameters under several conditions (Futschik and Schlötterer
2010; Zhu et al. 2012; Gautier et al. 2013). For these reasons,
Pool-seq has become the basis of many experimental evolution
“evolve and resequence” (E&R) studies (Turner et al. 2011;
Schlötterer et al. 2015). Following the emergence of E&R,
many population genetic estimators have been adjusted to
handle the properties of Pool-seq data (Futschik and Schlöt-
terer 2010; Kofler et al. 2011a,b; Kolaczkowski et al. 2011;
Boitard et al. 2013; Ferretti et al. 2013). To the best of our
knowledge, no Ne estimators have been developed so far that
properly deal with Pool-seq data.

In this article, we present a novel temporal method to
estimate Ne from pooled samples. We show that previously
proposed estimators can lead to substantial bias, as they ne-
glect the variance component due to pooled sequencing. We
introduce a new model accounting for the two-step sampling
process associated with Pool-seq data. In the first sampling
step individuals are drawn from the population to create
pooled DNA samples. In the second step, pooled sequencing
is modeled as binomial sampling of reads out of the DNA
pool. We show on simulated data that our method outper-
forms standard temporalNe estimators. For real data, we also
suggest to use a segmentation algorithm, to partition the
genome-wide sequence data into stretches of DNA with sig-
nificantly different Ne estimates. Finally, we present an appli-
cation to a genome-wide experimental evolution data set
from Drosophila melanogaster (Franssen et al. 2015).

Materials and Methods

Sampling schemes

Nei and Tajima (1981) investigated the sampling properties
of temporal Ne estimators and proposed two different sam-

pling schemes. Under the first scheme (plan I), individuals
are either sampled after reproduction or returned to the pop-
ulation after their genotypes have been examined. In con-
trast, under the second scheme (plan II) sampling takes
place before reproduction and the sampled individuals are
permanently removed from the population and their geno-
types do not contribute to the next generation. By assuming
different sampling distributions, they derived separate Ne

estimators under sampling plans I and II.
Waples (1989) unified the calculations under the two plans

by assuming binomial sampling out of an infinitely large paren-
tal gamete pool for both sampling schemes. He concluded that
the measure of variance under the two sampling plans differs
only in a covariance term. For plan I, there is a positive corre-
lation between allele frequencies sampled t generations apart
because they are both derived from the same population at
generation 0. In contrast, for plan II, the initial sample and
individuals contributing to the next generation can be consid-
ered as independent binomial samples; thus sample frequen-
cies at generations 0 and t are uncorrelated.

For a typical E&R study, outbred experimental populations
are created by mixing a large number of inbred lines (e.g.,
Turner and Miller 2012; Huang et al. 2014; Franssen et al.
2015). The populations are then propagated under the de-
sired experimental conditions while keeping the census size
of the population controlled through time (Figure 1). How-
ever, the experimenter has no direct influence on the effective
population size, which is in general lower than the census
size. In E&R studies with Drosophila, the census size rarely
exceeds some hundreds of individuals, and sampling usually
takes place after reproduction according to plan I. For organ-
isms maintained at larger sizes, such as yeast, the sample for
genetic analysis is not returned to the population (Burke et al.
2014). Plan II applies to such cases.

In E&R studies, sampled individuals are often pooled to-
gether for DNA extraction (Schlötterer et al. 2014). The size
of the pool can be as large as the whole population. Depend-
ing on the experimental design, it is also possible that only a
fraction of the population is sequenced, for instance, only
females (Tobler et al. 2014; Franssen et al. 2015). Pooled
individuals are used to create DNA libraries, which are, in
turn, subjected to high-throughput sequencing.

We consider two separate sampling steps when estimating
Ne from Pool-seq samples (Figure 1). In the first step, we
model the sampling of individuals out of the population. This
can take place according to either plan I or plan II. In the
second step, we model the sequencing of a DNA pool by
drawing reads at random with replacement from the first-
step sample. The allele frequency variance inferred from
the sample is corrected for the additional variance coming
from the two-step sampling and used for estimating Ne:

Notation

We assume that the experimental population is propagated at
a constant census size N and that N$Ne: We use genome-
wide single-nucleotide polymorphism (SNP) data sampled
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t generations apart to estimate Ne (Figure 1) and denote the
estimated effective population size by bNe: Multiallelic sites in
populations with low mutation rates, such as Drosophila, exist
but are rare and likely to be sequencing errors (Burke et al.
2010). Therefore we consider only biallelic SNPs at n polymor-
phic sites. At each site i (i ¼ 1 . . . n) the true population allele
frequency is denoted by pij at time T ¼ j; where j 2 f0; tg: To
obtain allele frequency estimates for an unknown pij; the pop-
ulation is subjected to sampling. We consider two sampling
steps (Figure 1). At T ¼ j; we first sample Sj individuals out of
the population to create a pooled DNA library for sequencing.
Note that the number of sampled individuals is constant over
the n sites, and therefore the index i is omitted here. Sampling
individuals can take place according to either plan I or plan II, as
described above (also shown in Supplemental Material, Figure
S1). As the second sampling step, we model Pool-seq by draw-
ing Rij reads out of the pooled DNA sample at each site i
(i ¼ 1 . . . n). This allows for variation in sequence coverage.
Belowwe derive the variance in allele frequency for a given site.
To keep notation simple, we omit again the index i and denote
the unknown sample allele frequency among the S0 individuals
at the first sampling time point (T ¼ 0) by x and the subsequent
allele frequency estimate obtained via pool sequencing from R0

reads by x̂: Similarly, at some T ¼ t; the respective frequencies
are denoted by y and ŷ: Note that under pool sequencing only x̂
and ŷ are observed.

Estimating Ne from temporal allele frequency changes

Under neutral Wright–Fisher evolution the variance in allele
frequency (s2

p) generated by drift after t generations at a single
locus in a diploid population is well described by the expression

s2
p ¼ pð12 pÞ

"
12

 
12

1
2Ne

!t#
; (1)

where p is the starting allele frequency (Falconer andMackay
1996). Wright (1931) denoted the standardized variance by
F ¼ s2

p=pð12 pÞ; which leads to a convenient closed-form
expression for Ne: Furthermore, if Ne is large enough,
F � 12 e2t=2Ne and Ne can be calculated as

Ne � 2t
2  lnð12 FÞ: (2)

The relation between Ne and allele frequency changes de-
scribed in Equation 1 was first used by Krimbas and Tsakas
(1971) in natural populations of olive flies. They estimated
the variance using

F ¼ Fa :¼ 1
a

Xa
k¼1

ðxk2ykÞ2
xkð12 xkÞ

  ; (3)

where xk and yk (k ¼ 1; . . . ; a) are the observed allele fre-
quencies in the samples collected t generations apart and a
is the number of alleles at a specific locus. To eliminate the
contribution of sampling errors to the variance, the total var-
iance Fa was corrected for the random sampling noise by
simply subtracting the corresponding variance. This ap-
proach was further investigated and developed by a number
of authors (Pamilo and Varvio-Aho 1980; Nei and Tajima
1981; Pollak 1983; Waples 1989).

Possible sources of bias in Ne estimators were later inves-
tigated by Jorde and Ryman (2007). The authors pointed out
that the expectation over F is typically approximated by tak-
ing the expected values separately for the numerator and the
denominator (Turner et al. 2001). They suggested a different
weighting scheme of alleles leading to an alternative less-
biased estimator to measure temporal frequency change.

Correction for two-step sampling

We consider a random-mating population with discrete gen-
erations. Neutral evolution is assumed with no selection,
migration, and mutation. Samples are drawn from the pop-
ulation at generations T ¼ 0 and t. Throughout the derivation
we consider diploid populations, and therefore a sample of Sj
individuals leads to 2Sj sequences at times T ¼ j 2 f0; tg:
Sampling is assumed to be binomial with parameters 2Sj
and pj (Waples 1989). In the second sampling step at time
T ¼ j; sequencing a random pool Rj of reads is also modeled
as binomial sampling.

In analogy to Jorde and Ryman (2007), we use the follow-
ing expression as our measure of the temporal change in
allele frequency for biallelic sites,

Figure 1 Two-step sampling in experimental evolution with Drosophila. In
E&R studies, populations are propagated at a census size N defined by the
experimenter, which is in general larger than the effective population size
Ne: Using temporal methods, Ne can be estimated from the variance in allele
frequency between samples taken t generations apart. To get an accurate
representation of allele frequencies in population genetic studies, a large
number of individuals Sj ( j 2 f0; tg) are sampled and pooled. Sampling can
take place according to sampling plan I or II based on the mode of repro-
duction. Pooled samples are then subjected to high-throughput sequencing.
Sequenced reads are subsequently aligned to the reference genome (shown
at the bottom). We represent pool sequencing by an additional sampling
step (called sampling step 2). We correct for both sampling steps when
estimating Ne in pooled samples. Additionally, we take into account variable
coverage levels across the genome (coverage Rij for site i at T ¼ j; j 2 f0; tg)
when correcting for the variance coming from sequencing.
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Fc ¼ ðx̂2ŷÞ2
ẑ2 x̂ŷ

; (4)

where ẑ ¼ ðx̂ þ ŷÞ=2:
The expectation of Fc for a single biallelic locus is approx-

imated by

EðFcÞ � Eðx̂2ŷÞ2
Eðẑ2 x̂ŷÞ ¼

Varðx̂Þ þ VarðŷÞ2 2Covðx̂; ŷÞ
Eðbz2bxbyÞ : (5)

For both plans, we derive expressions for the numerator and
denominator in Equation 5 separately under the two-step sam-
pling procedure, described above. Herewe summarize ourmain
conclusions; details on the derivation are provided in File S1.
With Cj :¼ 1=2Sj þ 1=Rj 2 1=2SjRj for j 2 f0; tg; and p denot-
ing the true population allele frequency in the gamete pool at
generation 0, we obtain

Varðx̂Þ ¼ pð12 pÞC0; (6)

and

VarðŷÞ ¼ pð12 pÞ
"
12 ð12CtÞ

 
12

1
2Ne

!t#
: (7)

Note that Equations 6 and 7 differ only in the correction term
Cj from that in Waples (1989).

Waples (1989) previously showed that the denominator
in Equation 5 reduces to

Eðẑ2 x̂ŷÞ ¼ pð12 pÞ2Covðx̂; ŷÞ: (8)

For plan II, Covðx̂; ŷÞ ¼ 0 (Waples 1989), and Fc corrected for
the noise coming from the two-step sampling for a single
locus is given by

F9c ¼ Fc 2C02Ct
12Ct

: (9)

For plan I, on the other hand, the sample allele frequency at
generation 0 is positively correlated to the sample allele
frequency at t because both are derived from the same pop-
ulation at generation 0. This requires us to calculate the
sample covariance Covðx̂; ŷÞ in Equation 5. It turns out
(see File S1 for details) that the covariance of x̂ and ŷ is
equal to

Covðx̂; ŷÞ ¼ pð12 pÞ
2N

; (10)

where N is the census size of the population at generation 0.
Equation 10 is in agreement with the corresponding term of
the standard methods (Waples 1989). Substituting the in-
ferred covariance into Equation 5 leads to the following cor-
rected variance estimate, F9c for plan I

F9c ¼ Fcð12 1=2NÞ2C0 2Ct þ 1=N
12Ct

  : (11)

We provide the corresponding formulas of F9c in haploid pop-
ulations in File S1.

With Pool-seq data, randomness in sequencing and local
structures in the genome can lead to different coverage across
marker sites, whichwe denote byRij for site i (i ¼ 1; . . . n) and
time j ( j 2 f0; tg). In the genome-wide data set, we calculate
F9c across n SNPs by summing over all loci in the numerator
and denominator separately before carrying out the division
in Equation 9, leading to the following weighting scheme for
plan II:

F9c ¼
Pn

i¼1ðx̂i2ŷiÞ2 2 ðẑi 2 x̂i ŷiÞðCi0 þ CitÞPn
i¼1ðẑi 2 x̂i ŷiÞð12CitÞ

: (12)

Similarly, F9c can be calculated for plan I using Equations 4 and
11. Analogous to the single-locus case, our proposed estima-
tors bNeðPÞ for a diploid population are obtained by plugging
F9c into Equation 2.

Long time series have recently become available for some
E&R experiments (Barrick et al. 2009; Burke et al. 2010,
2014). Standard Ne estimators (Krimbas and Tsakas 1971;
Nei and Tajima 1981; Waples 1989) assume a small number
of generations ðtÞ and approximate Ne using 2Ne � t=F: If,
however, t=Ne is larger, using this approximation can lead
to severe bias (Figure S2). To avoid such a bias, we use
Equation 2 to estimate Ne:

Simulations

We evaluate the performance of our estimator on data sim-
ulated under the neutral Wright–Fisher model. With a given
population size of 2Ne; we simulate the frequency trajectory
of n independent SNPs. As we focus on biallelic SNPs, we
assume two possible nucleotides (alleles) to be present in
the population with given frequencies at the start. To create
a new generation, nucleotides are drawn independently at
random with a probability given by their respective allele
frequencies in the old generation. The population is propa-
gated at a constant size of 2Ne for t nonoverlapping genera-
tions. The effective population size is then estimated from
allele frequencies inferred from Pool-seq samples taken from
the population at the start and after t generations. The sam-
pling of individuals to create the pooled DNA library is sim-
ulated by using sampling without replacement. To model the
uneven coverage of genome-wide sequence data, we simu-
late a random coverage for each site, using a Poisson distri-
bution with parameter equal to the given mean coverage. For
every position, reads are then generated by binomial sam-
pling from the library with sample size equal to the local
coverage.

We assess the performance of our estimator for various
combinations ofNe; pool size, coverage, number of SNPs, and
distribution of starting allele frequencies. Additional to these
parameters, we also test how the ratio between census and
effective population size (r ¼ N=Ne) affects the accuracy of
the proposed estimator. For this purpose, we increment the
population size to a desired level of N in each generation
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while keeping the allele frequencies unchanged to avoid in-
troducing additional sampling variance. We simulated each
scenario 100 times.

Linkage disequilibrium between loci can reduce the num-
ber of independent SNPs, thereby increasing the variance of
the estimate. The impact of dependence between SNPs is
investigated based on 10 replicatedwhole-genome forward
simulations with recombination, using the software tool
MimicrEE (Kofler and Schlötterer 2014). As a starting pop-
ulation for the forward simulations,we sampled 2000haploid
genomes out of 8000 genomes simulated with fastsimcoal
v.1.1.2 (Excoffier and Foll 2011; Bastide et al. 2013). The
parameters used to generate the genomes mimic a wild pop-
ulation of D. melanogaster from Vienna (Fiston-Lavier et al.
2010; Bastide et al. 2013; Kofler and Schlötterer 2014).
Allele counts are subjected to binomial sampling to mimic
Pool-seq with a given sequence coverage. Ne is estimated in
nonoverlapping windows, each containing a fixed number of
SNPs.

Estimating Ne on simulated data

Wedenoteourestimator corrected for theadditional sampling
step, i.e., pooling, by NeðPÞ: We compare NeðPÞ to the stan-
dard estimators NeðWÞ and NeðJRÞ proposed by Waples
(1989) and Jorde and Ryman (2007) that correct only for a
single sampling step.

We illustrate experimental sampling procedures by con-
sidering two major scenarios: (i) The full population is se-
quenced as one large pool and (ii) only a subset of the
population is used to create pooled samples. Under scenario
(i) we simulate only a single binomial sampling step to
represent sampling reads out of the DNA pool. The pool size
is set to be equal to the census size of the population (Sj ¼ N),
and the number of sampled reads (Rij) represents the per-site
coverage. For estimators that correct only for a single sam-
pling step, we use the coverage (Rij) as the sample size. For
scenario (ii), the sampled individuals (Sj) and the read num-

ber (Rij) represent the pool size and coverage for NeðPÞ: The
coverage (Rij) is taken as the sample size for the NeðWÞ and
NeðJRÞ estimators, as these methods consider only one sam-
pling step.

Change point inference for genome-wide estimates

The effect of genetic drift on the variance in allele frequency
specified in Equation 1 holds only under the assumptions of
Wright–Fisher neutral evolution. Deviations from the Wright–
Fisher model, such as the presence of selection or demogra-
phy, may cause systematically different changes in allele
frequency, affecting the variance and causing locally vari-
able patterns in genetic diversity. Furthermore, the effect of
selection on one site of the genome may cause changes in
the behavior of variants at nearby sites (Maynard Smith and
Haigh 1974; Barton 2000; Comeron et al. 2008). As a result,
the estimates of Ne at different locations of the genome may
deviate from the true number of breeding individuals in the
population (Kimura and Crow 1963; Charlesworth 2009).
For example, regions under background selection are as-
sociated with reduced bNe values that extend to linked sites
due to the Hill–Robertson effect (Charlesworth 1996, 2012a;
Comeron et al. 2008). Similarly, selectively favorable alleles
can also drag nearby neutral sites to high frequency (Maynard
Smith and Haigh 1974), causing a local reduction in the esti-
mated Ne (Liu and Mittler 2008). Such an event is also known
as a selective sweep (Berry et al. 1991). On the other hand,
we expect the opposite pattern, i.e., a local elevation of bNe for
types of selection such as balancing selection that maintain
variation in the genome (Baysal et al. 2007; Charlesworth
2009).

To detect such patterns in bNe; we apply a segmentation
algorithm to partition the genome into locally homogeneousbNe stretches. We use a method related to an approach sug-
gested by Futschik et al. (2014) for partitioning DNA sequences
with respect to GC content. It is based on a statistical multiscale
criterion and provides statistical error control, in the sense

Figure 2 Effective population size estimated with
different methods. Sixty generations of Wright–
Fisher neutral evolution with Ne ¼ 100 diploid indi-
viduals were simulated for n = 2000 unlinked loci
(SNPs). Prior to sampling, the population was in-
creased to a census size of N ¼ 500 individuals at
each generation. At the starting population and at
each indicated time point a sample was taken to
create a pool of S ¼ 100 individuals. The pool was
sequenced to an average coverage of R ¼ 50 and
Ne was estimated on the resulting data set by sep-
arately contrasting allele frequencies at generation
0 to each of the evolved generations denoted on
the x-axis, using NeðPÞ; NeðWÞ (Waples 1989), and
NeðJRÞ (Jorde and Ryman 2007). Each box repre-
sents results from 100 simulations with identical
parameters. The dashed gray line shows the true
value of Ne: Data are simulated under plan I as-
sumptions and the results of plan I and II estimators
are shown in the left and right panels, respectively.
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that the estimated number of windows will not exceed the
true one except for a small error probability a to be specified
by the user. With our Ne estimates, we use a criterion pro-
posed by Frick et al. (2014) for normally distributed re-
sponses. It is implemented as part of the R package stepR
(Frick et al. 2014). By using simulations with selection we
also illustrate that this method is able to capture the signal
of locally variable bNe along the chromosome.

Data availability

We estimated Ne in an E&R study with D. melaongaster, pub-
lished in Orozco-terWengel et al. (2012) and Franssen et al.
(2015). Pool-seq read libraries from these studies are available
at the European Sequence Read Archive at http://www.ebi.ac.
uk/ena/ under accession nos. ERP001290 and ERS460611–
ERS460613.

Results and Discussion

Two-step correction is vital to avoid large bias in bNe

with Pool-seq data

Methods that do not correct for the additional sampling step
caused by pooling can lead to substantial bias in bNe as illus-
trated in Figure 2. Using simulated data, we compare our
proposed estimator NeðPÞ to two commonly used estimators
NeðWÞ (Waples 1989) and NeðJRÞ (Jorde and Ryman 2007)
that provide highly accurate estimates when only a single
sampling event is simulated (Figure S3). Figure 2 shows that

the additional correction substantially decreases the bias for
almost all scenarios (see also Figure S4, Figure S5, and Figure
S6). Under plan I, NeðPÞ is nearly unbiased. The plan II ver-
sion of the estimator has a slight upward bias when applied
on data simulated under plan I, if the samples are taken at
very close time points.

As an alternative approach, we also estimated Ne sepa-
rately for each locus, using F9c in Equations 9 and 11. We then
calculated the effective population size across the n loci as the
harmonic mean over the single-locus bNe estimates (bN*

eðPÞ)
(Peel et al. 2013). In our simulations, the harmonic mean
estimator shows an accuracy similar to that of the originalbNeðPÞ (Figure S7). However, for t lying in the midrange of the
simulated interval (t ¼ 15–40), bN*

eðPÞ is slightly more biased
under plan I.

Because of the additional sampling variance, both NeðWÞ
and NeðJRÞ have a downward bias in particular for small t.
Furthermore, NeðWÞ is upwardly biased for larger values of t,
probably reflecting that alleles closer to fixation or loss are
contributing less to the variance (Waples 1989). The drift
variance accumulates with an increasing number of genera-
tions, while the sampling variance stays constant, making the
initial bias of NeðJRÞ less pronounced for larger t. When sam-
ples are collected only a few generations apart, the variance
of NeðPÞ estimators tends to be larger than that of NeðWÞ and
NeðJRÞ under both plans.

Plan I and II estimators differ by a factor resulting from the
covariance between the sample frequencies at generations

Figure 3 Coefficient of variation of NeðPÞ
under plan I for various parameter values.
Neutral Wright–Fisher simulations were
performed with various combinations of
the parameters: effective population size
(Ne ¼ 100;  500;  1000 diploid individu-
als), pool size (S ¼ 100;50), and coverage
(R ¼ 150;  100;  50). Ne was estimated
with NeðPÞ under plan I, using n ¼ 2000
SNPs. S ¼ N indicates scenarios when the
whole population is sequenced as a single
pool. For all simulations, we assumed
N ¼ Ne: Each value is calculated over
100 simulations. When the coefficient of
variation exceeds one, the inset shows the
actual value.
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0 and t (Equation 10), which is inversely proportional to the
census population size. Consequently, the difference between
plans I and II becomes smaller for increasing N. Waples
(1989) investigated how the ratio between census and effec-
tive population size (r ¼ N=Ne) affects the accuracy of the
estimators and concluded that the ratio of r$2 is sufficient
to reach similar estimates for both sampling schemes. We
tested the performance of NeðPÞ on simulated data with
Ne ¼ 100 and N : Ne ratios of r ¼ 1; 2; 5 with different cov-
erages and pool sizes (Figure S4, Figure S5, and Figure S6).
When N ¼ Ne; the NeðPÞ plan I method achieves highly accu-
rate estimates for all time points in contrast to the other
methods (Figure S4). If, however, the NeðPÞ plan II estimator
is applied to data simulated under plan I, we observe an up-
ward bias for small t, which improves with an increasing
number of generations. This pattern is not unexpected since
the missing covariance term becomes less influential in view
of the increasing drift variance after several generations.
When the entire population is sequenced as a single pool
(S ¼ 100), the plan II estimators of Waples (1989) and
Jorde and Ryman (2007) perform similarly to the NeðPÞ plan
I estimator because the correction for pooling in NeðPÞ can-
cels out the additional covariance term when S ¼ N; making
the term used as F approximately identical to that of NeðJRÞ:
This is a general pattern irrespective of r.

For r$ 2; NeðPÞ plan I remains highly accurate (Figure S5
and Figure S6). Furthermore, when increasing the census
size under a constant Ne (equivalent to increasing r), the
covariance between sample allele frequencies decreases,
making the difference between plans I and II almost negligi-
ble (Waples 1989). The sampling variance becomes propor-
tionally smaller compared to the drift variance with an
increasing number of generations between the samples. This
improves our ability to accurately estimate Ne:

Correcting for the additional variance inherent to Pool-seq
leads to an improved performance of NeðPÞ compared to the

standard methods for both plans. In general, with Pool-seq
data the extent of the bias of the NeðWÞ and NeðJRÞ estimates
depends on the ratio between N and S, smaller sample sizes
(S) leading to a larger bias. As we accounted for the sequenc-
ing step with these estimators (Estimating Ne on simulated
data), decreasing the coverage at a given pool size does not
change the bias much but rather increases the variance of the
estimators.

In most of the experimental studies the investigator has
control over the census population size; thus requiring the
knowledge of N for NeðPÞ plan I does not restrict the analysis.
We illustrate the performance of NeðPÞ plan I only when
Ne ¼ N in the main text, but according to Figure S5 and
Figure S6, NeðPÞ plan I is also highly accurate when r$ 2:

We show the coefficient of variation (CV) of theNeðPÞ plan I
estimator in Figure 3. The CV is defined as the ratio between
the standard deviation and the mean (CV ¼ ŝ=m̂;where both
ŝ and m̂ are estimated from the sample). It measures the
relative dispersion of the distribution of the estimated values.
NeðPÞ estimators are highly precise in nearly all cases, except
when the drift variance is negligible compared to the sam-
pling variance (Figure 3; see also Figure S9 and Figure S11
whereNe ¼ 1000;  t, 30;  S# 100; and R ¼ 50). The bias is
coming from a few outlier estimates, but the median shows
more robust results (Figure S13). For plan II estimators, the
behavior of the method is similar (Figure S8, Figure S10,
Figure S12, and Figure S14). Note that the simulations un-
derlying Figure S8, Figure S10, Figure S12, and Figure S14
have been done under plan I.

Increasing the number of SNPs reduces the variance of
Ne(P)

We test how the number of loci (n) used to inferNe affects the
accuracy and the precision of the estimates by gradually in-
creasing the number of independent SNPs from 100 to
10,000 (Figure 4). We observe a larger variance and a slight
downward bias for a small number of SNPs (100 SNPs). Both
the bias and the variance become smaller with a larger

Figure 4 Effect of the number of SNPs used for estimating Ne: The
effective population size is estimated using NeðPÞ plan I on simulated data
with Ne ¼ N ¼ 100: A total number of S ¼ 100 individuals are pooled
and sequenced at a mean coverage of R ¼ 50: Based on 100 simulation
runs, Ne is estimated using different numbers of SNPs at multiple time
points.

Figure 5 Influence of the starting allele frequency distribution on NeðPÞ
under plan I. A comparison between uniform and Beta(0.2, 0.2)-distrib-
uted (neutral) starting allele frequencies is shown. The simulation param-
eters match those of the genome-wide simulations in Figure 6.
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number of SNPs. Some further improvement is obtained
when .10,000 SNPs are used (not shown), but the benefit
of additional independent SNPs levels off. We conclude that
n ¼ 2000 SNPs usually provide sufficient precision and accu-
racy. However, when linkage disequilibrium is present in a
genome-wide data set, the number of truly independent
SNPs per window is reduced and a larger number of loci is
recommended.

A skewed starting allele frequency distribution only
moderately increases the variance of Ne(P)

In natural populations, the neutral site frequency spectrum is
skewed toward allele frequencies close to the boundaries.
NeðPÞ uses a weighting scheme that is not very sensitive to
this skew (see also Jorde and Ryman 2007). This makes it
robust with respect to the shape of the starting allele fre-
quency distribution. We illustrate this with a simulated data
set having a starting allele frequency distribution that is
skewed toward low- and high-frequency variants (Beta(0.2,
0.2)) as expected under neutrality. The estimates of Ne from
such data sets are compared to simulated data with matching
parameters but uniform starting allele frequency distribution
(Figure 5). We observe a very slight upward bias with neutral
starting allele frequencies compared to uniform and a mod-
erate increase in the variance given t$ 15: With an in-
creasing number of generations, the difference becomes
negligible.

The presence of linkage disequilibrium does not have a
large effect on the precision of Ne(P)

We investigated the sensitivity of our estimator to linkage
disequilibrium between loci, using genome-wide neutral sim-
ulations with recombination (Kofler and Schlötterer 2014).

We simulated data with three different rates of recombina-
tion: high, normal, and no recombination. For the first case,
the recombination rate is set to mimic the behavior of almost
independent SNPs. In the normal recombination rate sce-
nario, we use D. melanogaster recombination rates (Fiston-
Lavier et al. 2010). The effective population size was esti-
mated in nonoverlapping windows with a fixed number of
n ¼ 10; 000 SNPs (Figure 6). Different levels of linkage dis-
equilibrium affect the number of independent loci per win-
dow. Nevertheless, we observe only a slight increase in the
precision of the Ne estimates with increasing recombination
rate (Figure 6).

Heterogeneous bNe along the genome in an E&R study
with D. melanogaster

We estimated Ne in a recent E&R study with D. melanogaster
(Orozco-terWengel et al. 2012; Franssen et al. 2015). In this
experiment replicate populations of 1000 individuals were
subjected to afluctuating hot environment for 59 generations.
Allele frequency estimates were obtained for founder and
evolved populations, using Pool-seq. Ne was estimated based
on the allele frequency changes between founder and latest
evolved populations in nonoverlapping windows containing
10,000 SNPs, using NeðPÞ under plan I. To determine the
number of DNA stretches with different bNe along the ge-
nome, we use a segmentation algorithm provided in the
software tool by Frick et al. (2014). This method requires
homogeneity of variances. Since the variance of estimates
increases with Ne; the estimates were log-transformed before
applying the partitioning procedure. The obtained step func-
tion was back-transformed to the original scale and is shown
for three biological replicates (Figure 7).

The mean and themedian estimates for each chromosome
arm as well as across the genome are stable across replicates
(see Table 1 and Table S1). As experimental evolution stud-
ies often aim to find signals that are consistent across repli-
cates, this can be an important check of the experimental
setup. On the other hand, we see differences between chro-
mosome arms. For example, the mean is clearly lower for 3R,
emphasizing the added value of spatial analysis compared to
genome-wide estimates.

In D. melanogaster bNe ranges between �100 and 400.
Around the centromere of chromosome 2, the estimated Ne

decreases by two-thirds in replicates 1 and 3, which is in
agreement with the expectation of low diversity and, as a
consequence, low Ne in regions with reduced recombination
(Begun and Aquadro 1992; Presgraves 2005; Haddrill et al.
2007; Campos et al. 2012). Furthermore, bNe is low on the
entire chromosome arm 3R and also on parts of 3L. Overall,
these patterns can be attributed to strong LD, caused either
by low recombination rates around the centromeres (Chan
et al. 2012) or by segregating inversions (Kapun et al. 2014)
in combination with selection potentially on rare variants.
The reduction in bNe is also well captured by the segmentation
algorithm (Figure 7), which shows a similar pattern when
applied on simulated data with selection (Figure S15). These

Figure 6 Effect of linkage disequilibrium on bNe: The effect of linkage
disequilibrium on our estimator was evaluated based on a whole-genome
forward simulation with recombination using the software MimicrEE
(Kofler and Schlötterer 2014). Three sets of simulations were performed
with different rates of recombination: high, normal, and no recombina-
tion. For each parameter setup, a genome-wide simulation is replicated
10 times. The effective population size was estimated with NeðPÞ (plan I)
in nonoverlapping windows of n = 10,000 SNPs for each replicate. The
box plots show the distribution of Ne estimates across replicates and
windows.
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results are consistent with those of Tobler et al. (2014), who
observed a massive amount of outlier SNPs around the cen-
tromere of chromosome 2 and on 3R. Interestingly, certain
regions of the genome showextensive differences in bNe between
the replicates, which might be reflecting different selection
histories or differences in demography, such as replicate-
specific bottlenecks.bNe may also vary as a result of differences in the modes of
transmission of different components in the genome. For ex-
ample, on the X chromosome, Ne is equal to three-quarters of
the autosomal population size (Vicoso and Charlesworth
2006, 2009). Interestingly, our estimates in the E&R experi-
ment do not reflect this expectation of reduced effective pop-
ulation size. Instead, we estimateNe to be as high as bNe on the
autosomes. Unequal sex ratio betweenmales and females can
be a source of such a pattern (Charlesworth 2009); however,
unbalanced sex ratio has not been reported in this experi-
ment. Another possible explanation for increased bNe on the
X can be the presence of background selection as suggested
by Charlesworth (2012b). He argues that because of the lack
of recombination in male Drosophila, the effect of back-
ground selection is more effective on the autosomes than
on the X chromosome. Orozco-terWengel et al. (2012) re-
ported differences in the number of putatively selected sites
between the X and autosomes. They found that candidate
SNPs were underrepresented on the X. Their selection scan

identifies signatures of deviation from neutral expectation,
which is also reflected in the reduction in bNe on the auto-
somes, indicating higher selection pressure.

Recommendations for genome-wide data sets

Most of themethods proposed previously are not designed for
genome-wide high-density SNP data sets. However, the
method of Jorde and Ryman (2007) was successfully used
for genome-wide data by Foll et al. (2014). Reed et al. (2014)
also used a similar approach to estimate Ne for whole-
genome data, using sliding windows. We estimated Ne in win-
dows with a fixed number of SNPs. Using windows of fixed
lengths in base pairs would affect the variance of the estima-
tor (Figure 4) but does not distort the mean. All these ap-
proaches, however, do not account for the ruggedness of the
recombination landscape and can lead to windows with dif-
ferent levels of linkage disequilibrium in them. To overcome
this problem it would be possible to define windows based on
recombination distance. Unfortunately, the lack of haplotype
information in the Pool-seq data makes it difficult to infer
linkage disequilibrium. One way to infer linkage information
from pooled sequence data is provided by the software LDx
(Feder et al. 2012). For model organisms such as Drosophila,
readily available recombination maps can also be used as a
proxy (Przeworski et al. 2001; Kulathinal et al. 2008; Fiston-
Lavier et al. 2010). If only a single genome-wide Ne estimate

Figure 7 Genome-wide bNe from an E&R study
with D. melanogaster. Ne is estimated based on
the allele frequency changes between founder
and evolved populations at generation 59 (Franssen
et al. 2015). In the top panel, we show genome-
wide estimates calculated with NeðPÞ (plan I), using
N ¼ 1000 as census size and S ¼ 500 as pool
size (Orozco-terWengel et al. 2012) and non-
overlapping windows of 10,000 SNPs. Chromo-
some-wide mean estimates across replicates are
shown by the dashed lines and also calculated
separately for each replicate in Table 1. DNA
stretches with significantly different bNe are de-
termined using the stepR software package
(Frick et al. 2014) (bottom panel). Lower and
upper 12a confidence bands are shown as
shaded areas. a controls the error, i.e., the prob-
ability for overestimating the number of change
points, and is calculated automatically as de-
scribed in Frick et al. (2014). The colors indicate
different biological replicates.
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is required, one can alternatively use a set of randomly dis-
tributed SNPs over the genome to obtain bNe:

Temporal methodsmake a number of assumptions, which,
if violated, can lead to biased Ne estimates. For example, in
our simulations, we considered only effective population
sizes that are constant over time. Fluctuating Ne is a frequent
phenomenon in natural populations and can be an important
component of an experimental design. For example, in re-
peatedly bottlenecked populations, the smallest population
size dominates bNe (Luikart et al. 1999; Charlesworth 2009).
But even in strictly controlled populations the experimental
regime can induce changes in Ne: When the population
changes in size, the estimated Ne is generally interpreted as
the harmonic mean of the effective population sizes over the
generations (Wright 1938; Nei and Tajima 1981; Waples
1989). However, if time series allele frequency data are avail-
able, such changes can be detected by estimating Ne from
pairwise comparisons between consecutive time points.

All evolutionary forces (selection, demography, etc.) that
lead to deviations from the neutral expectationwill also affect
our estimate. Nevertheless, systematic forces that result in
locally different values of bNe can be detected with a sliding-
window approach, as illustrated with simulations under selec-
tion (Figure S15). The D. melanogaster data set also illustrates
this point; i.e., the hypothesized regions under selection co-
incide with regions of reduced Ne (Orozco-terWengel et al.
2012; Tobler et al. 2014; Franssen et al. 2015). For this to be
detected, however, most of the allele frequency change has to
occur over the sampled time span.

In the E&R study with D. melanogaster, shown above, the
criterion of nonoverlapping generations, assumed by tempo-
ral methods, is met (see Orozco-terWengel et al. 2012 for
details on experimental design). However, for samples from
an age-structured population, the resulting bNe can be biased
(Waples and Yokota 2007). In these cases, as suggested by
Waples and Yokota (2007), larger spacing between samples
maximizes the drift signal compared to sampling biases asso-
ciated with age structure.

Using a small number of generations can lead to
outlier estimates

In general, NeðPÞ has a lower bias but larger variance, espe-
cially when t is small. As pointed out by Jorde and Ryman
(2007) our weighting scheme leads to an increased variance
but a smaller bias compared to other schemes. We observe
outlier estimates among replicates at early generations (gen-

eration 5, Figure 2, Figure S4, Figure S5, and Figure S6) for
NeðPÞ: When the sampling variance is large compared to the
drift variance (Ne ¼ 1000; S# 100; and R ¼ 50; Figure S11
and Figure S12), the deviation of the outlier estimates from
the true Ne is particularly large. For a few cases, we even
observe large negative estimates. Negative estimates, in gen-
eral, can be interpreted as Ne being infinity, that is, no evi-
dence of genetic drift (Peel et al. 2013). In our simulations
this is plausible when Ne is large and t is small, such that drift
has not had a large effect on the population allele frequencies
yet. Note that the harmonic mean estimator (bN*

eðPÞ) has
smaller variance for large Ne (Figure S16). This estimator,
however, is less accurate than NeðPÞ for small Ne as shown
in Figure S17.

To eliminate potential outliers and an inflated variance we
recommend increasing the signal-to-noise ratio by pooling a
sufficient number of individuals. Using later generations or
increasing the number of SNPs in the analysis also helps to
avoid outlier estimates. When none of these strategies can be
applied, we suggest using the genome-wide median NeðPÞ
estimates or the harmonic mean estimator, as these are more
robust to extreme outliers.

Conclusions

Effective population size is an important parameter for de-
scribing evolutionary dynamics, making its accurate estima-
tion essential for population genetic studies. Several methods
have been designed to estimate Ne; and their performance
was comprehensively evaluated on simulated as well as real
data (Barker 2011; Serbezov et al. 2012; Baalsrud et al. 2014;
Holleley et al. 2014; Gilbert and Whitlock 2015). These stud-
ies mainly focused on genetic data collected from natural
populations, which usually differ from experimental studies
in terms of the census population size and sampling scheme.
We designed a method that accurately infers the effective
population size in genome-wide data from experimental
populations sequenced in pools. Our approach improves
temporal methods by explicitly correcting for two stages
of sampling introduced by pooling and sequencing. Our re-
sults on simulated data confirm that methods that fail to
properly account for the two stages of sampling inherent
to Pool-seq can lead to severely biased Ne estimates.

Pool-seq data are often considered to beoverdispersed, i.e.,
displaying more variability than is predicted by the binomial
sampling model (Yang et al. 2012). However, Zhu et al.
(2012) and Futschik and Schlötterer (2010) validated that

Table 1 Genome-wide mean bNe from an E&R study with D. melanogaster

Mean

Replicate X 2L 2R 3L 3R Genome-wide

R1 257.9675 231.6854 257.0828 193.4339 131.7072 199.4463
R2 328.8878 297.9832 274.8529 193.3237 194.9571 239.3618
R3 263.4829 246.5448 211.8995 157.6411 133.9459 187.1573

The effective population size is estimated with NeðPÞ plan I in windows of 10,000 SNPs (Figure 7). The mean estimates across windows are shown for the major chromosome
arms. The genome-wide mean is taken over the autosomes, excluding chromosome 4.
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the error in allele frequency estimates is reasonably well ap-
proximated by binomial sampling given that a large enough
number of individuals are pooled. Nevertheless, if overdis-
persion is present in the data, that will lead to additional
variance, which is not modeled in our framework and will
result in a downward bias of the estimated Ne: If the level of
overdispersion can be inferred for the data (see, e.g., Gautier
et al. 2013; Illingworth 2015), it is possible to introduce a
parameter that accounts for the additional between-pool var-
iation (see File S1, Equation S8).

We also illustrate the applicability of our method for
estimating Ne from experimental data of D. melanogaster
and show that in combination with a recursive partitioning
method we can infer patterns of local variation in Ne along
the genome. Additionally, it is possible to calculate confi-
dence intervals based on the x2 distribution (Waples 1989)
or alternatively apply a nonparametric bootstrap approach.

Software availability

Our proposed estimators along with standard methods from
the literature are implementedwithin theRpackageNest. The
package is currently available at https://github.com/Tho-
masTaus/Nest.
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Supplement

Ágnes Jónás, Thomas Taus, Carolin Kosiol, Christian Schlötterer, Andreas Futschik

1 Normalized allele frequency changes under two-step sam-
pling

1.1 Calculating the expected normalized variation

In the following, we calculate the expected value for a measure of allele frequency change due to
the combination of t generations of drift and sampling. As in Waples (1989), we consider

Fc =

∑a
i=1(x̂k − ŷk)2∑a
k=1 ẑk − x̂kŷk

, (S1)

as our measure, where x̂ and ŷ denote the observed allele frequencies in the pooled DNA sample
collected t generations apart, a is the number of alleles at a locus and ẑk := (x̂k + ŷk)/2. We
consider only biallelic sites, which reduces equation (S1) to

Fc =
(x̂− ŷ)2

ẑ − x̂ŷ
(S2)

for a given locus. The expectation of Fc is approximated in the following way:

E(Fc) ≈
E(x̂− ŷ)2

E(ẑ − x̂ŷ)
=
V ar(x̂) + V ar(ŷ)− 2Cov(x̂, ŷ)

E(ẑ − x̂ŷ)
. (S3)

We will provide expressions for the numerator and denominator in equation (S3) both for plan I and
II under the two-step sampling process. For this purpose, we introduce the following notation: Let
p and pt denote the true allele frequency in the gamete pool preceding the first sampled generation
(0) and after t generations, respectively. S0 is the number of individuals sampled at the first time
point (generation 0), and x denotes the relative allele frequency in this sample. As in the main
text, we distinguish between the allele frequencies (x, y) estimated after sampling individuals at
generations 0 and t, and the frequencies (x̂, ŷ) after pool sequencing based on Rj (j ∈ {0, t}) reads.
For a visual representation of our sampling schemes along with the notation see Fig. S1.

We refer to previous findings of Waples (1989) without carrying out the detailed derivations
here, namely

1. The variance of x is binomial under both plans:

V ar(x) = E(x− p)2 =
p(1− p)

2S0
. (S4)
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2. The variance due to t generations of genetic drift is:

V ar(pt|p) = E(pt − p)2 = p(1− p)

[
1−

(
1− 1

2Ne

)t
]
. (S5)

We consider the relevant terms in eq. (S3) separately:

V ar(x̂) = E(V ar(x̂|x)) + V ar(E(x̂|x))

= E

(
x(1− x)

R0

)
+ V ar(x|p)

=
1

R0
[p− E((x− p+ p)2)] +

p(1− p)
2S0

=
1

R0
[p− p2 − E(x− p)2] +

p(1− p)
2S0

=
1

R0
[p(1− p)− V ar(x)] +

p(1− p)
2S0

=
1

R0

[
p(1− p)− p(1− p)

2S0

]
+
p(1− p)

2S0

= p(1− p)
[

1

2S0
+

1

R0
− 1

2S0R0

]
.

Note that we assume a diploid population with sample size of 2S0 and effective population size of
2Ne. Replacing 2S0 with S0 leads to the variance of x̂ in a haploid population with effective size
Ne. We now derive the variance of the sample allele frequency at T = t.

V ar(ŷ) = E(V ar(ŷ|y)) + V ar(E(ŷ|y))

= E

(
y(1− y)

Rt

)
+ V ar(y|p)

=
1

Rt
(p− E(y − p+ p)2) + V ar(y|p)

=
1

Rt
(p− p2 − V ar(y|p)) + V ar(y|p)

=
1

Rt

[
p(1− p)− p(1− p)

[
1−

(
1− 1

2Ne

)t(
1− 1

2St

)]]
+ p(1− p)

[
1−

(
1− 1

2Ne

)t(
1− 1

2St

)]

= p(1− p)

[
1

Rt
− 1

Rt

[
1−

(
1− 1

2Ne

)t(
1− 1

2St

)]
+

[
1−

(
1− 1

2Ne

)t(
1− 1

2St

)]]

= p(1− p)

[
1−

(
1− 1

Rt

)(
1− 1

2St

)(
1− 1

2Ne

)t
]

Here, 2Sj is the number of sampled chromosomes in a diploid population at time t. For a haploid
population, the factor 2 can be ignored for both the sample size and the effective population size.
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We introduce a correction term Cj := 1
2Sj

+ 1
Rj
− 1

2SjRj
for Fc at generations j ∈ {0, t}. For

haploid populations an analogous correction term is Cj(hapl.) := 1
Sj

+ 1
Rj
− 1

SjRj
(j ∈ {0, t}). Based

on the results above, the variance in sample allele frequency at T = 0 and t can be written as

V ar(x̂) = p(1− p)C0 , (S6)

and

V ar(ŷ) = p(1− p)

[
1− (1− Ct)

(
1− 1

2Ne

)t
]
. (S7)

In the haploid case, we have V ar(ŷ) = p(1− p)
[
1− (1− Ct(hapl.))

(
1− 1

Ne

)t]
.

Pool-seq data can be over-dispersed, e.g. if different individuals in the pool have different
probabilities of contributing the sequenced reads.

If the level of overdispersion can be inferred from the data, then it is possible to account for
the additional variance by introducing an overdispersion parameter γ. This parameter can be
interpreted as the factor by which the actual variance exceeds the theoretical binomial variance.
With γ, our correction term becomes

Cj(disp.) =
1

2Sj
+

γ

Rj
− γ

2SjRj
. (S8)

Following Waples (1989) the denominator in equation (S3) reduces to

E(ẑ − x̂ŷ) = p(1− p)− Cov(x̂, ŷ) . (S9)

We now investigate the covariance term separately for both sampling plans.

1.2 Sampling plan II

Under sampling plan II, a sample of size S0 is taken before reproduction and is not replaced in the
population. Consequenty, the sample of S0 individuals and the 2Ne chromosomes contributing to
the next generation are mutually exclusive, implying that the sample allele frequency at generation
0 is uncorrelated to the sample allele frequency at t, i.e. Cov(x̂, ŷ) = 0 for sampling plan II. We now
plug equations (S6), (S7), and (S9) into equation (S3). With equation (S7), we use the equation (2)
from the main text.
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E(Fc) ≈
V ar(x̂) + V ar(ŷ)− 2Cov(x̂, ŷ)

p(1− p)− Cov(x̂, ŷ)

=
V ar(x̂) + V ar(ŷ)

p(1− p)

=
p(1− p)C0 + p(1− p)

[
1− (1− Ct)e

−t/2Ne
]

p(1− p)
= C0 + 1− e−t/2Ne + Cte

−t/2Ne

= C0 + 1− e−t/2Ne − Ct(1− e−t/2Ne) + Ct

= C0 + Ct + (1− Ct)(1− e−t/2Ne)

By solving this equation and replacing E(Fc) by Fc, under plan II we obtain a measure of variance
corrected for the two-step sampling

F ′c =
Fc − C0 − Ct

1− Ct
. (S10)

The effective population size can then be estimated using the method of moments, i.e. equating
F ′c = E[F ′c] and solving for Ne.

1.3 Sampling plan I

Under sampling plan I, a sample of S0 individuals is taken after reproduction, so the sample will
contain chromosomes that might contribute to the next generation. This implies that the sample
allele frequency at generation 0 is positively correlated with the sample allele frequency at t, i.e.
Cov(x̂, ŷ) > 0, because both are derived from the same initial sample at generation 0. Note that
the covariance in equation (S3) would be zero, if the allele frequency p0 of this initial sample were
known because sampling itself at the two time points are independent. Similar to Waples (1989),
it can be shown that the covariance of x̂ and ŷ is simply the variance of p0. Indeed

x̂ = p+ (p0 − p) + (x− p0) + (x̂− x) = p0 + (x̂− p0) , (S11)

and
ŷ = p+ (p0 − p) + (pt − p0) + (y − pt) + (ŷ − y) = p0 + (ŷ − p0). (S12)

Thus

Cov(x̂, ŷ) = V ar(p0) = E(p0 − p)2 =
p(1− p)

2N
, (S13)

with N denoting the number of diploid individuals in the initial population, and p is the true allele
frequency in the gamete pool preceding generation 0. This leads to the following estimate of E(Fc)
for plan I
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E(Fc) ≈
V ar(x̂) + V ar(ŷ)− 2Cov(x̂, ŷ)

p(1− p)− Cov(x̂, ŷ)

=
p(1− p)C0 + p(1− p)

[
1− (1− Ct)e

−t/2Ne
]
− 2p(1−p)

2N

p(1− p)− p(1−p)
2N

=
C0 + 1− e−t/2Ne + Cte

−t/2Ne − 1
N

1− 1
2N

=
C0 + (1− e−t/2Ne)− Ct(1− e−t/2Ne) + Ct − 1

N

1− 1
2N

=
C0 + Ct + (1− e−t/2Ne)(1− Ct)− 1

N

1− 1
2N

Replacing E(Fc) by Fc leads to the corrected estimator of F under plan I

F ′c =
Fc

(
1− 1

2N

)
− C0 − Ct + 1

N

1− Ct
. (S14)

As under plan II, a method of moments estimator can now be computed using F ′c. Note that for

haploid populations, the covariance in eq. (S13) reduces to Cov(x̂, ŷ) = p(1−p)
N , and eq. (S14) for

haploids will be F ′c =
Fc(1− 1

N )−C0(hapl.)−Ct(hapl.)+
2
N

1−Ct(hapl.)
.
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Figure S1: Two-step sampling schemes. We follow the sampling schemes proposed by Nei and
Tajima (1981) and generalized by Waples (1989). Under sampling scheme I (plan I) a sample is taken
after reproduction. Under the second scheme (plan II), the sample is taken before reproduction
and is not returned to the population, so the sampled individuals and the ones contributing to
the next generation are mutually exclusive (Waples, 1989). Allele frequencies are obtained after a
two-step sampling process: First a sample of Sj (j ∈ {0, t}) individuals is taken to create a pooled
library for DNA extraction (green), that is subjected to high throughput sequencing. Sampling Rj

(j ∈ {0, t}) reads is modeled in the second step (red). At each step the relative allele frequencies
in the corresponding samples are indicated under the circles representing the sample. This is a
modified version of a figure in Waples (1989).
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Figure S2: Possible approximations for obtaining our method of moments estimator. The exact
method of moments estimator is obtained by solving F ′c = F := 1− (1−1/2Ne)

t for Ne. Left panel:
Function plot of F (see main text eq. (1)). Middle: F(approx.1)= 1− exp{−t/2Ne} (main text eq.
(2)). Right: F(approx.2)= t/2Ne. The function arguments are t and Ne.

R. S. Waples. A generalized approach for estimating effective population size from temporal changes
in allele frequency. Genetics, 121(2):379–391, Feb 1989.
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Figure S3: The performance of the estimators proposed by Waples (1989) (Ne(W )) and Jorde and
Ryman (2007) (Ne(JR)) are shown on simulated data. Simulations are performed as described in
the main text (section “Simulations”), but without the additional sampling step representing pool
sequencing, i.e. full genomic information is known for the S sampled individuals. The true effective
population size is indicated by the grey dashed lines We assume N = Ne, where N is the census
size of the population. For the bottom left scenario the figure is truncated and one outlier estimate
> 7000 for Ne(W ) is not shown. Only plan I estimators are displayed.
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(a) Plan I estimators.

(b) Plan II estimators.

Figure S4: Performance of Ne estimators for r = 1. Sixty generations of Wright-Fisher neutral
evolution with Ne = 100 diploid individuals are simulated for n = 2000 loci (SNPs). At the
starting population (generation 0), and at each indicated time point, a sample is taken to create
a pool of S individuals. Sequencing is modeled by an additional subsequent sampling step of a
random number of reads (Poisson with expected value R) for each SNP. Then Ne is estimated on
the resulting data set by separately contrasting generation 0 with each of the generations 5, 10, 15,
20, 40 and 60. We consider the estimators Ne(W ), Ne(JR) and Ne(P ). Each box represents results
from 100 simulations with identical parameters. The grey dashed lines indicate the actual value of
Ne. Results under plan I and II are shown separately on panels (a) and (b), respectively.
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(a) Plan I estimators

(b) Plan II estimators

Figure S5: Performance of Ne estimators for r = 2. Data simulated as described in Fig. S4.
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(a) Plan I estimators

(b) Plan II estimators

Figure S6: Performance of Ne estimators for r = 5. Data simulated as described in Fig. S4.
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Figure S7: An alternative estimate of Ne (N∗e (P )), that is defined as the harmonic mean of indi-
vidual Ne estimates (one per locus). Before taking the harmonic mean, our two-step correction is
applied to all individual estimates. Ne(P ) is the original estimator also shown in Fig. 2. Simulation
parameters are matching that of Fig. 2.

Median
Repl. X 2L 2R 3L 3R Genome-wide
R1 254.7478 235.0195 264.2104 185.1178 125.1865 191.5493
R2 356.6835 299.7259 277.5293 195.7418 181.2761 244.5242
R3 257.3661 255.4859 208.1953 149.7616 131.1328 160.2565

Table S1: Genome-wide median N̂e from an E&R study with D. melanogaster. The effective
population size is estimated with Ne(P ) plan I in windows of 10000 SNPs (Fig. 7). The median
across windows of the estimates is shown for the major chromosome arms. The genome-wide median
is taken over the autosomes excluding chromosome 4.
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Figure S8: Coefficient of variation of Ne(P ) under plan II for various parameter values. Neutral
Wright-Fisher simulations were performed with various combinations of the parameters: effective
population size (Ne = 100, 500, 1000 diploid individuals), pool size (S = 100, 50) and coverage
(R = 150, 100, 50). Ne is estimated with Ne(P ) under plan II using n = 2000 SNPs. S = N
indicates scenarios when the whole population is sequenced as a single pool. For all simulations,
N = Ne is used. Each value is calculated over 100 simulations. When the coefficient of variation
exceeds one, an inset figure shows the actual value.
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Figure S9: Mean of N̂e estimated with Ne(P ) under plan I for various parameter values. Wright-
Fisher neutral simulations were performed as for Fig. S8. The dashed lines indicate the actual value
of Ne. Panels can have different y-axis scale.
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Figure S10: Mean of N̂e estimated with Ne(P ) under plan II for various parameter values. Wright-
Fisher neutral simulations were performed as for Fig. S8. The dashed lines indicate the actual value
of Ne. Panels can have different y-axis scales.
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Figure S11: Standard deviation of N̂e estimated with Ne(P ) under plan I for various parameter
values. Wright-Fisher neutral simulations were performed as for Fig. S8. Panels can have different
y-axis scales.
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Figure S12: Standard deviation of N̂e estimated with Ne(P ) under plan II for various parameter
values. Wright-Fisher neutral simulations were performed as for Fig. S8. Panels can have different
y-axis scales.
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Figure S13: Median of N̂e estimated with Ne(P ) under plan I for various parameter values. Wright-
Fisher neutral simulations were performed as for Fig. S8. The dashed lines indicate the actual value
of Ne.
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Figure S14: Median of N̂e estimated with Ne(P ) under plan II for various parameter values. Wright-
Fisher neutral simulations were performed as for Fig. S8. The dashed lines indicate the actual value
of Ne.
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Figure S15: Estimated Ne on data simulated with selection. We performed forward Wright-Fisher
simulations for 59 generations with selection in three replicate populations using MimicrEE (Kofler
and Schlötterer (2014). (See also Section Simulations in the Main text). A selection coefficient of
s = 0.2 (with semi-dominance, h = 0.5) is assigned to a single randomly selected locus with low
starting allele frequency. All other loci were evolving neutrally. The population size is kept at a
constant level of 1000 individuals during the simulations. MimicrEE simulates haplotype evolution
with recombination, reflecting linkage disequilibrium in the data. The top panel shows the p-values
of a selection scan indicating the true target of selection in red (Cochran-Mantel-Haenszel test
contrasting allele frequencies at generation 0 and 59, Bastide et al. (2013)). Ne is estimated in non-
overlapping windows containing 10000 SNPs independently for replicates (middle panel). The mean
N̂e across windows and replicates is shown with the dashed line. The results of the segmentation
algorithm performed on N̂e windows (Futschik et al., 2014) is shown in the bottom panel separately
for the replicates.
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Figure S16: Coefficient of variation of N̂e estimated with the harmonic mean estimator N∗e (P )
under plan I for various parameter values. Wright-Fisher neutral simulations were performed as in
Fig. S8. Effective population size is estimated separately for each marker locus using the corrected
variance estimator in eq. (11). N̂e is then estimated as the harmonic mean across the n single locus
Ne estimates.
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(a) Ne(P ) (b) N∗
e (P )

Figure S17: Mean of the reciprocal of estimators Ne(P ) and N∗e (P ). Wright-Fisher neutral simu-
lations were performed as in Fig. S8. (a) Mean of 1/N̂e, where N̂e is estimated with Ne(P ). (b)
Mean of 1/N̂e, where N̂e is calculated with N∗e (P ).
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