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Abstract

Although hepatotropic viruses are important causes of human disease, the intrahepatic immune 

response to hepatitis viruses is poorly understood due to a lack of tractable small animal models. 

Here we describe a murine model of hepatitis A virus (HAV) infection that recapitulates critical 

features of type A hepatitis in humans. We demonstrate that the capacity of HAV to evade MAVS-

mediated type I interferon responses defines its host species range. HAV-induced liver injury was 

associated with interferon-independent intrinsic hepatocellular apoptosis and hepatic inflammation 

that unexpectedly results from MAVS and IRF3/7 signaling. This murine model thus reveals a 

previously undefined link between innate immune responses to virus infection and acute liver 

injury, providing a new paradigm for viral pathogenesis in the liver.

Although viral hepatitis is an important cause of human morbidity worldwide, there are no 

small animal models that accurately recapitulate liver disease caused by any of the five 
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responsible viruses (1, 2). Previous studies have relied heavily on nonhuman primates, 

especially chimpanzees (3, 4), to investigate pathogenesis and immune responses to hepatitis 

viruses. This has handicapped efforts to understand host responses within the unique 

immunologic environment of the liver (5, 6). Recent NIH policies effectively eliminate the 

use of chimpanzees in such studies (7), intensifying the need for alternative models. Here, 

we report a murine model that recapitulates many features of human infection with hepatitis 

A virus (HAV), an hepatotropic picornavirus (genus Hepatovirus) that circulates in blood as 

quasi-enveloped, membrane-cloaked virions and is shed in feces as naked, nonenveloped 

particles (8).

Like hepatitis B (HBV) and hepatitis C (HCV) viruses, the host range of HAV is considered 

restricted to humans and nonhuman primates (2, 9). However, successful adaptation to 

growth in murine and guinea pig cells suggests a broader host range (10, 11). Closely related 

viruses have also been discovered recently in bats, rodents, shrews and hedgehogs, with 

phylogenetic evidence suggesting past shifts among host species (12). HAV replication is 

strongly suppressed by type I interferon (IFN) (13), but HAV, like HCV, blunts interferon 

responses in human cells by expressing proteinases that degrade MAVS and TRIF, adaptor 

molecules involved in induction of IFN (13, 14). As a result, infected chimpanzees 

demonstrate limited type I IFN responses (4). Since the sequences targeted in human MAVS 

and TRIF are not conserved in small mammals (fig. S1A), the inability of HAV to infect 

these species could stem from a failure to disrupt IFN responses.

To test this hypothesis, we intravenously inoculated Ifnar1−/−Ifngr1−/− (DKO) mice that lack 

receptors for both type I and type II IFN with wild-type human HAV (15). These mice 

proved highly permissive for infection, developing multiple features of acute hepatitis A in 

humans (4, 16): fecal HAV shedding, low-grade viremia, and elevated serum alanine 

aminotransferase (ALT) activity (Fig. 1A). Multifocal inflammatory cell infiltrates, often 

surrounding necrotic or apoptotic hepatocytes, were present in liver 37–41 days post-

inoculation (d.p.i) and associated with HAV RNA (Fig. 1B, fig. S2A). Fecal shedding of 

infectious virus was confirmed by 3 subsequent passages in DKO mice, each leading to 

intrahepatic HAV RNA, fecal virus shedding, and elevated ALT (Fig. 1C, fig. S2B). Anti-

HAV antibodies were detectable 28 d.p.i. (fig. S3A). A fifth serial passage used 4th passage 

liver extract as inoculum. Unlike non-enveloped virions present in feces (density ~1.23 

gm/cm3) (8), ~65% of liver-derived virus was membrane-associated (~1.11 gm/cm3) (fig. 

S4). This inoculum rapidly induced ALT elevation with impressive fecal shedding and 

intrahepatic HAV RNA abundance (Fig. 1C,D).

Like DKO mice, Ifnar1−/− animals shed virus and developed ALT elevation when challenged 

with liver-derived virus, whereas type II IFN receptor Ifngr1−/− knockouts and wild-type 

(WT) mice showed no evidence of infection (Fig. 1D,E). The rapid induction of disease in 

this experiment, compared with slower onset in early DKO passages (Fig. 1A), resulted from 

a higher inoculum titer rather than viral adaptation to mice. Only a single nonsynonymous 

nucleotide substitution occurred in the viral sequence over 4 mouse passages (table S1). 

Infection persisted in Ifnar1−/− and DKO mice for over 3 months (Fig. 1D). Declining serum 

ALT and fecal virus shedding over this period of time suggested slow immune control in 

both types of mice, but histopathologic lesions persisted throughout (fig. S2C). As in 

Hirai-Yuki et al. Page 2

Science. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chimpanzees (4), HAV RNA copy numbers remained high in liver after fecal virus shedding 

had terminated (Fig. 1E,F).

These data suggest that the capacity of HAV to evade type I IFN responses defines its host 

range. However, DKO mice were resistant to challenge with either fecal or liver-derived 

virus administered by oral gavage, possibly reflecting a greater role for type III IFN in the 

gut (17, 18), or absence of an essential receptor. Rag1−/− and NSG mice lacking adaptive 

immunity were resistant to intravenous virus challenge (Fig. 2A and fig. S5A), further 

highlighting the importance of innate immunity in control of HAV. Since HAV-encoded 

proteinases disrupt IFN responses by degrading human MAVS and TRIF (13, 14), we 

challenged Mavs−/− and Trif−/− mice to ascertain whether signaling through these adaptor 

molecules restricts replication. Mavs−/− mice were highly permissive for HAV, shedding 10-

fold more virus than DKO or Ifnar1−/− mice (Fig. 2A), whereas Trif−/− mice were 

nonpermissive (Fig. 2A and fig. S5B,C). Thus, MAVS-mediated type I IFN responses block 

HAV replication in WT mice. Consistent with this, HAV 3ABC, a proteinase that degrades 

MAVS in human cells (13), does not cleave murine MAVS (fig. S1B).

Intrahepatic HAV RNA copy numbers were 10-fold higher in Mavs−/− mice than Ifnar1−/− 

mice (Fig. 2B), with the majority of Mavs−/− hepatocytes containing HAV RNA (fig. S5D–

E, table S2). Nonetheless, Mavs−/− mice developed neither ALT elevation (Fig. 2C) nor 

hepatic inflammation (Fig. 2D). Immunohistochemical staining for activated caspase 3 (Fig. 

2D) and TUNEL assays (fig. S6A) revealed numerous apoptotic hepatocytes in infected 

Ifnar1−/− liver, but none in Mavs−/− tissue. Apoptotic cells in Ifnar1−/− and DKO mice were 

surrounded by inflammatory infiltrates in proximity to cells containing HAV RNA (Fig. 2D, 

fig. S6B). Both caspase 8 and 9 (and caspase 3) activities were slightly increased in infected 

DKO and Ifnar1−/− liver (fig. S6C), but cleaved caspase was not detected in immunoblots as 

only ~1% of hepatocytes were apoptotic (fig. S6D). These data show that apoptosis and 

inflammation results from a MAVS-dependent but IFN-independent mechanism. MAVS-

mediated apoptosis has been recognized previously, but its role in vivo is uncertain (19, 20).

Virus was largely restricted to the liver in Mavs−/− mice: HAV genomes were 400-fold less 

abundant in spleen and 1000-fold less in lung (Fig. 2E). Viral RNA was more abundant in 

spleens of Ifnar1−/− mice, possibly reflecting sequestration of virus released from damaged 

hepatocytes. Little virus was present in ileum or colon of either knockout, indicating that 

fecal shedding originates in the liver, as in primates (21, 22). Thus, HAV is highly 

hepatotropic in mice. Viral shedding persisted unabated for 56 days in Mavs−/− mice with 

only minimal ALT increases (Fig. 2F, fig. S6E). Rare, isolated apoptotic hepatocytes were 

observed in only 2 of 5 mice 63 d.p.i. The appearance of anti-HAV antibody was delayed in 

Mavs−/− mice (fig. S3B), but virus neutralizing activities were comparable to Ifnar1−/− mice 

63 d.p.i..

Irf3−/− and Irf7−/− mice lack transcription factors downstream of MAVS that drive type I IFN 

expression (23). These mice supported only limited HAV replication, whereas Irf3−/−Irf7−/− 

double knockouts shed virus and accumulated intrahepatic HAV RNA levels equivalent to 

Mavs−/− or Ifnar1−/− mice (Fig. 2A, fig. S5A, and table S2). This is consistent with 

redundant roles for IRF3 and IRF7 in control of flaviviruses (24, 25). Serum ALT elevations 

Hirai-Yuki et al. Page 3

Science. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were minimal in infected Irf3−/−, Irf7−/−, and Irf3−/−Irf7−/− mice (Fig. 2C and fig. S7A). 

Irf7−/− and Irf3−/−Irf7−/− livers contained rare apoptotic hepatocytes (fig. S7B), possibly 

reflecting activation of IRF5 (25). However, a general lack of pathology in infected 

Irf3−/−Irf7−/− animals mirrored the absence of disease in Mavs−/− mice.

Hepatocyte apoptosis is known to drive inflammation within the liver (26). The livers of 7 

d.p.i Ifnar1−/− mice showed 55- and 13-fold increases in F4/80+CD11b+ macrophages and 

NK1.1+ NK cells, whereas CD4+ and CD8+ T cells were increased only 3- to 5-fold (Fig. 

3A). Increases in CD3+CD4−CD8− and γ/δ T cells did not achieve statistical significance. 

Immunohistochemistry confirmed a mixed cellular infiltrate (Fig. 3B). Luminex assays 

showed increased hepatic CCL3 (MIP-α), CCL5 (RANTES), and CXCL10 (IP-10) protein, 

but not IFN-γ, TNF-α, IL-1β, IL-2 or IL-6 (Fig. 3C). Similarly, serum IFN-β was markedly 

elevated (>10 ng/ml) in infected DKO and Ifnar1−/− mice (Fig. 3D), but ELISA assays for 

IFN-γ, TNF-α, IL-1β, and IL6 were negative. Nonetheless, RT-PCR demonstrated HAV-

induced intrahepatic transcripts for multiple cytokines and chemokines in DKO and 

Ifnar1−/−, but not Mavs−/− mice (Fig. 3E, fig. S8A). CCL2 (MCP-1) and CCL5 mRNA 

responses were maximal 7 d.p.i, whereas CCL3, IFN-γ, and TNF-α mRNAs peaked 15 

d.p.i. (Fig. 3E) despite the absence of detectable protein in serum or liver. Diminishing 

chemokine and cytokine responses at 28 d.p.i. (Fig. 3E) correlated temporally with a 100-

fold decline in fecal virus shedding. NLRP3 inflammasome-related transcripts were not 

increased (fig. S8B).

IFN-β transcription is coordinately regulated by IRF3/7 and NF-κB (27). Phospho-IRF3 

confirmed IRF3 activation in infected Ifnar1−/− mice (Fig. 3F), and interferon-stimulated 

genes (ISGs) such as ISG15, IFIT1, and CXCL10 that are directly regulated by IRF3 (28) 

were induced (Figs. 3C,G,H). IRF3 similarly regulates CCL5 transcription (29), explaining 

prominent and early CCL5 expression by HAV-infected hepatocytes in Ifnar1−/− but not 

Mavs−/− mice (Fig. 3C,E, fig. S8C). The phospho-p65 component of NF-κB was not 

measurably increased (fig. S8D).

Several possible mechanisms could account for apoptosis induced through a MAVS-IRF3/7 

pathway (fig. S8E). First, CCL5 expression could recruit cytotoxic lymphocytes to the liver, 

resulting in death receptor-mediated apoptosis (30, 31). However, depletion of CD4+ or 

CD8+ T cells had no impact on acute (7 d.p.i) disease in Ifnar1−/− mice (fig. S9). Moreover, 

virus-specific T cell responses were minimal in Ifnar1−/− and Mavs−/− mice (fig. S10). 

Depletion of NK1.1+ NK cells similarly failed to reduce liver injury (fig. S11). This argues 

against primary death receptor-mediated apoptosis. Clodronate depletion of macrophages 

prior to infection also had no effect on viral replication or inflammation (fig. S12).

Alternatively, apoptosis could be induced by ISGs that are directly regulated by IRF3 (28). 

The functions of these proteins are only partly understood, but IFIT2, an ISG that is 

transcriptionally regulated by IRF3, is known to trigger mitochondrial apoptosis in human 

cells (28, 32). IRF3 similarly regulates PMAIP1, a pro-apoptotic BH3-only protein (33). 

Importantly, both Ifit2 and Pmaip1 transcripts were induced early and to a greater extent in 

Ifnar1−/− than Mavs−/− mice (fig. S13). IRF3 can also induce apoptosis through a 

transcription-independent mechanism involving a direct interaction with mitochondrial Bax 
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(34). However, this would not explain the rare apoptotic hepatocytes observed in Irf3-

deficient mice (fig. S7B).

Although many details remain to be resolved, our data show that Ifnar1−/− mice provide a 

useful model that recapitulates many aspects of type A hepatitis in humans. Despite heroic 

efforts, such a model has proved elusive for HBV or HCV infection (2). Our results suggest 

that HAV host species range is dictated largely by its capacity to evade MAVS-mediated 

type I IFN responses, and reveal an unexpected role for MAVS signaling in virus-mediated 

liver injury. Such signaling leads to IRF3/7-dependent, but IFNα/β- and IFNγ-independent 

hepatocellular apoptosis with a secondary inflammatory response (fig. S8E). This may 

explain why HAV and HCV have evolved independently to target MAVS for degradation. 

Disrupting innate immune signaling upstream of IRF3/7 not only limits IFN-mediated 

antiviral responses, but also restricts inflammation within the liver, delays anti-viral antibody 

responses, and slows viral clearance (Figs. 2D,E fig. S3B, S6E). IRF3, activated through 

STING as a result of endoplasmic reticulum stress, has been implicated recently in acute 

ethanol-induced hepatitis (35), suggesting a common final pathway for toxin- and virus-

induced liver injury. Altogether, our findings establish the critical importance of innate 

immune responses in control of viral infection in the liver, and provide a paradigm for HAV 

pathogenesis that is likely relevant to other hepatotropic human viruses.
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Figure 1. 
HAV infection in DKO (Ifnar1−/−Ifngr1−/−), Ifnar1−/−, and Ifngr1−/− mice. (A) 

Representative course of infection in a DKO mouse inoculated i.v. with 107 GE human HAV 

(chimpanzee fecal extract). (B) H&E-stained liver from representative (top) infected and 

(bottom) control DKO mice 41 d.p.i. showing inflammatory infiltrates and (inset) apoptotic 

hepatocytes (bar = 50 μm, inset bar = 12.5 μm). (C) Summary of serial passage of HAV in 

DKO mice showing (left) intrahepatic HAV RNA and (right) fecal HAV RNA, source and 

magnitude of HAV inocula (Pt-F, chimpanzee feces; M-F, DKO mouse feces; M-L, DKO 

mouse liver), and day of harvest. Data are mean ± SEM or range, n=2–3 animals as shown. 

*p<0.05, ***p<0.001 p1 vs. p5 by 1-way ANOVA. (D) (top) Fecal HAV RNA and (bottom) 

serum ALT in DKO, Ifnar1−/−, Ifngr1−/− and wild-type (WT) BL6 mice challenged with 4th 

passage DKO liver extract (2.6 ×108 GE). Shown are means ± SEM, n=4. *p<0.05, *** 

p<0.001 for Ifnar1−/− vs. DKO by ANOVA. (E) Intrahepatic HAV RNA in WT, DKO, 

Ifnar1−/− and Ifngr1−/− mice 127 d.p.i. (mean ± range, n=2). (F) Intrahepatic HAV RNA in 

Ifnar1−/− mice infected with 4th passage liver extract. Symbols represent individual mice. 

Dotted horizontal lines in panels indicate level of detection (RNA) or upper limit of normal 

(ALT).
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Figure 2. 
HAV infection in Ifnar1−/− vs. Mavs−/− mice. (A) Fecal HAV RNA on day 7 and 14 after i.v. 

challenge of different genetically-deficient mice. Data are mean ± SEM, n=3-5. (B) Viral 

RNA in livers of Ifnar1−/− vs. Mavs−/− mice 15 and 63 d.p.i. Data are mean ± SEM, n=2–5 

as shown. *p<0.05, ***p<0.001 by two-sided t test. (C) Serum ALT 7 and 14 d.p.i. in 

genetically-deficient mice, with expanded low ALT range on the right. Data are mean ± 

SEM, n= 5. **p<0.01, ***p<0.001 for combined day 7 and 15 data by two-sided Mann-

Whitney test. (D) Immunohistochemical staining of cleaved caspase 3 in liver from 

representative (top) Ifnar1−/− vs. (bottom) Mavs−/− mice 15 d.p.i. Bar = 100μm (inset, 

12.5μm). (E) Tissue distribution of HAV RNA in infected Ifnar1−/− vs. Mavs−/− mice. Data 

are mean ± SEM, n=3–4. ***p<0.001 by multiple t-test with false discovery rate 1%. (F) 

Fecal virus shedding in infected Ifnar1−/− or Mavs−/− mice over 56 days of infection. Data 

are mean ± SEM, n=3-5. ***p<0.001 by multiple t-test with false discovery rate 1%.
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Figure 3. 
Cellular and cytokine response to HAV infection in DKO and Ifnar1−/− mice. (A) Estimated 

intrahepatic leukocyte numbers in naïve versus infected Ifnar1−/− mice 7 d.p.i. Data are 

mean ± SD, n=5 (mean ALT=372 IU/L). **p<0.01, ***p<0.001 by two-way ANOVA with 

Tukey's multiple comparison test. (B) Dual immunohistochemical staining of infected 

Ifnar1−/− liver for CD4 (magenta) and CD8 (brown) showing a mixed cellular infiltrate14 

d.p.i. Bar = 10 μm. (C) Fold-increase in liver cytokine levels in HAV-infected DKO mice 

(Luminex assay) with ALT >200 IU/L. Mean ± range, n=2. (D) Serum IFNβ measured by 

ELISA 7 d.p.i. Data are mean ± SD, n=4. (E) Fold-increase in intrahepatic cytokine and 

chemokine mRNA abundance in Ifnar1−/− mice. Data are mean ± SEM, n=4–5. 

Immunoblots of (F) phospho-Ser-396 and total IRF3, and (G) ISG15 in livers from HAV-

infected vs. naïve DKO mice. β-actin included as a loading control. (H) Intrahepatic 

transcripts of IRF3-regulated ISGs, ISG15, IFIT1 (ISG56), CCL5 (RANTES), and ISG20 

(not directly regulated by IRF3), in HAV-infected DKO (n=4) and Mavs−/− (n=3) mice vs. 

naïve animals 18–28 d.p.i. *p<0.05 by t test.
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