
Considerations and caveats in anti-virulence drug development

Damien Maura1,2,3,4, Alicia E. Ballok1,2,3,4, and Laurence G. Rahme1,2,3

1Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA

2Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, 
USA

3Shriners Hospitals for Children Boston, Boston, MA 02114, USA

Abstract

As antibiotic resistance remains a major public health threat, anti-virulence therapy research is 

gaining interest. Hundreds of potential anti-virulence compounds have been examined, but very 

few have made it to clinical trials and none have been approved. This review surveys the current 

anti-virulence research field with a focus on the highly resistant and deadly ESKAPE pathogens, 

especially Pseudomonas aeruginosa. We discuss timely considerations and caveats in anti-

virulence drug development, including target identification, administration, preclinical 

development, and metrics for success in clinical trials. Development of a defined pipeline for anti-

virulence agents, which differs in important ways from conventional antibiotics, is imperative for 

the future success of these critically needed drugs.

Introduction

Antibiotic resistance is an ever-growing public health concern, exacerbated by the recent 

appearance of bacteria resistant to all available antibiotics [1]. The US government has 

described this concern as a major unmet need of the 21st century and called for the 

development of alternative antibacterial strategies [2]. In response, researchers have made 

advances toward such strategies, the most promising of which are antimicrobial peptides, 

immunotherapy, phage therapy, nanoparticles, and anti-virulence drugs (reviewed in [3••]).

Here we focus on anti-virulence approaches, which disrupt pathogen virulence, but not 

pathogen growth or viability. The goals of the anti-virulence approach are to reduce 

antibiotic use and, ultimately, decrease the occurrence of antibiotic resistance, while 

preserving beneficial flora. Anti-virulence agents do not impose strong selective pressures 

on bacteria that favor the evolution of resistance and persistence mechanisms and because 

they do not affect viability, they should not disrupt beneficial microbiota.

Candidate anti-virulence compounds have been identified via screening of natural products, 

structural modification of native ligands, in silico docking, and high-throughput screening 

(HTS) of chemical libraries. Although anti-virulence research literature has grown 
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exponentially in recent years (Figure 1), the first anti-virulence drug has yet to come, 

begging the question: What is holding up the anti-virulence drug pipeline?

Anti-virulence strategies for ESKAPE pathogens

The so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter species) ‘escape’ killing by antibiotics and defy eradication by conventional 

therapies [4]. ESKAPE bacteria are particularly concerning because they represent the 

largest group of nosocomial pathogens with growing incidences of antibiotic resistance [4]. 

The frequencies of vancomycin resistance among Enterococci and methicillin resistance in 

S. aureus (MRSA) have reached 61% and 60%, respectively [5,6]. Furthermore, their 

antibiotic resistance makes them especially deadly, with mortality rates being 14% for 

methicillin-resistant S. aureus [2], 25% for vancomycin-resistant Enterococci [7], 39% for P. 
aeruginosa [8], and 50% for hospital-acquired A. baumannii [9].

Anti-virulence strategies for ESKAPE pathogens tend to target (1) specific virulence factors 

[e.g., type three secretion systems (T3SS), enterotoxins] [10,11], (2) master virulence 

regulators [e.g., two-component systems, quorum sensing (QS)] [12,13••], or (3) resistance 

to host defenses and antibiotics [e.g., capsule, staphyloxanthin, biofilm] [14,15•,16]. 

Representative examples of ESKAPE anti-virulence targets and their inhibitors are listed in 

Table 1. Well-tolerated natural virulence inhibitors, including garlic, menthol, clove, and 

black pepper have shown promise against enterotoxins, T3SS, and biofilm [11,17–19], can 

be applied topically, but often lack the specificity or efficacy required for systemic 

infections. Hla, a β-barrel pore-forming toxin, has been targeted for MRSA anti-virulence 

because of its effects on skin necrosis and lethality [20]. For example, morin hydrate, which 

inhibits Hla self-assembly and thereby prevents pore formation, and was shown to be 

protective in a pneumonia mouse model [21].

Multicellular, surface-associated communities, known as biofilms, can increase pathogen 

antibiotic tolerance up to 1000-fold [22]. A. baumannii, MRSA, and P. aeruginosa biofilms 

form quickly and are extremely tolerant of antibiotics [23]. 2-Aminoimidazole and triazole-

derived compounds are promising biofilm inhibitors [16,23–25], but have not yet been 

subjected to large-scale in vivo studies.

Anti-virulence strategies for P. aeruginosa

Most anti-virulence strategies for P. aeruginosa target virulence systems (protein secretion, 

biofilm) or master virulence regulators (c-di-GMP, QS) (Table 1). P. aeruginosa T3SS is 

critical for delivery of toxins into host cells [31]; drug discovery has focused especially on 

targeting the T3SS effector ExoU/S, PscF/PcrV needle proteins, and the regulator ExsA 

[10,32]. The T3SS apparatus is well-conserved among pathogens, broadening the 

application of T3SS inhibitors to multiple pathogens [32] and polymicrobial infections. P. 
aeruginosa type II (T2SS) and type V secretion systems have been targeted to a lesser extent 

[33,34], though the similarities between T2SS and T3SS may reveal T2SS inhibitors 

incidentally [35].
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Anti-biofilm inhibitors targeting carbohydrate-binding lectins show good potency in vitro 
and in vivo, but might disrupt host lectins [27,36]. Type IV pili [37] are unsuitable targets 

because they are not well-conserved in P. aeruginosa isolates. Global biofilm regulators such 

as cyclic di-GMP signaling and QS systems are appealing anti-virulence targets [38,39]. 

Cyclic-di-GMP signaling is important for motility and biofilm formation in multiple 

pathogens [38]. Screens have identified cyclic di-GMP inhibitors that reduce P. aeruginosa 
biofilm formation by interfering with the cyclic di-GMP synthetase WspR or its target PelD, 

some with low IC50 values [29], but in vivo studies are lacking.

The LasR, RhlR, and MvfR QS systems rely on their respective synthetases LasI, RhlI, and 

PqsABCD, which produce the respective cognate activating ligands C12-HSL, C4-HSL, and 

HHQ/PQS [39]. Most LasR and RhlR inhibitors are ligand analogues [40,41]. Natural 

compounds identified by screening exhibit good in vivo potency but have been shown to be 

cytotoxic and subject to efflux-mediated resistance [42,43•]. QS synthetase inhibitors have 

also been described [44].

The MvfR QS system is critical for acute and chronic/relapsing infections [45,46]. HTS and 

ligand-based approaches have been employed to identify MvfR inhibitors [13••,47,48]. 

Inhibitors of the MvfR-regulated gene product PqsA have been shown to have good efficacy 

in mice [12]. Modified PqsD ligands [49] and PqsD-related enzyme ligands and inhibitors 

[50,51] have also been developed as potential inhibitors. Whole-cell HTS has revealed 

highly potent P. aeruginosa QS inhibitors (IC50 200–300 nM) with efficacy against acute and 

relapsing infections in mice [13••]. They are the first inhibitors of antibiotic-tolerant cell 

formation [13••]. Combined with agents that kill antibiotic tolerant/persister cells [52•], they 

may provide successful therapies against cells that survive antibiotic/host killing, a critical 

unmet need.

Resistance to anti-virulence drugs

As mentioned above, to prevent selective pressure toward resistance development, as occurs 

with classical antibiotics, anti-virulence drugs should not affect pathogen viability. In vitro 
studies have suggested resistance to some anti-virulence molecules [43•,53,54]; however, in 
vivo studies are needed to confirm this. Nonetheless, by definition, virulence contributes to 

pathogen fitness in vivo. That is, an anti-virulence resistant mutant would outcompete 

sensitive cells during treatment. However, some important microbial population genetics and 

ecological concepts modulate this assumption.

Firstly, selective pressure depends on whether the targeted virulence factor is communal 

(public good) benefiting sensitive and resistant subpopulations alike, or individualized 

(private good) benefiting only the resistant subpopulation. Recent in vitro studies indicate 

that only individualized factors become dominant, whereas communal factors do not provide 

a competitive advantage to resistant cells [43•,55–57]. Secondly, virulence factors may have 

distant benefits manifested away from the infection site (e.g., commensals in reservoir). 

Virulence factors such as staphyloxanthin are dispensable in non-infection sites [58], 

reducing their selective advantage [59]. A priori assessment of whether a factor yields a 

distal benefit, an aspect currently overlooked, could significantly improve target evaluation 
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efforts. Thirdly, bacterial population structure plays an important role in resistance spread. 

Physical separation between resistant and sensitive cells, as it occurs in biofilms, or low 

diffusion rate conditions create microenvironments where the so-called ‘cheater’ cells 

cannot access communal goods, leads to individualized benefit and resistance spread within 

the microenvironment [55,59]. However, this effect is dampened when factors can be shared 

[55,59]. Overall, given the above considerations for target selection, direct in vitro 
comparisons indicate that the potential selective advantage for resistance to anti-virulence 

agents is, at most, very weak relative to that for antibiotics [57].

Clinical use of anti-virulence drugs, obstacles, and considerations

In theory, a single inhibitor targeting a well-conserved virulence factor could treat multiple 

pathogens in polymicrobial infections. Highly conserved targets such as T3SS and Hla are 

promising because they are specialized, critical virulence factors. For generalized virulence 

functions like QS or capsule formation, however, attention must be paid to the issue of 

specificity with the aim of minimizing effects on native microbiota. Understanding the 

function of putative targets and their regulatory interactions is critical for development of a 

well-designed reporter system and thorough efficacy validation. Moreover, to enable clinical 

translation, knowing the impacts of target inactivation in infection is necessary for the design 

of appropriate in vivo readouts and clinical trials. Whole-cell screens that permit the 

identification of cell-permeable compounds and elimination of cytotoxic compounds are 

advantageous for the development of potent anti-virulence inhibitors [13••].

Questions regarding the optimal timing and appropriate infection type for use of virulence 

inhibitors can be infection and target specific. Prophylactic administration, such as in 

preoperative or prolonged hospitalization situations, may reduce nosocomial infections [60]. 

Regarding infection type, chronic infections may be the most important application for anti-

virulence therapies because they often involve antibiotic-tolerant or multi-drug resistant 

pathogens [61]. Combinatorial therapy with antibiotics, as in the case of the QS MvfR 

inhibitors, may help limit the development of tolerance to antibiotics and disrupt multiple 

virulence functions in pathogens [13••].

Perhaps the most unique challenge for preclinical anti-virulence studies is defining metrics 

of success. Because immediate bacterial death is unlikely to occur, studies must probe 

salient features, such as cell damage, inflammatory response, disease severity, or other 

aspects of pathophysiology. This consideration is especially important for those infections in 

which the immune response can be more detrimental than the infection itself, as in septic 

shock [62]. Infection clearance can still be a parameter, though clearance would rely on host 

immunity and thus may take several days or longer. These factors become even more 

relevant when transitioning from preclinical to clinical trials due to differences between 

murine and human immunity [2,63].

Despite the large pool of potential anti-virulence therapeutics discovered thus far, the low 

potential for resistance, and other immunological positives, few clinical trials have been 

attempted with virulence inhibitors. T3SS inhibitors have been subjected to clinical trials, 

but failed [64,65]. P. aeruginosa T3SS and S. aureus toxin antibodies are currently in phase-
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two trials [66]. Lectin inhibitors were reported to be effective in a small trial with cystic 

fibrosis patients [67], but no follow-up studies have been done. Based on the paucity of 

compounds currently in trials, one major hurdle may be planning preclinical studies that 

consider anti-virulence metrics appropriately, as discussed above. Perhaps, another equally 

important aspect to consider is the integration of predictive analytics into the clinical trials of 

anti-virulence drug discovery [68,69•] to avoid preemptive trial failure. Finally, moving 

agents into preclinical and clinical studies is costly, and prohibitively so for academic 

research laboratories. Industry collaborations may help with experimental studies and 

funding, but both industry and regulatory agencies should be prepared to pursue different 

avenues of assessing anti-virulence therapy efficacy. Indeed, academia–industry partnerships 

could be invaluable for advancing the anti-virulence agent pipeline [3••]. A productive 

pipeline would also benefit plant and animal food production given that both contribute to 

the emergence, persistence, and spread of resistant bacteria.
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Figure 1. 
Growth in publications with the keywords ‘anti-virulence’ or ‘antivirulence’ in PubMed. 

Some relevant publications without these keywords were likely not included.
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Table 1

Selected examples of anti-virulence targets and inhibitors for ESKAPE pathogens

Target Pathogen Example inhibitor In vivo model employed Reference

Hla S. aureus Morin hydrate Mouse (lung) [21]

Staphlyoxanthin S. aureus Phosphonoacetamide derivative Mouse (intraperitoneal) [15•]

Enterotoxins S. aureus Menthol None [11]

Sortase A S. aureus Chlorogenic acid Mouse (sepsis) [26]

Biofilm S. aureus Black pepper oil C. elegans [18]

A. baumannii TAGE-triazole conjugates None [16]

K. pneumoniae GarO (garlic ointment) None [17]

P. aeruginosa Mix of sugars Mouse (lung) [27]

QS S. aureus C14-TOA (3-acyltetronic acid) Mouse (arthritis) [28]

P. aeruginosa M64 Mouse (burn and lung) [13]

C-di-GMP P. aeruginosa Ebselen None [29]

Protein secretion P. aeruginosa Anti-PcrV antibody Mouse (lung) [10]

Capsule S. aureus Fascioquinol E None [14]

K. pneumoniae Triazines Tetrahymena pyriformis [30]
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