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The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine
leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function,
a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both
viruses, unequivocally narrowing down the identification of the sequence that is sufficient to specify the
receptor functions of Pit2 to its N-terminal 182 amino acids and C-terminal 170 amino acids.

The type III sodium-dependent phosphate (NaPi) sym-
porter, Pit2, from humans is a receptor for amphotropic mu-
rine leukemia virus (A-MuLV) and the related strain 10A1
MuLV (13, 22, 23, 25, 40, 44). The related Pit1 protein from
humans (62% amino acid identity) is a receptor for gibbon ape
leukemia virus, feline leukemia virus subgroup B, and 10A1
MuLV (22, 24, 39). The two human type III NaPi symporters
show about 25% amino acid identity with the Neurospora
crassa NaPi symporter Pho-4 (11, 40). Several studies have
aimed at identifying sequences that are critical for the viral
receptor functions of Pit1 and Pit2. These studies used chime-
ras between Pit1 and Pit2 orthologs, Pit1 orthologs, human
Pit1 and Pho-4, human Pit2 and Pho-4, and human Pit1 and
Pit2 and Pho-4 as well as Pit1 and Pit2 mutants (3, 5–8, 12,
14–16, 22, 26–28, 31–33, 38, 42, 43). The results suggest that
amino acids and/or sequences present in human Pit2 positions
67 to 91 (8), 107 to 141 (14), 517 to 530 (15), and 522 to 530
(28) or corresponding positions in related proteins (15, 16, 22,
28, 33) specify or are involved in A-MuLV receptor function.
Moreover, human and mouse Pit1 chimera studies suggest that
amino acids in the mouse and human Pit1 regions correspond-
ing to human Pit2 sequence 522 to 530 also are involved in
10A1 receptor function (16); these results have been confirmed
in studies of human Pit2 mutants (unpublished results).

The design of the majority of the chimerical and mutant
proteins (14–16, 22, 28, 33) was based on a membrane topology
model for Pit1, Pit2, and Pho-4, which was suggested by Jo-
hann and coworkers on the basis of Kyte-Doolittle hydropathy
plots (4, 11, 40) (Fig. 1B). Recently, new topology models that
differ from the previous models have been proposed for Pit1
(7) and Pit2 (30) (Fig. 1A). If Pit1 and Pit2, however, exhibit
different topologies in the membrane, the interpretation of
which sequences are directly involved in receptor function for
A-MuLV and 10A1 based on results obtained with Pit1/Pit2
chimeras may be incorrect. Moreover, one cannot in general
exclude the possibility that amino acid exchanges in, for exam-
ple, one part of Pit2 would lead to overall structural changes in
another part of the protein, as shown for Pit1 by Farrell et al.

(7). Results obtained with exchange mutants, therefore, may
also potentially lead to incorrect interpretations concerning
the identities of amino acids in Pit2 that are directly involved
in A-MuLV and 10A1 receptor functions. It is obvious that
these problems cannot be addressed simply by extending the
use of chimeric Pit1/Pit2 proteins or exchange mutants of Pit2;
however, functional deletion mutants can better identify which
Pit2 sequences are directly involved in specifying receptor
function.

We hypothesized that if the A-MuLV–and possibly 10A1–
receptor determinants are indeed positioned in the N- and/or
C-terminal ends of Pit2, it may be possible to delete the middle
part of Pit2 and still retain its receptor functions. Accordingly,
we made a mutant human Pit2 protein, Pit2�L183-V483, in
which the part between arginine 182 and histidine 484 was
deleted in the 652-amino-acid protein.

The Pit2�L183-V483 mutant was made from the
pcDNA1ARtkpA-derived expression plasmid pOJ74 (Wyeth-
Ayerst Research, Pearl River, N.Y.) encoding human Pit2 (40)
by using the forward primer ATGGCTGGGGAAGTTA
GTGC and the reverse primer GGGTTACCGGAGGCCCG
TGTGGAGGACAAGGTA; the latter was used to create the
link between the 5� sequence encoding PNGLRA182 and the 3�
sequence encoding H484LLFH (Fig. 1). The PCR amplification
product was digested with Bsu36I and Sse8387I and used to
replace the corresponding fragment in plasmid pOJ74, result-
ing in a plasmid encoding the mutant Pit2�L183-V483 protein.
The authenticity of the nucleotide sequence was confirmed.
The ability of Pit2�L183-V483 to support A-MuLV and 10A1
entry was compared to that of human Pit2 by using a transient
transfection-infection assay and A-MuLV and 10A1 vector
pseudotypes derived from the packaging cell lines PA317 (19,
21) and PT67 (20), respectively, both carrying the G1BgSvN
transfer vector (18) as previously described (2, 28). The
G1BgSvN transfer vector is a Moloney MuLV-based vector
that expresses LacZ and neomycin phosphotransferase (18).
The titers of A-MuLV and 10A1 vector stocks were deter-
mined on dog D17 cells (ATCC CCL 183) as previously de-
scribed (28) and were 1.4 � 105 to 4.7 � 105 and 0.7 � 105 to
6.0 � 105 CFU per ml, respectively; however, the stocks were
diluted to 40,000 infectious vectors per 1.5 ml before use.
Briefly, hamster CHO K1 cells (ATCC CCL 61), before the
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fifth passage and kept subconfluent during cultivation, were
seeded in dishes with a diameter of 60 mm. These cells were
transfected with 1 �g of plasmid DNA encoding human Pit2 or
equimolar amounts of plasmid encoding Pit2�L183-V483.
Mock-treated cells were transfected with empty vector DNA.
The total amounts of DNA in the transfection solutions were
kept constant by using plasmid pUC19 as carrier DNA. At 48 h
posttransfection, 1.5 ml of diluted vector stocks was added per
dish in the presence of Polybrene. After 48 h, the dishes were
fixed and stained, and the number of �-galactosidase-positive
(infected) cells per dish was either counted (Table 1) or visu-
alized (Fig. 2). Note that in each experiment shown in Table 1,
three independent transfection solutions were made per con-
struct, and each solution was evaluated for its ability to support
both A-MuLV and 10A1 infection (experiments 1 and 2) or
10A1 infection (experiment 3); thus, the numbers shown in
Table 1 represent the average levels of infection from three
60-mm dishes that received independent transfection solu-
tions.

Even though approximately the middle half of the Pit2 pro-
tein is deleted in Pit2�L183-V483, the mutant sustained recep-
tor function for both A-MuLV and 10A1 in the ranges of 13 to
25% and 10 to 24%, respectively, of the infection levels sup-
ported by wild-type human Pit2 (Table 1). No infection by
10A1 or A-MuLV vector pseudotypes was observed in mock-
transfected CHO K1 cells (Table 1 and Fig. 2). We occasion-
ally observe a low background level of infection with these
vector pseudotypes on our CHO K1 cells (�2 to 6 blue cells

per 60-mm dish or �2 CFU/ml) (reference 15 and our unpub-
lished observations) although such an occurrence is the excep-
tion (Table 1 and Fig. 2) (2, 15, 28). It should be noted,
however, that there exist CHO K1 subpopulations or subclones
that are susceptible to 10A1 infection (9, 22).

While the results presented here do not provide new infor-

FIG. 1. Putative membrane topology models of Pit2 based on Salaün et al. (30) (A) and Johann et al. (11, 40) (B); see references for details
on the models. The membrane topology model of Pit2 after Salaün et al. (30) was based on (i) epitope tagging of N- and C-terminal ends, (ii)
orientation of microsomal membrane-inserted in vitro transcribed and translated C-terminal-truncation mutants, and (iii) glycosylation of wild-type
human Pit2 and lack of glycosylation of a human Pit2N81V mutant in whole-cell extracts from CHO K1 cells overexpressing Pit2 and Pit2N81V.
Salaün and coworkers did not present functional studies (e.g., viral receptor function) of the C-terminal truncation mutants (30). For comparison,
the first proposed membrane topology model of Pit2 based on Kyte-Doolittle hydropathy plots is shown (11, 40) in panel B. The middle part of
human Pit2 including amino acid 183 to amino acid 483 (the sequences highlighted in both A and B) is deleted in the mutant Pit2�L183-V483.

TABLE 1. Permissivity for infection of CHO K1 cells transiently
transfected with vector expressing Pit2 or Pit2�L183-V483 or

empty vectora

Constructb

No. (%) of cells infectedc

A-MuLV 10A1 MuLV

Expt 1 Expt 2 Expt 1 Expt 2 Expt 3

Pit2 (pOJ74) 100 � 22 100 � 8 100 � 5 100 � 8 100 � 9
Pit2�L183-V483 25 � 1 13 � 2 10 � 1 12 � 4 24 � 3
Empty vectord �0.0008 �0.002 �0.002 �0.001 �0.001

a The experimental setup is described in the text. A-MuLV and 10A1 vector
pseudotypes were tested on the same DNA precipitates of a given construct in
experiment 1 (one independent set of DNA preparations) and in experiment 2
(another independent set of DNA preparations). In experiment 3, only the 10A1
vector pseudotype was tested (same DNA preparations as in experiment 1).

b Receptor and mutant receptor sequences were cloned into pcDNA1ARtkpA.
c The data are averages of three independent transfections � standard errors

of the means. The average number of blue cells per three 60-mm dishes trans-
fected with a plasmid expressing Pit2 was assigned a value of 100% (42,000,
19,000, 18,000, 32,000, and 32,000 blue cells per dish for A-MuLV in experiments
1 and 2 and for 10A1 in experiments 1, 2, and 3, respectively).

d Values are based on the detection limit of 1 blue cell per three 60-mm-
diameter dishes.
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mation on the membrane topology of Pit2 per se, the obser-
vation that Pit2�L183-V483 supports A-MuLV and 10A1 infec-
tion shows that the N-terminal 182 amino acids and C-terminal
170 amino acids of human Pit2 are sufficient for specifying
A-MuLV and 10A1 receptor functions. Thus, the results of the
present study narrow the viral binding domains and other pos-
sible sequences directly involved in A-MuLV and/or 10A1 en-
try to sequences positioned in these N- and C-terminal regions
of human Pit2. The regions include all Pit2-specific sequences
previously identified as influencing Pit2 receptor function for
A-MuLV and 10A1 (8, 14–16, 22, 28, 33), and the Pit2�L183-
V483 mutant may prove to be a powerful tool in identifying
whether all of these sequences, indeed, are directly involved in
A-MuLV binding and entry. The mutant lacks a sequence
originally identified as a topogenic determinant in Pit1 (region
B) and shown to affect the results of Pit1/Pit2 chimerical stud-
ies (7); however, a number of related putative phosphate sym-
porters from archaea and bacteria (e.g., U15187, AL939110,
AP001512, AE000978, AE013582 [National Center for Bio-
technology Information accession numbers]) resemble
Pit2�L183-V483, which suggests that the mutant constitutes a
structural unit here shown to specify viral receptor function. It
is therefore also possible that the mutant will sustain NaPi

transport. It should be noted, however, that there is no corre-
lation between the ability of Pit2 to transport phosphate and

support viral entry (2), and the uncoupling of transport and
receptor functions has also been shown for two other trans-
porters with retroviral receptor function (37, 41) as thoroughly
discussed in a recent review (36). Indeed, like Pit2, a number
of the identified receptors for retroviruses are polytopic solute
transporters (1, 10, 17, 24, 29, 34, 35). The present study shows
that it is possible to use a deletion mutant of Pit2 for studying
its viral receptor function and raises the possibility that dele-
tion mutants of other polytopic proteins may also provide
insight into which receptor sequences are directly involved in
receptor functions for their cognate viruses.
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