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As the iron supplied from hydrothermalism is
ultimately ventilated in the iron-limited Southern
Ocean, it plays an important role in the ocean
biological carbon pump. We deploy a set of focused
sensitivity experiments with a state of the art
global model of the ocean to examine the processes
that regulate the lifetime of hydrothermal iron and
the role of different ridge systems in governing
the hydrothermal impact on the Southern Ocean
biological carbon pump. Using GEOTRACES section
data, we find that stabilization of hydrothermal
iron is important in some, but not all regions. The
impact on the Southern Ocean biological carbon pump
is dominated by poorly explored southern ridge
systems, highlighting the need for future exploration
in this region. We find inter-basin differences in
the isopycnal layer onto which hydrothermal Fe is
supplied between the Atlantic and Pacific basins,
which when combined with the inter-basin contrasts
in oxidation kinetics suggests a muted influence of
Atlantic ridges on the Southern Ocean biological
carbon pump. Ultimately, we present a range of
processes, operating at distinct scales, that must be
better constrained to improve our understanding of
how hydrothermalism affects the ocean cycling of iron
and carbon.

This article is part of the themed issue ‘Biological
and climatic impacts of ocean trace element
chemistry’.

1. Introduction
Via the process known as the biological pump, carbon
fixation by marine phytoplankton and subsequent
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sinking of organic carbon to depth are able to affect the global carbon cycle and atmospheric
CO2 concentrations [1]. As such, variations in the availability of the resources that regulate
phytoplankton growth and the sinking (or export) of organic carbon will have important
ramifications for the carbon cycle. An area of particular focus in this regard is the Southern
Ocean, where due to the formation of deep water, modifications to the biological pump have
a particularly strong impact on atmospheric CO2 [2]. Until the mid-1980s, our conceptual view
of resource limitation in the ocean focused on nitrogen and phosphorus, but at this time the
emergence of new contamination-free measurement methods emphasized an important role for
the trace metal iron (Fe) [3–5]. Following a spate of in situ experiments, the central role of iron
in regulating phytoplankton activity and the biological pump in the Southern Ocean is now well
established [6–8].

A focus of research in the ocean iron cycle has been the evaluation of the strength of different
iron sources. Until relatively recently, the only significant source of Fe to the open ocean was
considered to be the deposition of Fe-rich mineral dust [9]. Accordingly, variations in the dust
supply of iron during the geologic past are often invoked as drivers of the glacial–interglacial
changes in atmospheric CO2 [10]. However, recent findings are challenging this paradigm and
pointing to the importance of other sources in regulating the global ocean iron cycle. One
such source is that associated with deep-sea hydrothermal vents where the interaction between
seawater and rock at elevated temperatures and pressures produces hydrothermal fluids with
greatly elevated Fe concentrations [11]. These hot Fe-rich fluids rise above the seafloor producing
hydrothermal plumes with Fe concentrations hundreds of times greater than background values
[12]. Despite this noted enrichment in Fe, our conceptual view of the impact of hydrothermalism
on the iron cycle was that virtually all of this Fe was precipitated close to the vent sites, with little
far field impact [9,13,14].

In the past 5–10 years, the progress made by the GEOTRACES programme (www.geotraces.
org) has revolutionized our conceptual view of how hydrothermal vents affect the oceanic cycling
of Fe. A discrete set of observations finding elevated Fe close to hydrothermal systems [15]
or distal anomalies in Fe linked to the noted hydrothermal tracer 3He [16] provided initial
indications of the importance of hydrothermal Fe. But it was the first large-scale GEOTRACES
sections conducted as part of the international polar year that noted widespread Fe signals
linked to noted hydrothermal sites in the Southern [17] and Arctic [18] Oceans. When a
hydrothermal Fe source was added to an ocean biogeochemical model, it was found to
have a large influence on interior-ocean Fe concentrations and improved the ability of the
model to reproduce Fe observations [19]. Importantly, hydrothermally sourced Fe is ventilated
primarily in the Southern Ocean and so has a direct impact on carbon export in this important
region [19].

An important component of hydrothermal Fe supply concerns the residence time of
hydrothermal Fe, which ultimately drives its ability to influence Southern Ocean carbon export.
Follow-up work has confirmed distal Fe signals associated with hydrothermal systems in the
Atlantic and Pacific Oceans, with effort focusing on constraining the gross global hydrothermal
Fe flux [20–23]. A focused GEOTRACES section that crossed the mid-ocean ridge axis in the
southeast Pacific demonstrated an unprecedented propagation of a hydrothermal Fe plume for
more than 4000 km off-axis [24]. Importantly, this study noted quasi-conservative behaviour of
dissolved Fe within the plume, indicating that it must be largely stabilized. When this process
was accounted for in a global biogeochemical model, the impact of hydrothermal Fe on Southern
Ocean carbon export doubled [24].

In this work, we take a state of the art ocean biogeochemistry model that accounts for the
ocean iron cycle in a relatively complex manner to explore hypotheses regarding the influence
of hydrothermal Fe on Southern Ocean carbon export. We assess the role of gross hydrothermal
fluxes and Fe stabilization via a suite of GEOTRACES sections, quantify the relative role played
by ridges in different ocean basins, the importance of gross Fe fluxes and Fe stabilization in the
plume, and emphasize the need to place results in the context of ocean ventilation pathways to
assess the ultimate impact on the Southern Ocean carbon cycle.

www.geotraces.org
www.geotraces.org
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2. Methods
We conducted twelve 500-year simulations with the PISCES model [25] as described in Resing
et al. [24] that are detailed in table 1. The first four experiments included a control experiment
with the flux of hydrothermal Fe only (CTL), a 10-fold increase in hydrothermal Fe flux (CTL-10),
no hydrothermal Fe flux (CTL-NOHYD) and an equimolar flux of iron and iron-binding ligands
(CTL-L). We then conducted a set of experiments that aimed to examine the contribution of Fe
from ridges in specific ocean basins. We conducted experiments where hydrothermal Fe flux
came only from ridges south of 40° S, which we name ‘Southern ridges’ (SOC) and a parallel
set of experiments where hydrothermal Fe flux came only from ridges north of 40° S. Under
these scenarios, we then consider the specific contributions of ridges in the Atlantic (ATL), Pacific
(PAC) and Indian (IND) ocean basins. This definition of the Southern ridges aims to isolate the
contribution from the circum-Antarctic ridge system, but includes a small portion of the most
southerly parts of Atlantic, Pacific and Indian ridges. These four simulations were then repeated
with an equimolar ligand flux from hydrothermal supply (ATL-L, PAC-L, IND-L and SOC-L). We
note here that while the response of the iron cycle is not linear, the mismatch between the total
response and the sum of the individual ridge experiments amounts to 7% and 14% for the runs
without and with ligand stabilization, respectively.

The PISCES model has a state of the art Fe cycle that is one of the best in capturing global
trends from the latest Fe datasets [26]. PISCES has Fe sources from dust, sediments, rivers and
hydrothermal vents and employs a dynamic model of ligand cycling that explicitly accounts for
ligand sources and sinks [24,27]. The lifetime of iron-binding ligands is modelled via a ligand
continuum with prescribed minimum and maximum lifetimes of 1 and 1000 years. As an example,
when the ligand concentration is 2 nmol l−1 the lifetime is 20 years, while at 0.4 nmol l−1 the
lifetime is increased to 450 years. Fe is lost via particle scavenging of free Fe, as well as colloidal
pumping/aggregation with a variable colloidal Fe fraction [24]. Phytoplankton have a flexible
requirement for Fe and Fe limitation of growth follows a quota model approach where the
required demand varies in response to their growth environment [25].

3. Results

(a) Hydrothermal iron along the GEOTRACES transects
The GP-16 ran zonally from Ecuador to Tahiti in the southern sub-tropical Pacific (figure 1a),
documenting a substantial hydrothermal plume that propagated westward for over 4000 km
[24] (figure 1b). As discussed in [24], the model simulation that includes hydrothermal Fe
only (figure 1c) is not able to capture the spatial extent of the observed Fe plume, even when
hydrothermal inputs are increased 10-fold (figure 1d). A significantly long-lived hydrothermal
iron plume is only generated by the simulation that includes equimolar fluxes of iron and
stabilizing ligands (figure 1e). The model simulation that eliminates hydrothermal Fe input mostly
fails to reproduce abyssal Fe distributions (figure 1f ).

The GA-02 cruise was a meridional section running down the entire Atlantic basin (figure 2a).
The section generated information on a number of Fe features, including a signal of a remote
hydrothermal plume at around 2–3.5 km water depth centred on approximately 5° S [28]
(figure 2b). Neither the hydrothermal Fe model simulation nor the simulation with 10-fold more
hydrothermal Fe is able to reproduce this feature (figure 2c,d). Only the simulation that includes
hydrothermal Fe stabilization is able to generate a broadly similar feature, albeit smaller in
magnitude (figure 2e). The simulation without hydrothermal Fe emphasizes the hydrothermal
origin of this feature (figure 2f ).

The GA-03 cruise made a zonal transect across the North Atlantic sub-tropical gyre (figure 3a)
and observed a hydrothermal signal from the Trans-Atlantic Geotraverse (TAG) site over the
mid-Atlantic ridge (MAR) [20] (figure 3b). Simulations where only hydrothermal Fe is considered
greatly underestimate this feature (figure 3c). However, when hydrothermal Fe is either increased
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Table 1. A short description of the model experiments conducted in this study. All simulations were conducted for 500 years
and are identical except for the specific differences described.

experiment name experiment details

CTL hydrothermal Fe active globally
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTL-L as CTL but with equimolar supply of Fe ligands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTL-10 as CTL, but 10× greater hydrothermal Fe supply globally
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CTL-NOHYD as CTL, but no hydrothermal Fe input globally
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ATL only Atlantic ridges north of 40° S supply hydrothermal Fe
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PAC only Pacific ridges north of 40° S supply hydrothermal Fe
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IND only Indian ridges north of 40° S supply hydrothermal Fe
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SOC only ridges south of 40° S supply hydrothermal Fe
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ATL-L as ATL but with equimolar supply of Fe ligands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PAC-L as PAC but with equimolar supply of Fe ligands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IND-L as IND but with equimolar supply of Fe ligands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SOC-L as SOC but with equimolar supply of Fe ligands
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10-fold, or added with stabilizing ligands the magnitude and lateral extent of the observed feature
are reproduced reasonably well (figure 3d,e).

The CoFeMUG cruise, undertaken between Namibia and Brazil in the South Atlantic Ocean
(figure 4a), observed a strong hydrothermal signal over the MAR [21] (figure 4b). As discussed in
[21], a model simulation with only hydrothermal Fe is unable to reproduce this plume (figure 4c),
while a 10-fold greater supply of Fe does a much better job (figure 4d). When hydrothermal iron
stabilization is included the plume magnitude also increases in line with that observed but its
lateral extent is largely overestimated (figure 4e).

(b) What is the impact of specific ridges to the Southern Ocean biological pump?
Our model includes hydrothermal Fe input from ridges in the Indian, Atlantic, Pacific and
Southern ocean basins with a gross global hydrothermal input of 11.3 Gmol Fe yr−1 [29]. The
CTL, CTL-L and CTL-NOHYD simulations produce estimates of total Southern Ocean (south of
40° S) export production of 139, 142 and 146 Tmol C yr−1, respectively, which compare well to
data-based estimates that range from 70 to 260 Tmol yr−1 [30–32]. By region, the Indian, Atlantic,
Pacific and Southern ridges account for 9, 14, 41 and 35% of the total hydrothermal iron input,
respectively (figure 5). If we separately consider each of these ridge systems as the sole source
of hydrothermal Fe to the ocean, the relative impact on Southern Ocean export production is
greatest from Pacific and Southern ridges (37 and 57%, respectively, figure 5) and is relatively low
for the Atlantic and Indian ridges (2 and 12%, respectively, figure 5). When the simulations are
repeated including hydrothermal Fe stabilization, the relative impact of Atlantic and Southern
ridges increases to around 6 and 65%, respectively (figure 5), with a corresponding decline in the
relative impact of Pacific and Indian ridges (to 32 and 11%, respectively, figure 5). In absolute
terms the impact on carbon export in the Southern Ocean for the Indian, Atlantic, Pacific and
Southern ridges is 4.0–8.0 × 1011, 0.7–4.4 × 1011, 12.8–22.6 × 1011 and 19.5–45.9 × 1011 mol C m−2

yr−1, respectively (the range accounts for simulations without and with a flux of stabilizing
ligands; table 2).

Our results also demonstrate the relative response of carbon export in the three different
geographical sectors of the Southern Ocean to hydrothermal input (with and without
stabilization) from specific ridges (figure 6 and table 2). Pacific ridges have the largest carbon
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Figure 1. GP-16 (a) cruise track and (b) dissolved iron measurements, compared to model output from (c) CTL (hydrothermal
iron supply only), (d) CTL-10 (10 times greater hydrothermal iron supply), (e) CTL-L (hydrothermal iron supply alongside an
equimolar flux of iron-binding ligands) and (f ) CTL-NOHYD (no hydrothermal iron supply).

export response in the Pacific sector of the Southern Ocean; however, their influence is also
seen in the Atlantic and Indian sectors (figure 6). Indeed, the Atlantic sector of the Southern
Ocean responds much more strongly to Pacific Ocean ridges (2.6–5.9 × 1011 mol C m−2 yr−1,
without and with stabilization, respectively) than to Atlantic Ocean ridges (0.2–1.1 × 1011 mol
C m−2 yr−1, without and with stabilization, respectively). Ridges in the Indian Ocean have a
roughly equal impact on carbon export in both the Indian (1.7–3.0 × 1011 mol C m−2 yr−1, without
and with stabilization, respectively) and Pacific (1.6–3.0 × 1011 mol C m−2 yr−1, without and with
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stabilization, respectively) sectors of the Southern Ocean. Atlantic ridges have a muted influence
throughout the Southern Ocean, when only Fe is considered; when stabilization is included their
impact on other Southern Ocean basins increases. Finally, the largest response in absolute terms
(apart from the Pacific sector) is found in response to Southern Ocean ridges (figure 6 and table 2),
which increases greatly when stabilization is included and overwhelms the impact of distal
sources in the Atlantic and Indian sectors. Overall, while stabilization changes the magnitude
of the carbon export responses in each sector, the inter-sector patterns and trends are unaffected
(figure 6).



7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150291

.........................................................

>3

2

1

0.8

0.6

0.4

0.2

0

>3

2

D
Fe

 (
nM

)
D

Fe
 (

nM
)

D
Fe

 (
nM

)

1

0.8

0.6

0.4

0.2

0

>3

2

1

0.8

0.6

0.4

0.2

0

de
pt

h 
(m

)

0

1000

2000

3000

4000

5000

de
pt

h 
(m

)

0

1000

2000

3000

4000

5000

de
pt

h 
(m

)

0

1000

2000

3000

4000

5000

de
pt

h 
(m

)

0

1000

2000

3000

4000

5000

de
pt

h 
(m

)

0

1000

2000

3000

4000

5000
40° W60° W80° W 20° W 40° W60° W80° W 20° W

la
tit

ud
e

15° N

45° N

25° N

35° N

longitude
35° W45° W55° W65° W 25° W

longitude
35° W45° W55° W65° W 25° W

35° W45° W55° W65° W 25° W 35° W45° W55° W65° W 25° W

(f) CTL-NOHYD (no hydrothermal Fe or ligands)(e) CTL-L (1× hydrothermal Fe and ligands)

(d) CTL-10 (10× hydrothermal Fe)(c) CTL (1× hydrothermal Fe)

(b) observations (GA-03)(a) cruise track (GA-03) 

Figure 3. GA-03 (a) cruise track and (b) dissolved iron measurements, compared to model output from (c) CTL (hydrothermal
iron supply only), (d) CTL-10 (10 times greater hydrothermal iron supply), (e) CTL-L (hydrothermal iron supply alongside an
equimolar flux of iron-binding ligands) and (f ) CTL-NOHYD (no hydrothermal iron supply).

(c) Importance of ventilation pathways
For hydrothermal Fe to stimulate carbon export in the Fe-limited Southern Ocean, it needs to
be transported and ventilated at the surface. The ventilation pathways for hydrothermal Fe can
be investigated by examining the density surface at which hydrothermal Fe is supplied and the
eventual outcrop region for this isopycnal layer in the Southern Ocean. In general, we find broad
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Figure4. CoFeMUG (a) cruise track and (b) dissolved ironmeasurements, compared tomodel output from(c) CTL (hydrothermal
iron supply only), (d) CTL-10 (10 times greater hydrothermal iron supply), (e) CTL-L (hydrothermal iron supply alongside an
equimolar flux of iron-binding ligands) and (f ) CTL-NOHYD (no hydrothermal iron supply).

inter-basin distinctions in the potential density (σ 0) layer where hydrothermal Fe is supplied
between the Atlantic, Pacific, Indian and Southern ridges (figure 7a). When we focus on ridges
between 1000 and 4000 m (figure 7b), we find hydrothermal Fe is supplied to relatively heavy
potential density surfaces by Atlantic ridges (σ 0 = 27.84 ± 0.04) and lighter surfaces by Pacific
ridges (σ 0 = 27.71 ± 0.09) with Indian (σ 0 = 27.76 ± 0.07) and Southern (σ 0 = 27.78 ± 0.07) ridges
falling in between.

When the isopycnal layer to which hydrothermal Fe is supplied is combined with the average
σ 0 of the upper Southern Ocean in our physical model (figure 7c), we can compute the potential
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Table 2. The absolute contribution of specific ridge systems in the Atlantic, Pacific, Indian and Southern regions to overall
Southern Ocean carbon export and the sector-specific response; the range reflects the impact without and with hydrothermal
iron stabilization.

impact on Southern Ocean carbon export (×1011 mol C yr−1)

ridge system total Atlantic sector Pacific sector Indian sector

Atlantic 0.7–4.4 0.2–1.1 0.2–1.1 0.4–2.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pacific 12.8–22.6 2.6–5.9 8.7–12.4 1.5–4.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indian 4.0–8.0 0.8–2.1 1.5–3.0 1.7–3.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Southern 19.5–45.9 6.7–17.3 5.3–11.5 7.4–17.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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area of the Southern Ocean impacted by hydrothermal supply from different ridge systems.
Owing to their supply of Fe to relatively heavy isopycnal surfaces, Atlantic ridges only influence
7 × 1011 m2. Alternatively, Pacific ridges influence 50 × 1011 m2, with Southern and Indian ridges
affecting 25 × 1011 m2 and 17 × 1011 m2, respectively. In other words, Pacific ridges have a
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potentially sevenfold greater influence than Atlantic ridges. We note that this is the maximum
possible area over which we might anticipate carbon export to be affected. What is not accounted
for is the transit time, which will be important due to the loss of Fe via scavenging, colloidal
pumping etc. This explains why there is not a direct connection between these areal extents and
the relative carbon export affected by each ridge system (figure 5). For example, the greater impact
of Pacific ridges relative to Atlantic ridges in terms of carbon export can be linked to the fact
that hydrothermal Fe originated from Atlantic ridges can only reach a small surface area of the
Southern Ocean. On the other hand, Southern ridges have a greater carbon export impact than
might be expected from the outcrop area of the hydrothermal Fe they supply due to the shorter
transit times to Southern Ocean surface waters, which results in reduced Fe losses.

4. Discussion

(a) Evidence of the stabilization of hydrothermal Fe from GEOTRACES sections
Across our modelling experiments, we find some support for the role of Fe stabilization in
hydrothermal plumes. The models with stabilization do a much better job for the GP-16 and
GA-02 sections, perform similarly to those with greater absolute Fe fluxes for GA-03 and
overestimate the hydrothermal anomaly for the CoFeMUG section. This suggests the need for an
improved process-level understanding of biogeochemical processes occurring at different ridge
crests and within their associated plumes; this includes understanding the nature, abundance and
ultimate impact of Fe stabilization. Taken at face value, stabilization of Fe within plumes appears
less important for the Atlantic sections, but this may rather reflect the fact that there is at present
no study mapping the extent of hydrothermal plumes in the Atlantic Ocean (as has been done in
the Pacific). Indeed, the distal signal of hydrothermal Fe seen in the GA-02 transect that occurred
away from any known ridge site does require stabilization for our model to be able to reproduce
it. On the other hand, the CoFeMUG and GA-03 sections were zonal and sampled across both the
ridge crest and the prevailing meridional transport.

At present, there are three working hypotheses for chemical processes governing the longevity
of Fe in hydrothermal plumes [33]. The first emphasizes stabilization of Fe by organic ligands
[15,34], the second highlights an important role of Fe-sulfur nanoparticle pyrite [35,36], while
a third emphasizes the importance of colloidal Fe(III)-oxyhydroxide phases. Each mechanism
will have distinct influences on the residence time and reactivity of Fe within the plume.
Laboratory studies on synthesized pyrite have documented relatively slow Fe(II)-S2 oxidation
rates which may enhance long range transport [37]. Moreover, the role of nano-pyrite may not
be well documented because in filtered samples acidified with hydrochloric acid (as is typical
for trace metal sampling), colloidal Fe(II)-S2 may not oxidize significantly and this Fe therefore
may not be detected by analytical techniques employed for the different sections discussed
here. Additionally, there is a lack of detailed information on the organic iron-binding ligands
in hydrothermal fluids and plumes and, in particular, whether they are functionally distinct
from those that make up the wider ocean Fe-binding ligand pool. Finally, colloidal Fe(III)-
oxyhydroxides may represent 30–91% of the dissolved Fe pool [38] and their formation and
lifetime probably depends on the abundance of particles in the plume. It should be noted that,
all things being equal, each process could act in an interconnected manner. For instance, when
colloidal Fe(III)-oxyhydroxides dissolve they may be complexed by organic ligands. Similarly, as
the Fe(II)-S2 is slowly oxidized, the produced Fe(III) can form oxyhydroxides or be organically
complexed. The prevalence of these potential stabilizing mechanisms is likely to vary between
different hydrothermal sites, even within one ridge system. For example, for the well-studied
MAR, there is a strong distinction in the sulfide concentrations between the high sulfide system
of the TAG site when compared with the low sulfide Rainbow vent sites [39]. Wider afield, Fe(II)
was a notable component of the plume signal at TAG [40], but not for the southern East Pacific
Rise [24]. Understanding the drivers of these inter-site variations and how they impact on the Fe
cycle is a priority.
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Generally, high-temperature focused hydrothermal sources are considered when the
hydrothermal flux of dissolved Fe into the ocean is examined. However, lower temperature,
potentially diffuse sources also play an important role as Fe sources. There are several important
factors affecting the relative importance of high-versus low-temperature flow to hydrothermal Fe
fluxes. While high-temperature sites release very large amounts of Fe, they also produce copious
amounts of particles, which scavenge dissolved Fe in an auto-catalytic manner. Additionally,
high-temperature vents are thought to contain little if any metal binding ligands [15], with
relatively low concentrations documented [41]. By comparison, lower temperature, often diffuse,
sites that surround high-temperature sources have much higher ligand concentrations [41], which
can then be entrained into the broader scale plume [15]. Another consideration is that fluids
from lower temperature sources have lower Fe concentrations, resulting in a lower abundance of
particles. As a result, the lower overall Fe concentrations and lesser scavenging may allow both
Fe-colloid and Fe-ligand complex formation to occur within the plume. Recent work suggests that
low-temperature sites are more prevalent than previously thought, present both near to and distal
from high-temperature sources [42]. These remote sites can thus be additional sources of both
Fe and ligands that are vented into a low particle environment, thereby enhancing stabilization
through the formation of both Fe-ligand complexes and/or nanoparticle Fe(III)-oxyhydroxides
(colloids).

(b) Relative importance of different ridge systems
Overall, Southern ridges are responsible for 57–65% of the total response of the Southern Ocean
carbon cycle, with Pacific ridges contributing 32–37% (depending on whether plume stabilization
is included or not). Indian ridges and Atlantic ridges are only responsible for 9–12% and
2–6%, respectively. We emphasize that, while the addition of Fe stabilization increases total
carbon export (table 2), it only slightly modifies the relative regional breakdown. Overall, our
results point to a key importance of ridges located south of 40° S in driving the carbon cycle
impact of hydrothermal Fe. However, as yet, there have been relatively few discoveries of
hydrothermal ridges along the circum-Antarctic ridge system (but see [43]) in the inter-ridge
database [44]. Indeed, a synthesis study suggests a significant number of ridge systems remain to
be discovered in the Southern Ocean, pointing out that only eight sites have been recorded along
the approximately 20 000 km ridge system around Antarctica [45]. Apart from one study near the
Bouvet Triple junction [17], much of our understanding of the broader biogeochemical impacts of
hydrothermal vents on the ocean Fe cycle comes from studies that have taken place in the Atlantic
[20,21], Pacific [24] and Indian [46] Oceans. As discussed in §4a, it is important to consider how
generalized these inferences are for ridges in the Southern Ocean, which we have demonstrated
to be the main driver of the carbon cycle response.

Our examination of how hydrothermal Fe affects carbon export in a ventilation framework
can be useful to contextualize how observations in the ocean interior may be connected to
the surface ocean response. This implies that even if slow spreading ridges on the MAR are
supplying more Fe than would be expected from the input of 3He, this will only influence a
relatively small region of the Southern Ocean as Fe is being supplied onto relatively heavy
isopycnal surfaces with a small outcrop area. On the other hand, hydrothermal Fe originating
from Pacific Ocean ridges has the greatest potential impact due to its supply onto relatively light
isopycnal surfaces with a larger Southern Ocean outcrop area. Another important consideration
in this regard are the greater oxygen and pH levels in the Atlantic versus the Pacific Ocean. This
is important, as it will modify the oxidation rate of Fe, which will then affect its retention in
dissolved forms. For example, half lives of Fe(II) range between 17 min at Atlantic hydrothermal
sites and 6 h at Pacific sites [47]. Thus, the combination of relatively faster oxidation kinetics that
reduce the lifetime of hydrothermal Fe and the relatively small outcrop area due to the flux onto
relatively heavy isopycnal surfaces implies a muted carbon cycle influence of Atlantic Ocean
hydrothermalism.
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5. Synthesis
Much progress has been made on understanding how hydrothermalism affects the ocean iron
cycle in recent years, with implications for the global carbon cycle via iron regulation of Southern
Ocean export production. The stage is now set for innovative multi-disciplinary studies to address
the uncertainties that have been identified via distinct, but complementary studies and tools.
We propose that tractable progress can be made by identifying the key questions at a range
of scales. First, at the scale of individual vent systems, we need to better understand what
sets the end member signals of Fe and 3He (which is still an excellent conservative tracer
in this context) at different vent sites. Second, in the buoyant plume we need to appraise
what sets the plume characteristics at local scales, e.g. presence of sulfur, organic ligands, Fe
colloids and nanoparticles. Third, at the scale of ridge crest segments we need to understand
the distribution of different venting styles, i.e. diffuse versus focused and high versus low
temperature, and their relative importance in driving Fe stabilization and transport away
from its source. Fourth, in the non-buoyant and dispersing plume, we would benefit from a
better understanding of what sets the residence time of the different forms of Fe at the 100–
1000 km scale, e.g. degree and manner of stabilization, redox kinetics and soluble–colloidal
interactions. Finally, at basin scales, the surface ventilation pathways for Fe supplied onto
different isopycnal surfaces and the associated transit times, iron cycling processes and degree
of Fe fallout should be considered more deeply. As discussed above, it is likely that the nature
of the processes that dominate at these different scales will vary between different vent sites
(e.g. high and low sulfur systems), ocean basins (e.g. high and low oxygen levels in the Atlantic
and Pacific) and for high-temperature and lower temperature diffuse flow systems. Linking the
new ocean section data from GEOTRACES with long-standing knowledge of ocean physical
pathways and the on-going detailed work by the hydrothermal community would potentially be
transformative.

6. Conclusion
In conclusion, we used a set of model experiments and newly available GEOTRACES datasets
to explore the importance of the gross hydrothermal flux and the stabilization of hydrothermal
Fe in governing the observed hydrothermal Fe distributions. Overall, we found that in some
ocean sections stabilization was important but in others gross fluxes appeared to play a stronger
role. In general, we need a better understanding of plume chemistry and how it varies between
both different hydrothermal sites and between high-temperature and lower temperature fluxes
at a given site. We also examined the role of different ridge systems in regulating carbon
export in the Southern Ocean. Overall, Southern ridges were found to be dominant, followed
by Pacific ridges, with Indian and then Atlantic ridges playing a muted role. Southern ridge
systems are relatively poorly explored and future exploration will be invaluable in better
representing their effect. We highlight strong inter-basin differences in the isopycnal layer onto
which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which affects the area
of the Southern Ocean that may be influenced. When linked to the relatively faster oxidation
kinetics in the Atlantic Ocean, this suggests a small influence of Atlantic ridges on Southern
Ocean carbon cycling. Overall, we present a new synthesis of scales, within which further
observational and modelling work, bridging across disciplines, may make future progress in
better constraining the influence of hydrothermal Fe supply on the biogeochemical cycling of the
oceans.
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