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The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion
estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow-compensated and non-
flow-compensated motion-encoded MRI data. A double diffusion encoding sequence capable of switching between
flow-compensated and non-flow-compensated encoding modes was implemented. In vivo brain data were collected
in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the perfor-
mance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing
was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically
reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ±0.90% in
deep gray matter, and 1.64 ±0.72% in white matter (mean± SD, n=8). Simulations showed improved accuracy and
precision when using joint analysis of flow-compensated and non-flow-compensated data, compared with conven-
tional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the
perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular
system was closer to the ballistic limit than the diffusive limit. © 2016 The Authors NMR in Biomedicine published by
John Wiley & Sons Ltd.
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INTRODUCTION

Non-invasive motion-encoded MRI has shown considerable
potential for the study of microcirculatory blood flow in tissue
(1–3). The concept of capillary flow imaging was proposed by
Nalcioglu et al. (4), and demonstrated in vivo by Ahn et al. using
flow-compensated (FC) and non-flow-compensated (NC)
motion-encoded sequences (1). These studies focused on the
signal attenuation due to linear blood flow in a randomly ordered
capillary system (spatial incoherence), allowing mapping of the
relative capillary density (1). Intravoxel incoherent motion (IVIM)
is another microcirculatory blood flow imaging method,
proposed by Le Bihan et al. (2,5), which considers the signal atten-
uation in diffusion experiments caused by pseudo-random (diffu-
sive) flow of blood through the capillary system (temporal
incoherence). The IVIM model allows mapping of the fractional
volume of perfused capillaries by modeling the total signal
attenuation as the combined effect of diffusion and perfusion
(2). As shown by Le Bihan and Turner, the IVIM parameters can
be related to traditional perfusion parameters such as cerebral
blood flow, cerebral blood volume (CBV) and mean transit time,
for a given capillary geometry (6). IVIM thus enables non-invasive
quantification of perfusion-related parameters, and has recently
gained renewed clinical interest, with applications to, for exam-
ple, liver (7,8), breast (9), prostate (10), and brain (11). However,
conventional IVIM analysis is based on bi-exponential fitting of
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diffusion-weighted data, which suffers from an inordinate sensitivity
to noise (12,13). Although the apparent diffusion coefficient of the
flowing blood (referred to as the pseudodiffusion coefficient) is ap-
proximately an order of magnitude larger than the regular diffusion
coefficient, perfused capillaries contribute to the observable signal
by only a small fraction (about 4% in the brain), and the IVIM effect
is thus very difficult to detect with a high degree of reliability. Monte
Carlo-based error analysis has shown that a high signal-to-noise ratio
(SNR) is required for accurate estimation of the perfusion fraction
(12–14). Imaging and processingmethods with potential to improve
the stability of the IVIM analysis are thus of great importance for the
use of IVIM in clinical applications.
It is well known that spatial and temporal flow incoherencies

both give rise to signal attenuation (cf. the two models in
Reference (2)). As suggested by Kennan et al. (15), the attenuation
caused by either spatial incoherence (dispersed flow) or temporal
incoherence (diffusive flow) can be understood as phenomena
occurring in two extreme time scale regimes. The dispersed flow
concept assumes that the blood does not change direction during
themotion encoding (ballistic limit), and the diffusive flow concept
assumes that the blood changes direction several times during the
motion encoding (diffusive limit). In the ballistic limit, the attenu-
ated signal can be recovered using FC, allowing for the effects of
flow and diffusion to be separated (16). Several studies have dem-
onstrated this rephasing effect by comparing data from FC and NC
sequences (1,16–19). Most of these studies have relied on the
difference or ratio between FC and NC data using a single diffusion
encoding strength, while a few recent studies have employed FC
and NC with multiple diffusion encoding strengths (18,19). Since
full rephasing of the perfused signal fraction is possible only in
the ballistic limit, FC can be used to infer the relevant temporal re-
gime for the blood flow.
To increase the contrast between flowing and non-flowing

spins and thereby improve the stability of IVIM analysis, we here
suggest applying a joint analysis of FC and NC data acquired
with multiple diffusion encoding strengths. Joint analysis refers
to the use of multi-dimensional data to strengthen the analysis
without introducing additional model parameters. We have
previously applied the concept of joint analysis to imaging of
water exchange through cell membranes (20,21) and imaging
of microscopic diffusion anisotropy (22,23). In the present study,
a global model was used to fit FC and NC data simultaneously,
taking advantage of the fact that some fitting parameters are
common to the two datasets. An FC and NC single-refocused
double diffusion encoding (DDE) pulse sequence was utilized,
where the switching between FC and NC yielded variable flow
encoding. To our knowledge, this is the first IVIM study
exploiting NC/FC DDE data combined with a velocity dispersion
model in the ballistic flow limit. Data were acquired in eight
healthy volunteers and analyzed using the proposed method.
Using simulated data, our joint analysis was compared with
two conventional IVIM analysis methods.

THEORY

At the echo time, tE, the spin-echo signal S is described by the
ensemble average of all signal contributions he�iφj tEð Þi (24), where
φj is the phase of contribution j. Using the cumulant expansion in
the Gaussian phase approximation (25), the signal can be
approximated in terms of the cumulative phaseϕ and the atten-
uation factor β according to (26)

S ¼ S0he�iφj tEð Þi≈ S0e�iϕ tEð Þ�β tEð Þ; [1]

where S0 is the relaxation-weighted signal magnitude. The
cumulative phase depends on the mean flow velocity of spins,
while the attenuation factor depends on velocity fluctuations
around the mean velocity. The sensitivity to different aspects of
motion can be adjusted by varying the gradient waveform G(t).
In the current study, the DDE is implemented as a spin-echo
sequence with bipolar diffusion gradients on both sides of the
180° refocusing pulse. Note that refocusing pulses alter the effec-
tive polarity of G(t).

The attenuation factor β is proportional to the diffusion coeffi-
cient D according to β(tE) = bD, where b is the diffusion
weighting factor, given by the dephasing factor q(t) according
to (25)

b ¼ ∫
tE

0 q tð Þ2dt; [2]

where

q tð Þ ¼ γ∫
t

0G t′
� �

dt′; [3]

and γ is the gyromagnetic ratio.
The cumulative phase φ is proportional to the mean velocity v

according to

ϕ tEð Þ ¼ αv; [4]

where α is the flow weighting factor, determined by the
dephasing factor according to (1)

α ¼ �∫
tE

0 q tð Þdt ¼ γ∫
tE

0 G tð Þt dt: [5]

Equation [5] is valid as long as the spin-echo condition is ful-
filled, i.e., q(tE) = 0 (zeroth-order gradient moment nulling). Note
that the flow weighting factor is given by the first moment of
G(t), and that FC sequences are designed for first-order gradient
moment nulling to eliminate the phase shift due to coherent
flow, i.e., α= 0. Figure 1 shows a schematic diagram of the
sequence design, indicating how the diffusion and flow
weightings depend on the gradient pulses in the NC/FC DDE
experiment. The pairs of bipolar gradients are referred to as
gradient/encoding blocks (27). For straight flowing spins, the first
gradient block gives a phase shift (according to Equation [4]),
while the second gradient block nulls this phase shift for the
FC acquisition (α= 0), and doubles it for the NC acquisition
(Fig. 1).

We now consider blood flowing through the capillary system
as a motion of spins that change velocity (in terms of changing
direction) as they pass through curvatures in the microscopic
vessels. Depending on the time scale of these velocity fluctua-
tions, two regimes of motion can be identified. If the flow veloc-
ity changes several times during the observation time, the phase
coherence is lost (regardless of whether the encoding is FC or
not), leading to a diffusion-like signal attenuation (2). This signal
attenuation can be characterized by a pseudo-diffusion coeffi-
cient given by D* = hlihvi/6, where hvi is the mean flow velocity,
and hli is the characteristic length scale on which flow velocity
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changes take place (2). This regime corresponds to signal
attenuation due to temporal incoherence of flow, and is
referred to as the diffusive limit in this work. In IVIM imaging, this
limit corresponds to a capillary network model with short capil-
lary segments such that the blood changes direction several
times during the observation time. It has been suggested that
approximately five changes in direction, or more, are required
in order for the diffusive limit to be valid (15).

On the other hand, in this work we assume a capillary network
model with straight segments, which are long enough to allow
blood to remain within one segment during the observation
time (1,2). Each segment is considered as a separate statistical
sub-ensemble of spins (28), contributing to the total signal
according to Equation [1]. Non-uniform velocity profiles within
the segments and random orientation of the segments give rise
to velocity dispersion. Even though the velocities are constant
during the experiment, their phase contributions are incoherent
due to the velocity dispersion, resulting in signal attenuation
rather than a net phase shift. This regime corresponds to signal
attenuation due to spatial incoherence, and is referred to as
the ballistic limit in this work. Note that we use the term “velocity
dispersion” to describe the effect of a collection of velocity
vectors with different amplitudes and directions (i.e. combined
effects of blood speeds and segment orientations).

To describe the signal attenuation in the ballistic limit, we
consider a collection of sub-ensembles with different mean
velocities v ̅k leading to different phase contributions according
to e�iφk , as described by Equations [1], [4]. Note that ϕj in Equa-
tion [1] is the phase of a single contribution within a sub-

ensemble of spins, whereas ϕk corresponds to the cumulative
phase of signal from the entire sub-ensemble. Assuming a com-
mon diffusion coefficient D, the sum of e�iφk over all sub-
ensembles gives the total signal

S ¼ e�bDΣkSke
�iαvk ¼ S0e

�bD∫
∞

�∞P vð Þe�iα v ̅dv; [6]

where Sk is the relaxation-weighted signal contribution from
sub-ensemble k, and P vð Þ is the probability distribution of mean
velocities, which can account for different velocity dispersion
models. For example, it has been shown that plug flow in ran-
domly oriented segments leads to a sinc-modulated signal atten-
uation (1). A plug flow velocity profile is, however, unlikely
in vivo, given the non-uniform blood velocities inside the capil-
laries and the large number of pseudo-randomly oriented micro-
vascular networks in every voxel (29). Although it is challenging
to establish appropriate velocity dispersion models for capillary
blood flow, a large spread in velocities is likely to be present
due to the heterogeneity of the microcirculatory system (15). In
this work, we assume a distribution of mean velocities, P vð Þ, with
variance hv ̅2i and zero mean, yielding

S ¼ S0e
�bDe�α2 hv2 i

2 ; [7]

where hv ̅2i is the average mean-squared velocity. We can
express the effective diffusion coefficient in terms of the
pseudo-diffusion coefficient D* according to

D� ¼ Dþ α2

b
v 2
d ; [8]

where the ratio α2/b depends on the gradient pulse design,
and can be maximized for increased sensitivity to flow. Here, vd
is introduced as a measure of velocity dispersion, which scales
with velocity depending on the particular dispersion model;
e.g., v 2

d ¼ hv ̅2i=2 for a Gaussian velocity distribution. Note that,
for P v ̅ð Þ with non-zero odd moments, vj j; v3

�� ��; v5
�� ��;… > 0, Equa-

tion [7] would contain a complex phase shift term.
To account for signal contributions from both tissue and blood

within a voxel, the signal can be described by

S b; αð Þ ¼ S0 1� fð Þe�bDt þ f e�bDbe�α2v 2
d

h i
; [9]

where (1� f) is the intravoxel fraction of diffusing water, Dt is
the diffusion coefficient in tissue, f is the intravoxel fraction of
flowing water in perfused capillaries (perfusion fraction), Db is
the intrinsic diffusion coefficient of blood and S0 is the MR signal
without diffusion encoding. The FC sequence with α= 0 yields a
mono-exponential signal attenuation if Dt =Db.
In summary, in the present study, we vary not only the diffu-

sion encoding strength (b value), but also the flow encoding
strength (α value). The acquisition of data along an additional
dimension makes the separation of different components more
stable (30). Hence, assuming ballistic blood flow, joint analysis
of two multi-b data sets with different levels of flow encoding
(α> 0 and α=0) should allow for more robust IVIM parameter
estimation.

Figure 1. Schematic overview of the NC and FC DDE sequences. RF
shows the excitation and refocusing pulses, S displays the acquired spin
echo, G*(t) is the magnetic field gradient waveform of the sequence, q(t)
is the dephasing factor (Equation [3]), Q(t) corresponds to the negative
integral of q from zero to t, where Q(tE) = α (Equation [5]), and Q2(t) is
the integral of q2 from zero to t, where Q2(tE) = b (Equation [2]). Solid lines
correspond to the NC acquisition, and dashed lines to the FC acquisition
(i.e., α = 0). Note the resemblance of the FC and NC acquisitions, resulting
in identical timings and diffusion weightings b, but different flow
weightings αNC/FC.
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METHODS

Data acquisition

An FC/NC DDE sequence was implemented on a clinical whole-
body MRI scanner. Identical timing parameters were used for
the two encoding blocks, and the FC was conveniently activated
by reversing the polarity of the second gradient block (see Fig. 1).
The sequence was tested on a stationary (zero-flow) water phan-
tom to confirm equivalency between the FC and NC data
Data from eight healthy volunteers were acquired on a 3 T MRI

unit (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Ger-
many), using the following protocol: EPI readout, GRAPPA =2,
BW=1185Hz/pixel, TR = 4000ms, tE = 70ms, 128 × 128matrix,
2 × 2× 4mm3 voxel size, 20 slices, six diffusion encoding direc-
tions (cube sides), b = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
120, 140, 160, 180, and 200 s/mm2, diffusion gradient separation
(within each block) Δ= 7.5ms, diffusion gradient duration
δ=7.3ms, total encoding time= 37.7ms, total scan time= 12min
32 s. The study was approved by the local ethics committee, and
all volunteers gave written informed consent.

Post-processing

The signal was averaged over the different encoding directions
using the geometric mean, which allowed for direct estimation
of rotationally invariant mean values of the model parameters
(31). The model given by Equation [9] was fitted to the data
using nonlinear regression, with S0, f and vd as fitting parame-
ters. A fixed value of 1.75 μm2/ms was used for Db, similarly
to Reference (19). The tissue diffusion coefficient Dt was
estimated from FC data points with b ≥ 100 s/mm2. A regulari-
zation term that penalized unreasonable values of vd was
added to the residual sum of squares in the objective function.
The regularization term (to be minimized) was based on hyper-
bolic tangent functions according to λ{1� 0.5[tanh((vd� x1)/
s)� tanh ((vd� x2)/s)]}, with parameters empirically set to
λ=0.5, x1 = 0.75, x2 = 2.75 and s= 0.4 (the latter controlling the
smoothness of the regularization function).

The S0 map of each subject was normalized to the MNI152
template brain (ICBM, NIH P-20 project) using SPM12 (32). The
nonlinear transform was then applied to the other parametric
maps, and cerebrospinal fluid (CSF) was masked out in the f and

Figure 2. Examples of experimental data and analysis for ROIs corresponding to frontal GM (a), DGM (b), and WM (c), as well as for the stationary water
phantom (d). The GM ROIs were drawn to minimize CSF partial volume effects. The insets show the corresponding S0 images, with the ROIs indicated in
green. The graph shows the mean ROI signal (circles) and the corresponding model fit (solid lines) as a function of diffusion and flow weighting. Note
the significant rephasing effect in the FC data. The estimated parameters were the following: (a) f = 2.73 [2.33–3.02]%, vd = 1.81 [1.65–1.94] μm/ms,
Dt = 0.90 [0.86–0.98] μm2/ms; (b) f = 1.71 [1.23–2.09]%, vd = 1.68 [1.61–1.91] μm/ms, Dt = 0.83 [0.75–0.93] μm2/ms; (c) f = 1.49 [1.25–1.69]%, vd = 1.78
[1.69–1.86] μm/ms, Dt = 0.90 [0.86–0.96] μm2/ms; (d) f = 0.02 [0–0.03]%, vd = 1.75 [1.73–1.78] μm/ms, Dt = 2.04 [2.02–2.07] μm2/ms. Brackets indicate
95% confidence intervals obtained using residual bootstrapping.
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vd maps using the Montreal Neurological Institute (MNI) tissue
probability maps in SPM12. Based on the Neuromorphometrics
labels (http://neuromorphometrics.com), gray matter (GM), deep
gray matter (DGM), and white matter (WM) regions of interest
(ROIs) were created in MNI space, and the parameter estimates
were averaged over the subjects and analyzed in these ROIs. In
addition, to visualize typical in vivo data and the corresponding
model fits, ROIs were drawn directly on an S0 image in the native
space. Residual bootstrapping (33) was used to estimate confi-
dence intervals for the parameter estimates, based on the mean
signal values within the ROI. This ROI analysis was also performed
on the phantom data.

Simulations

The performance of the proposed joint analysis of NC and FC
data was compared with conventional IVIM analysis in simula-
tions. Note that the simulations assumed ballistic flow and were
designed to compare joint analysis with conventional IVIM anal-
ysis. They were not designed to compare different flow regimes,
i.e. ballistic versus diffusive. Signal data with NC and FC were
simulated according to Equation [9] for the same b values and
with similar timings as used in the in vivo imaging protocol
(Δ=7.5ms, δ=7.5ms), for different SNR and f values. Other
parameters were set to S0 = 1, Dt = 0.8 μm2/ms, Db = 1.75 μm2/
ms, and vd = 1.75μm/ms, and 10 000 noise realizations were
used for each SNR and f value. For conventional IVIM analysis,
both bi-exponential and segmented (asymptotic) (34,35) fitting
were assessed. The segmented fitting was performed in a
three-step approach (35). First, a mono-exponential signal model
was fitted to the data points with b ≥ 100 s/mm2, yielding an
estimate of Dt and a corresponding intercept S�0 . Second, f was
estimated from S 0ð Þ � S�0

� �
=S 0ð Þ , where S(0) is the measured

signal intensity at b=0. Last, vd was estimated by fitting the full
model (Equation [9]) to all data points, using the estimated Dt

and f as fixed parameters and S0 set to S(0).
The same number of data points was used in all cases, i.e., for

bi-exponential and segmented all 16 NC data points were used,
and for the joint analysis 4 FC and 12 NC data points were used.
The four FC data points were distributed according to b=50, 80,
120, and 180 s/mm2, and the NC data points were b=0, 10, 20, 30,
40, 60, 70, 90, 100, 140, 160, and 200 s/mm2. No prior estimation of
Dt or regularization of vd was used for the joint or bi-exponential
fitting.

The accuracy and precision of parameter estimates were
calculated for the different SNR and f values, using the three
analysis approaches. Accuracy was defined as the difference
between the parameter estimate and the simulated parameter
value (ground truth), averaged over all iterations. Precision was
defined as the root-mean-square deviation between the param-
eter estimates and their corresponding means.

RESULTS

Figure 2(a)–(c) shows examples of in vivo data and correspond-
ing model fits in GM, DGM, and WM, respectively. A significant
separation of the NC and FC data was observed. With FC, the
strong rephasing of the signal resulted in approximately
mono-exponential attenuations for b values up to 200 s/mm2.
Figure 2(d) presents the corresponding result for the stationary
water phantom, where no significant difference between the
NC and FC data was observed. Estimated parameter values,
including confidence intervals based on residual bootstrapping,
are presented in the figure caption. Note that these fits were
performed on the mean signal values of the ROIs, as opposed
to the ROI analysis on parameter maps reported below.
Figure 3 displays the voxel-by-voxel analysis, yielding para-

metric maps of S0, Dt, vd, and f. Dt was high in some areas, due
to CSF partial volume effects, which also gave rise to artifacts
in some f maps (e.g. CSF contamination in lateral ventricles).
The map of vd is fairly isointense, mainly due to the regulariza-
tion, whereas the map of f shows higher contrast.
The average perfusion fraction, velocity dispersion, and diffu-

sion coefficient across all subjects is shown in 15 slices of the
MNI space in Figure 4. Figure 5 shows histograms of f, vd, and
Dt values, and a visualization of the corresponding atlas-based
MNI ROIs of GM, DGM, and WM. The perfusion fractions were
(mean±SD over averaged MNI maps) 2.43±0.81%, 1.81±0.90%,
and 1.64±0.72% in GM, DGM, and WM, respectively. The corre-
sponding values for vd were 1.71±0.06μm/ms, 1.72±0.06μm/ms,
and 1.73±0.04μm/ms. The vd values are very homogeneous over
the different regions (seen also in Fig. 4), since the subject averag-
ing in combination with the regularization leads to an over-
representation of the mean value of the penalty distribution.
For reasons of regularization, we did not attempt to convert the
vd values to average blood velocity. Finally, the Dt values were
1.20 ± 0.22 μm2/ms, 0.96 ± 0.24 μm2/ms, and 0.98 ± 0.13μm2/ms.

Figure 3. Results from the voxel-by-voxel analysis taken from one slice in one subject. The figures from left to right correspond to parametric maps of
S0, Dt, vd and f.

A. AHLGREN ET AL.

wileyonlinelibrary.com/journal/nbm © 2016 The Authors NMR in Biomedicine published by
John Wiley & Sons Ltd.

NMR Biomed. 2016; 29: 640–649

644



Figure 6 illustrates the accuracy and precision of f estimates for
SNR= 100, as a function of ground-truth values of f, for the differ-
ent analysis techniques. The joint analysis showed good perfor-
mance overall, with superior accuracy and precision for most
values of f. The bi-exponential fitting was clearly inferior to the
joint analysis. The segmented fitting showed good performance

for low f values, but produced large systematic errors for higher
values of f. Figure 7 shows the accuracy and precision of f, vd,
and Dt estimates, as a function of SNR, for a fixed f of 5% (see Sim-
ulations sections for the other model parameters). Similarly to
Figure 6, the joint analysis showed the best performance overall.
The parameter estimates from the joint and bi-exponential

Figure 4. Mean (a) perfusion fraction f, (b) velocity dispersion vd, and (c) diffusion coefficient Dt, in 15 MNI slices across all eight subjects. CSF is masked
out in the f and vd maps using the MNI tissue probability information in SPM12. The positioning of the slices, indicated on a sagittal image, is shown at
the bottom right of the respective sub-images.

Figure 5. Histogram analysis of the model parameters in the GM, DGM, and WM MNI ROIs. (a) The columns show histograms of f, vd, and Dt. (b) The
MNI template in three projections, with the applied ROIs: GM, DGM, and WM. The color-encoding corresponds to the histogram curves. The histograms
are normalized to unity, so that the y axes correspond to relative frequency.
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approaches showed a clear convergence towards ideal accuracy
and precision, whereas the segmented fitting yielded systematic
errors in all model parameters.

DISCUSSION

Based on the velocity dispersion model, we suggest a joint
analysis of FC and NC motion-encoded data for improved IVIM
analysis. Using an FC/NC sequence, initial tests in eight healthy
volunteers showed significant rephasing effects in the FC data.
This result is in agreement with previous studies (1,16,17,19)
and indicated that the ballistic limit is not an unreasonable
assumption for capillary blood flow in the brain. Conversely,
the result also suggests that the assumption of the diffusive limit
is not valid in the brain under normal experimental conditions.
Results of conventional IVIM analysis could thus be prone to
misinterpretation due to the dependence of D* on protocol
parameters (Equation [8]). IVIM imaging is typically performed

using single diffusion encoding (SDE) sequences, which enables
short encoding times, thereby potentially taking the motion
characteristics of the flowing blood even further away from the
assumptions of the diffusive limit. Hence, our data suggest that
the additional signal attenuation from flowing blood was
primarily due to velocity dispersion.

Regularization of the vd parameter allowed for stable voxel-
by-voxel analysis in the current approach, yielding perfusion
fraction maps of reasonable quality. The regularization was sim-
ilar to Bayesian model fitting, which has been used previously to
improve conventional IVIM analysis (36,37). Due to the need for
regularization, we did not attempt to estimate the average blood
velocity in this study. This would otherwise, in principle, have
been possible, for example, by assuming a Gaussian velocity
distribution so that v 2

d ¼ hv2i=2. Voxel-by-voxel analysis of brain
IVIM is challenging due to the low SNR (low blood volume), and,
although the present work suggests promising improvements,
more work is needed to make IVIM imaging in the brain more

Figure 6. Simulation results for SNR = 100, comparing accuracy and precision of f as a function of f for the joint analysis (“FC/NC joint”) and two dif-
ferent conventional IVIM analysis approaches, i.e. bi-exponential fit (“Bi-exponential”) and segmented fit (“Segmented”). The other model parameters
were set to vd = 1.75 μm/ms and Dt = 0.8 μm2/ms in the simulations.

Figure 7. Simulation results comparing accuracy and precision of perfusion parameters estimated with the joint analysis (‘FC/NC joint’) and two dif-
ferent conventional IVIM analysis approaches, i.e., bi-exponential fit (‘Bi-exponential’) and segmented fit (‘Segmented’). Graphs show accuracy (top row)
and precision (bottom row) for f, vd and Dt (columns from left to right) as a function of SNR. Simulated parameter values were f = 5%, vd = 1.75 μm/ms,
and Dt = 0.8 μm2/ms.

A. AHLGREN ET AL.

wileyonlinelibrary.com/journal/nbm © 2016 The Authors NMR in Biomedicine published by
John Wiley & Sons Ltd.

NMR Biomed. 2016; 29: 640–649

646



robust (14). The parametric maps of f were found to be sensitive
to CSF contamination. This is a common problem in IVIM analysis
(38), which also applies to the joint analysis of FC and NC data.
Since CSF moves in a pulsatile manner, the FC is expected to
affect the CSF signal. Although we tried to avoid CSF contamina-
tion by using automatic ROI analysis, some effects are likely to
remain in our results, indicated by a higher Dt estimate in the
GM compared with the WM. It may be preferable to model the
CSF as an additional signal contribution, although it would result
in a more complex model. Alternatively, the signal contribution
from CSF could be nulled using inversion recovery or T2 prepara-
tion (38).
The joint analysis yielded plausible perfusion fraction esti-

mates in GM and WM. Although data on brain perfusion fraction
are scarce, our values were lower than those reported in previous
studies (39,40). We found that f was highest in GM, whereas DGM
showed values in between GM and WM. This result is difficult to
assess since there are no comparable reports on regional perfu-
sion fraction in the brain. However, the perfusion fraction is
closely linked to CBV (6), and contrast-agent-based studies have
reported a slightly lower CBV in DGM than in GM, and WM is well
known to have lower CBV than GM (41,42). Still, the perfusion
fraction in cortical GM reported here may have been
overestimated due to CSF contamination, since the spatial nor-
malization and subject averaging yields an effective smoothing.
The diffusion coefficient is known to be fairly homogenous in
healthy brain tissue, and is usually reported to be around 0.8
μm2/ms (using bmax= 1000 s/mm2) (43). We found a Dt of around
1 μm2/ms in WM and DGM, and 1.2 μm2/ms in GM. A brain tissue
Dt of 1 μm2/ms is reasonable in the low b-value regime, since
these data points are less affected by diffusion kurtosity (44).
However, as for the perfusion fraction, cortical Dt values are likely
to be overestimated due to CSF partial volume effects. Note that
the potential overestimations of the f and Dt in GM values are
primarily an effect of the normalization and group averaging,
and would therefore be less pronounced in a single-subject
measurement.
Some degree of asymmetry could be identified in the perfu-

sion fraction maps, which could be due to concomitant field
effects. Wetscherek et al. used a combination of single refocused
SDE (NC) and DDE (FC) sequences with symmetric gradient
waveforms (19). Although this effectively compensates for
concomitant field effects, it also results in different diffusion
experiments with different diffusion times for the NC and FC
data, which, in turn, could yield differences in the NC and FC data
that are not due to blood flow. To alleviate this, the NC/FC acqui-
sition could be implemented using, for example, a twice-
refocused DDE sequence, with variable polarity of the diffusion
encoding blocks. However, this would result in longer encoding
times and several unwanted echo pathways that need to be
effectively crushed. A few studies have analyzed FC and NC data
at multiple b values (17–19). To the best of our knowledge, only
Wetscherek et al. (19) have previously demonstrated FC and NC
data at multiple b values in vivo. They used an approach similar
to ours, although combing two different types of sequence
(SDE and DDE) with unmatched timing parameters. They fitted
the acquired signals to simulated phase dispersions, and varia-
tion of the encoding time allowed them to analyze motion on
different time scales, including the intermediate regime
(between the ballistic and diffusive limits). Their findings sug-
gested that blood velocity fluctuations in liver and pancreas
were in between the diffusive and ballistic limits. Hence, further

work is needed to assess the validity of the ballistic limit in brain
tissue, for example, by taking into account possible contributions
from blood motion in the intermediate regime.

To compare the reliability of parameter estimates from the
proposed joint analysis and the conventional IVIM fitting
methods, we performed numerical simulations. The results
showed that the joint analysis improved accuracy and precision
of estimated perfusion and diffusion parameters across a wide
range of SNR levels and values of f. The joint analysis significantly
outperformed the conventional approaches particularly for f ≳
0.1, which suggests that it may be even more suitable in organs
with higher blood volumes, such as the liver. In the brain, how-
ever, a normal assumption would be that f< 0.1. In this regime,
the segmented analysis showed slightly better accuracy in the
estimation of f for low perfusion fractions and SNRs, although
with a negative bias which increased as a function of f. One
obvious advantage of the joint analysis is the robust estimation
of Dt from the FC data, which is apparent in the high accuracy
of Dt as a function of SNR. We empirically found that a few FC
data points (four in the simulations) were enough for a robust
joint analysis, which suggests that optimization of the data
acquisition protocol may reduce the scan time (45). For example,
by acquiring only 4 FC and 12 NC data points, the scan time of
our protocol would decrease from approximately 12 to 6min.
The bi-exponential fitting performed worse than the joint analy-
sis across all performance measures and parameters. This
suggests that the application of a joint analysis, i.e. measuring
additional information by sampling across both diffusion and
flow encoding dimensions, improves the estimation of IVIM
parameters.

A limitation of the current work is that we did not use experi-
mental data in the comparison between the proposed joint
FC/NC approach and the conventional IVIM approach. Therefore,
although the results of the simulations clearly indicated superior-
ity of the joint analysis approach, the robustness of this improve-
ment, as well as its clinical value, needs to be assessed for
various in vivo conditions. Furthermore, the specific clinical appli-
cations that will benefit most from the acquisition of FC and NC
IVIM data are yet to be established. Another limitation is the dif-
ficulty in verifying that the signal from flowing blood water is
fully rephased in the FC data. Acquisition of FC/NC IVIM data in
multiple organs and with variable motion encoding times would
help to elucidate for which organs and encoding times the ballis-
tic limit is a valid approximation. Last, we used a generic in vivo
acquisition protocol with the same number of FC and NC data
points, and with emphasis on low b values. However, IVIM anal-
ysis is highly dependent on the exact b-value distribution (40),
and furthermore we empirically found that it could be beneficial
to acquire fewer FC than NC data points. Hence, further optimi-
zation of our acquisition protocol should allow for an improved
distribution of data points and shorter scan times.

The continuation of the present work will include application
of the joint analysis to different organs and diseases, further ex-
perimental comparisons with conventional IVIM analysis, and im-
proved data acquisition, modeling, and post-processing.

CONCLUSIONS

We analyzed the IVIM effect in NC and FC motion-encoded brain
MRI data. The flow compensation resulted in a strong rephasing
effect for the signal contribution from flowing blood, effectively
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nulling the IVIM effect. This indicates that the ballistic limit is
plausible for cerebral blood flow. Conversely, it also suggests
that the diffusive limit is inaccurate for IVIM brain imaging. The
velocity dispersion model produced reasonable image contrast
and numerical values for the perfusion fraction. Simulations
showed that the precision and accuracy of microcirculatory
parameter estimates were significantly improved when applying
the joint analysis. This is of particular importance in systems
where the ballistic limit is valid, which was shown to be plausible
for the brain. Flow compensation could thus be used in IVIM
applications as a way to improve estimation of the perfusion
fraction and to probe capillary blood velocity.
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