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Part of the challenge in dealing with invasive plant species is that they seldom represent a uniform, static entity. Often, an accurate
understanding of the history of plant introduction and knowledge of the real levels of genetic diversity present in species and popu-
lations of importance is lacking. Currently, the role of genetic diversity in promoting the successful establishment of invasive plants is
not well defined. Genetic profiling of invasive plants should enhance our understanding of the dynamics of colonization in the
invaded range. Recent advances in DNA sequencing technology have greatly facilitated the rapid and complete assessment of plant
population genetics. Here, we apply our current understanding of the genetics and ecophysiology of plant invasions to recent work
on Australian plant invaders from the Cucurbitaceae and Boraginaceae. The Cucurbitaceae study showed that both prickly paddy
melon (Cucumis myriocarpus) and camel melon (Citrullus lanatus) were represented by only a single genotype in Australia, implying
that each was probably introduced as a single introduction event. In contrast, a third invasive melon, Citrullus colocynthis, possessed
a moderate level of genetic diversity in Australia and was potentially introduced to the continent at least twice. The Boraginaceae
study demonstrated the value of comparing two similar congeneric species; one, Echium plantagineum, is highly invasive and genetic-
ally diverse, whereas the other, Echium vulgare, exhibits less genetic diversity and occupies a more limited ecological niche. Sequence
analysis provided precise identification of invasive plant species, as well as information on genetic diversity and phylogeographic his-
tory. Improved sequencing technologies will continue to allow greater resolution of genetic relationships among invasive plant popu-
lations, thereby potentially improving our ability to predict the impact of these relationships upon future spread and better manage
invaders possessing potentially diverse biotypes and exhibiting diverse breeding systems, life histories and invasion histories.
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Introduction
The seriousness of the global challenge due to invasive plant
species has been increasingly recognized in the past two dec-
ades, while climate change and increased global trade have
served to accelerate plant invasion (Beerling et al., 1995;
Bunce and Ziska, 2000; Ding et al., 2008; McDonald et al.,
2009; Clements and Ditommaso, 2011; Hyvönen et al.,
2012; Gallagher et al., 2013; Singh et al., 2013; Clements
et al., 2014; Seebens et al., 2015). In Australia, >3000 non-
native plant species are now recorded as naturalized (Stow
et al., 2014), and threats from these species are increasing
exponentially. Many of these invaders have become noxious
or weedy, with an estimated annual cost of over 4 billion
AUD (Olson, 2006). For example, one invasive weed, bitou
bush (Chrysanthemoides monilifera), is associated with
population decline in 63 rare and threatened native plant
species in New South Wales alone (Kohli et al., 2008). In
addition, when present in agricultural lands, weed infestation
contributes to the majority (34%) of total losses attributable
to pests relative to all crop pests (Oerke, 2006).

In order to address the challenges associated with invasive
weeds, systems of prediction are being developed, in terms of
both associated theoretical frameworks that attempt to iden-
tify the major predictors of invasion (e.g. Daehler, 2003) and
models that predict the extent of invasion. In particular mod-
els, potential regions of further invasion are identified by
evaluating current home ranges and predicted ranges where
species may invade based on climate change and other factors
(e.g. Kriticos et al., 2005; Ebeling et al., 2008; McDonald
et al., 2009). Many attempts have been made to predict the
scope of future invasions, but information on critical aspects
of invasive plant biology is often lacking, including the ability
of species to evolve in response to selection pressures, such as
climate change (Clements and DiTommaso, 2011, 2012).

Fundamental to the nature of a given species or individual
organism is a plant’s genetic identity. Gene regulation and
environmental interactions determine the physiological
nature of a plant as it develops from seeds and/or other types
of propagules, which in turn determines its eco-physiological
success and eventual impact on ecosystems and/or human
economies. A common shortcoming in the management of
invasive plants is the failure to recognize a given weed species
as not only a single genetic identity but a collection of popu-
lations that may vary greatly across a variety of scales from
local to regional to global (Meekins et al., 2001; Lavergne
and Molofsky, 2007; Prentis et al., 2008). Therefore,
although a species may be a single entity by definition, popu-
lations of a particular species may exhibit both genotypic
and phenotypic variation. Thus, their successful management
may be improved greatly by addressing specific genetic mani-
festations of the species resulting in phenotypic variation
attributable to genetic variation and/or plasticity.

Genotypic and phenotypic diversity is also observed in
invaders across all taxa, but it is important to highlight particular
features of plants that are crucial in predicting the success of

plant invasions. Plant breeding systems and life histories are
therefore key considerations. In terms of breeding systems, plants
may fall anywhere on a spectrum from obligate outcrossing to
100% selfing (Clements et al., 2004). Many plants forgo repro-
duction by seed as well, often making use of the advantages
afforded by vegetative propagation from already vigorously
growing plant parts. In terms of plant life histories, whether a
plant is an annual or perennial or some intermediate of the two
extremes can influence whether or not it is or could become a
problematic invader (Meekins et al., 2001; Lavergne and
Molofsky, 2007; Prentis et al., 2008).

Although we know much about the genetics of particular
invasive species, there are still many gaps in our knowledge
(Bock et al., 2015). For example, there remain important
questions around what factors influence the primary sources
of genetic variation, the role of genetic bottlenecks in potentially
hindering the success of plants at the fringe of an invasion wave,
and whether propagule load is more important than genetic
diversity in promoting establishment; these are questions that
may be answered by both genomic studies and studies of plant
ecophysiology using model organisms (Bock et al., 2015).

In this review, we compare and contrast the genetic diversity
of two models; Australian congeneric invaders representing the
Cucurbitaceae and Boraginaceae. The Boraginaceae model com-
pares two congeric invaders introduced to Australia in a similar
time frame; one highly successful invader and the other a niche
colonizer with similar morphological, chemical and biological
features (Skoneczny et al., 2015; Zhu X, Skoneczny D,
Gopurenko D, Meyer L, Lepschi BJ, Weston PA, Callaway RM,
Gurr GM, Weston LA. A tale of two plant invaders: comparison
of the ecology and genetics of Echium plantagineum and
E. vulgare in southern Australia. Scientific Reports, under
review; Zhu et al., 2016). The Cucurbitaceae model compares
three related melons that appear to have been introduced to
Australia via camel trading routes established in the 1800s, with
genetic diversity among the three largely selfing species varying
from existing as a single in genotype in Australia for prickly pad-
dy melon (Cucumis myriocarpus) and camel melon (Citrullus
lanatus) to the more heterogeneous populations of Citrullus colo-
cynthis composed of two major introduced genotypes in
Australia (Shaik et al., 2015). Two of the melon species (C. myr-
iocarpus) and (C. lanatus) are annuals, whereas C. colocynthis is
perennial. The experience of working with these two different
plant families in Australia using similar genetic analysis methods
enables us to draw some general conclusions on the value of
such analyses in characterizing continental invasions by a variety
of taxa. Thus, our overall objective is to examine how recent
advancements in genetic characterization and sequence analysis
can be applied successfully to invasive plants with varying life
histories, breeding systems and invasion histories.

Recent advances in DNA sequencing
for invasive plants
One key innovation in recent years is the development of
DNA barcoding for rapidly characterizing invasive plant
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genetics. DNA barcoding can be defined as ‘a diagnostic
technique in which short DNA sequence(s) can be used for
species identification’ (Savolainen et al., 2005). DNA barcoding
using the 648 bp region of the mitochondrial gene cytochrome c
oxidase I is a well-accepted method of species identification in
animals (Wiemers and Fiedler, 2007; Lahaye et al., 2008;
Hollingsworth et al., 2009). Successful use of barcoding requires
that genetic distance between species is larger than within-
species distance. Its success also depends on monophyly of the
species examined (Wiemers and Fiedler, 2007). Interestingly,
species boundaries in plants are typically less pronounced than
in animals. In some cases, up to 50% of plants show higher
levels of gene tree paraphyly, and interspecific hybridization
exacerbates this, often making fine-scale species distinction
within plants difficult (Fazekas et al., 2009). Owing to the
absence of a standard barcode region in plants, appropriate
sampling and a careful choice of markers are essential prerequi-
sites for correct plant species identification (Mort et al., 2007;
Fazekas et al., 2009).

The Consortium for the Barcode of Life (CBOL) recom-
mended a two-marker-based system as a barcode for flower-
ing plants, i.e. maturase K (matK) and ribulose-bisphosphate
carboxylase gene (rbcL; Hollingsworth et al., 2009). Although
this combination of gene regions works for some plants
(Steven and Subramanyam, 2009), it may not be useful in
others (Zhang et al., 2014). This failure can be attributed to
low sequence polymorphism between species at rbcL and diffi-
culty in sequence retrieval in the case of matK, for example,
as seen in Zingiberaceae (Kress et al., 2005). Some studies
have suggested that the matK region alone can potentially be
used for plant barcoding, e.g. for species distinction in
Annona, a genus belonging to pawpaw/sugar apple family
Annonaceae (Lahaye et al., 2008; Hollingsworth et al., 2009;
Larranaga and Hormaza, 2015). Molecular systematics and
phylogeographic studies have also extensively used evolution-
arily conserved chloroplast DNA (Parducci and Szmidt, 1999;
Desplanque et al., 2000; Xu et al., 2001). The chloroplast
genes, although uniparentally inherited and highly conserved,
can be extremely useful for species and haplotype distinction
in some cases. In Dendrobium species, 100% species reso-
lution was observed by using the chloroplast psbA-trnH inter-
genic spacer (Yao et al., 2009).

For plants in the genus Citrullus, genetic diversity has also
been determined by using chloroplast DNA and sequencing
analysis of several non-coding regions (Dane and Bakhtiyarova,
2003; Dane et al., 2004; Dane and Liu, 2007). Relative to
nuclear markers, maternally inherited chloroplast markers may
sometimes be associated with low polymorphism, caused by
slow evolution owing to a reduced rate of substitution at syn-
onymous sites and also in non-coding inverted repeat sequences
(Wolfe et al., 1987). Furthermore, chloroplast capture events
and intraspecific hybridizations may cause selective sweeps,
resulting in shared haplotype formation and incongruent gene
trees, as noted in Australian populations of golden wattle
(Acacia pycnantha; Ndlovu et al., 2013). This, in turn, can

lead to failure in species identification when using a combined
data set of multiple chloroplast genes, as was observed in
some cases (Rosenthal et al., 2008; Twyford, 2014), such as
willow (Salix spp.; Percy et al., 2014) and sweet chestnut fruit
(Castanea spp.; Li and Dane, 2013).

The evolution of nuclear genes is independent from plastid
DNA; therefore, nuclear regions, including the internal tran-
scribed spacer region (ITS), may also be required for increased
resolution (Chase et al., 2005) and hybridization testing
(Chase et al., 2005; Zhang et al., 2013). The ITS from nuclear
ribosomal DNA typically shows greater discriminatory power
(Hollingsworth et al., 2011) and is easily amplified by using
universal primers in some plant molecular studies. It has been
successfully used for phylogenetic studies in some families, e.g.
in the Euphorbiaceae (Pang et al., 2010). The ITS region was
also used to infer phylogenetic relationships in Cucumis and
Citrullus (Jarret and Newman, 2000; Garcia-Mas et al.,
2004). Some limitations of ITS use include difficulty in obtain-
ing the sequences and incomplete concerted evolution of the
gene, leading to divergent paralogous copies within the same
individual. Additionally, polymorphic sites need to be scored
carefully (Mort et al., 2007; Hollingsworth et al., 2011).

Systematists have argued that dependence on a single
sequenced region may result in a distorted picture of phylo-
genetic relationships, as incongruence has been observed
between phylogenetic trees of nuclear and chloroplast origin
(Fehrer et al., 2007); hence, phylogenetic inferences are now
being made using multiple gene regions (Soltis and Soltis,
2004). Some researchers recommend using multiple markers
from independent genomes, including a chloroplast and a
nuclear gene together, for better taxon discrimination (Kress
et al., 2005; Mort et al., 2007; Zhang et al., 2014). This
helps to overcome the inherent inaccuracies of using single
gene markers (Rubinoff et al., 2006; Mort et al., 2007).
A combination of nuclear G3pdh and chloroplast ycf6-psbM
regions was successfully used to distinguish species within
Citrullus (Dane et al., 2007). This suggests that successful
identification mainly depends on successful determination of
a gene region or a combination of gene regions.

Numerous markers have also been used for plant genetic
diversity and species identification studies during the last few
decades, including Simple Sequence Repeat (SSR), Amplified
Fragment Length Polymorphism (AFLP), Restriction
Fragment Length Polymorphism (RFLP), Random Amplified
Polymorphic DNA (RAPD) and Inter Simple Sequence
Repeat (ISSR). Compared with DNA barcoding, these mar-
kers can be cheaper and sometimes more polymorphic.
However, they can also be impracticable because of errone-
ous results in scoring (electropherogram base calling; Devey
et al., 2009). Successful use of marker-based systems for ana-
lysis of diversity requires subjective human judgment and
editing, which can sometimes be overcome using PeakScanner
and SPAGeDi software (Ley and Hardy, 2013). In addition,
markers such as RAPDs and ISSRs are generally subject to
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reproducibility issues between laboratories (Gaskin et al., 2011).
The cost of sequencing technology and analysis has recently
been dramatically reduced. Complete plastid genome sequencing
or even whole genome sequencing using next generation sequen-
cing may eventually prove affordable, and these technologies
will provide much useful information for those willing to work
with large data sets and perform bioinformatics (Su et al.,
2011).

Recently, we conducted DNA sequence analysis on
five Australian invasive plant species in two families, the
Cucurbitaceae and Boraginaceae. These species exhibit a
variety of breeding systems, life histories and introduction
histories across Australia (Table 1).

Cucurbitaceae case study
Species profiles
Three cucurbitaceous invasive melons, camel melon
[Citrullus lanatus (Thunb.) Matsum. and Nakai], prickly
paddy melon (Cucumis myriocarpus L.) and colocynth mel-
on [Citrullus colocynthis (L.) Schrad.] are currently distribu-
ted across Australia (see Fig. 1 for illustrations of the first
two), invading crops, fallow lands and natural habitats (Leys
et al., 1990; Parsons and Cuthbertson, 2001; Johnson et al.,
2006b; Richardson et al., 2006). In Australia, wild melons
were cited as one of the main summer fallow weed problems
in a Grains Research & Development Corporation (GRDC)
survey conducted in 2014 (Llewellyn et al., 2016). Their
expansion is likely to continue unless adequate control strat-
egies are implemented. The first two are annual vines that
germinate during spring, fruit during summer and senesce
during autumn (Parsons and Cuthbertson, 2001), whereas
the third, colocynth, is a perennial vine. Australian summer
weeds can result in up to 1 ton wheat yield loss per hectare if
left uncontrolled, causing a loss of soil moisture of up to 50
mm that would otherwise have been useful for subsequent
winter crops (Van Rees et al., 2011).

There has been confusion regarding identification of
wild melons in Australia before flowering, at both the

morphological and the taxonomic level. Herbicide control at
the seedling stage is now recommended (Johnson et al.,
2006a). However, clear identification of the cucurbitaceous
species in question is challenging, as some herbicides do not
fully control all three species (Johnson et al., 2006a). Wild mel-
ons ascribed to the species C. lanatus are also a prominent weed
in other countries, including New Zealand and the USA
(Parsons and Cuthbertson, 2001; Futch and Hall, 2003;
Grichar et al., 2010; Abd El-Ghani et al., 2011). The other
annual wild melon most common in Australia, C. myriocarpus,
has also become naturalized in southern Europe and California
(Grubben and Denton, 2004). In addition, the perennial wild
melon species, C. colocynthis, is a weed in Australia and parts
of Asia (Parsons and Cuthbertson, 2001; Dane et al., 2007;
Burrows and Shaik, 2014).

Table 1: Comparison of the plants featured in DNA sequencing case studies of invasive species from Cucurbitaceae (data from Shaik et al.,
2015) and Boraginaceae (data from Zhu et al., 2016) in Australia

Plant taxa Life cycle Chloroplast haplotypes Nuclear genotypes Invasiveness in Australia Breeding system in Australia

Cucurbitaceae

Cucumis myriocarpus Annual 1 1 H SC

Citrullus lanatus Annual 1 1 H SC

Citrullus colocynthis Perennial 2 4 H SC

Boraginaceae

Echium plantagineum Annual 12 2 H SC

Echium vulgare Perennial 2 4 L SC

Invasiveness ratings: H, high; L, low. Breeding systems: SC, self-compatible; SI, self-incompatible.

Figure 1: Fruits of invasive Cucurbitaceae in Australia. The large fruit
is Citrullus lanatus (camel melon), which has an average diameter of
7–10 cm. The smaller fruit is Cucumis myriocarpus (prickly paddy
melon), which has an average diameter of 2–3 cm. The fruit of Citullus
colocynthis (colocynth melon) is similar in size and appearance to that
of C. lanatus, but C. colocynthis rind tends to have a mottled or
mosaic pattern as opposed to the spotted or striped pattern seen on
C. lanatus (Shaik et al., 2012).
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DNA sequencing study insights
The two annual wild melon species share similar vegetative
growth and produce yellow flowers; therefore, they are often
confused. This is particularly so before fruit formation in the
case of C. myriocarpus. The perennial species, C. colocynthis, is
closely related, shares morphological similarity with C. lanatus
and is often misidentified even on fruit formation. Interestingly,
initial trials with chloroplastidic matK gene did not result in sep-
aration of these two congeneric species because their sequences
were 100% similar (Shaik et al., 2011). However, a chloroplast
gene (ycf6-psbM) and a nuclear gene (G3pdh intron region)
based on Dane et al. (2007) proved useful in evaluating the inter-
specific and intraspecific variability among the three cucurbit-
aceous invasive species.

The results of extensive sampling across Australia showed
that C. lanatus and C. myriocarpus were each represented by a
single genotype and haplotype, indicating that the populations
present were derived from a single introduction event or mul-
tiple introduction events of a single genotype (and subsequently
selfing). Moderate levels of genetic diversity were present
among Australian C. colocynthis, and this species sorted geo-
graphically into separate haplotypes found in eastern and west-
ern regions, suggesting at least two separate introductions from
two different source populations (Shaik et al., 2015). These
findings suggested that the two gene regions described above
can be used to identify the invasives in question as
C. myriocarpus subsp.myriocarpus for Australian prickly pad-
dy melon and C. lanatus var. citroides for camel melon, previ-
ously described in the literature as the Australian wild melon
C. lanatus var. lanatus (Shaik et al., 2011, 2012, 2015).

The findings of Shaik et al. (2015) suggest that an integrative
approach, using both morphological characters and DNA-based
methods, including sequence analysis for identification, is likely
to be more successful than either approach alone. Based on the
discovery that C. lanatus is a single genetic entity, it is likely that
the Australian population can be controlled effectively by one
efficacious method of control, barring any local variations in
management required as a result of phenotypic differences. This
is also thought to be the case with C. myriocarpus. However,
populations of C. colocynthis may require differential methods
of management should genotypic and phenotypic differences pre-
dominate among eastern and western populations.

Other well-described hypotheses that will not be discussed in
detail in this review provide explanations of how populations
with low genetic diversity can become invasive and include pre-
adaptation (Dlugosch and Parker, 2007; Clark et al., 2013;
Dostál et al., 2013), phenotypic plasticity and enhanced resource
availability (Callaway and Aschehoug, 2000; Graebner et al.,
2012; Stricker and Stiling, 2013), natural enemy release (Hinz
et al., 2012) or a combination of factors (Geng et al., 2007;
Eriksen et al., 2012; Vergeer and Kunin, 2013). Additional studies
on the roles of breeding system and pollinator interactions may
shed light on these successfully inbreeding invasive plants.

Boraginaceae case study
Species profiles
Australia has two exotic invasive Echium species: Paterson’s curse
(E. plantagineum; Fig. 2a) and viper’s bugloss (E. vulgare;
Fig. 2b). Both species originated in southern Europe and were
introduced to Australia during the 19th century (Piggin, 1982;
Klemow et al., 2002). The former soon became a serious weed
after introduction, covering almost all biogeographical regions in
southern Australia. Today, it is estimated to infest >33 million
hectares, causing >250 million AUD in losses to the meat and
wool industries (NRM South and the Southern Tasmanian
Councils Authority, 2016). In contrast, E. vulgare, although more
common across Europe, is a niche colonizer in Australia and is
currently found in only a small subset of biogeographical regions
across New South Wales, Victoria and Tasmania.

Correct identification of these congeric Echium species has
typically caused confusion in Australia, especially before
anthesis. Prior to the 1950s, the common name ‘Paterson’s
curse’ was used for both species (Parsons, 1973). Piggin
(1977) reported misidentification between the two in
Australian herbaria collections, which contributes to confu-
sion in tracking the dynamics of dispersal over time. The
Australian introduction history of the highly invasive
E. plantagineum is also not clear. Piggin (1982) suggested
that E. plantagineum was introduced as an ornamental spe-
cies from England; however, it is more likely that this species
was introduced to Australia from Spain, potentially via South

Figure 2: (a) Inflorescence of Echium plantagineum (Paterson’s curse).
(b) Inflorescence of Echium vulgare (viper’s bugloss). (c and d) Note
that flower size in E. plantagineum (c) is typically larger and exhibits
two protruding stamens, in contrast to smaller flower size in
E. vulgare with a lack of protruding stamens (d).
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Africa, as a seed contaminant of hay through importation of
Merino sheep in the late 18th century (Zhu et al., 2014b).

DNA sequencing study insights
The genetic diversity of E. plantagineum and E. vulgare was
evaluated by sample collection from Queensland, New South
Wales, Australian Capital Territory, Victoria, South Australia,
Northern Territory and Western Australia. Results indicated
that both Echium species were routinely identified and sepa-
rated using any of four DNA regions under evaluation, which
included one nuclear region ITS and three chloroplast regions
(trnL intron, trnL-trnF spacer and psbA-trnH spacer; Zhu
et al., 2014a). Echium plantagineum and E. vulgare possessed
12 and two haplotypes each, respectively, when separated using
three chloroplast regions (Zhu X, Skoneczny D, Gopurenko D,
Meyer L, Lepschi BJ, Weston PA, Callaway RM, Gurr GM,
Weston LA. A tale of two plant invaders: comparison of the
ecology and genetics of Echium plantagineum and E. vulgare
in southern Australia. Scientific Reports, under review). The
more successful invader, E. plantagineum, showed significantly
higher levels of genetic diversity than did the less invasive
E. vulgare, which supports the hypothesis that a certain level of
genetic diversity is associated with success of invasion in herb-
aceous plants (Jose et al., 2013).

The relative pattern of introduction of Australian E. plan-
tagineum was also observed through sequence analysis experi-
mentation. The introduction of E. plantagineum was first
reported historically in Albury (southern New South Wales),
Gladstone (South Australia) and Western Australia in 1880,
1889 and 1881, respectively (Piggin, 1977; Kloot, 1982).
Spatial-specific haplotypes were found near these sites, while
western New South Wales, a buffer area between the South
Australia and New South Wales introduction events, showed
the greatest number of haplotypes detected in the study (Zhu
X, Skoneczny D, Gopurenko D, Meyer L, Lepschi BJ, Weston
PA, Callaway RM, Gurr GM, Weston LA. A tale of two plant
invaders: comparison of the ecology and genetics of Echium
plantagineum and E. vulgare in southern Australia. Scientific
Reports, under review). These findings support the hypothesis
that multiple introductions of E. plantagineum occurred
across Australia. However, to unravel the pathway of E. plan-
tagineum introduction to Australia further, additional investi-
gation is required and is currently ongoing through evaluation
of a global collection of samples.

This study also highlights the limited genetic diversity found
in Australian specimens of E. vulgare (Zhu X, Skoneczny D,
Gopurenko D, Meyer L, Lepschi BJ, Weston PA, Callaway RM,
Gurr GM, Weston LA. A tale of two plant invaders: comparison
of the ecology and genetics of Echium plantagineum and
E. vulgare in southern Australia. Scientific Reports, under
review). Echium vulgare is restricted in its spread across
Australia and is mainly found in the southeastern highlands
(Fig. 3). As a perennial, it requires vernalization to induce
flowering (Klemow et al., 2002), and is less drought tolerant

when compared with E. plantagineum. Currently, E. vulgare
is potentially under threat owing to its limited habitat as a
niche colonizer. With exposure to a changing climate, its
range may be further restricted in future years. In contrast,
E. plantagineum, while already much more widely distribu-
ted than E. vulgare in Australia (Fig. 3), is predicted to
become more invasive given its ability to withstand drought
and its relatively high levels of genetic diversity, which may
allow it successfully to adapt to recently changing environ-
mental conditions across southern Australian biogeograph-
ical regions (Zhu X, Skoneczny D, Gopurenko D, Meyer L,
Lepschi BJ, Weston PA, Callaway RM, Gurr GM, Weston
LA. A tale of two plant invaders: comparison of the ecology
and genetics of Echium plantagineum and E. vulgare in
southern Australia. Scientific Reports, under review).

Value of DNA sequencing for a
diverse array of invasive plants
Diverse breeding systems
Modes of reproduction and dispersal play a vital role in
determining the genetic structure of a population of a par-
ticular species (Barrett et al., 2008; Petanidou et al., 2012).
Many factors influence the genetic diversity of populations
(Loveless and Hamrick, 1984), including ecological para-
meters. Genetic variation among populations is often solely
dependent on the breeding system of the species (Schoen
and Brown, 1991). Within-population genetic diversity is
often reported to be low in the case of inbreeding popula-
tions and high in the case of outcrossing populations
(Charlesworth and Charlesworth, 1995). In comparison,
the among-population diversity was high (up to 51% of the
total genetic diversity) in selfing and endemically distributed
species. This is in direct contrast to outcrossing populations
that were widely distributed geographically or those that
were wind dispersed, where only a small proportion
(~10%) of total genetic diversity was observed among
populations (Hamrick et al., 1990, 1992; Hooper and
Haufler, 1997).

Figure 3: Distribution of Echium plantagineum (Paterson’s curse; a)
and Echium vulgare (viper’s bugloss; b) in Australia. Source of
distribution data: Australia’s Virtual Herbarium, 2015.
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For the Australian weeds discussed above, genetic charac-
terization provided helpful insights into invasion history,
although breeding systems varied widely in each case.
Citrullus lanatus and C. myriocarpus reproduce by selfing
and form large infestations of a single haplotype in the
invaded range. The breeding system in Echium species fea-
tures protandrous individual flowers, which cannot self-
pollinate, but the possibility of fertilization by other flowers
on the same plant renders them self-compatible (Klemow
et al., 2002). Although E. plantagineum is self-compatible,
outcrossing does occur via insect pollination, and outcross-
ing rates are generally high (Burdon and Brown, 1986;
Burdon et al., 1988). The breeding system of E. vulgare is
similar to that of E. plantagineum but exhibits slightly less
incidence of outcrossing (Rademaker et al., 1999; Klemow
et al., 2002) and predictably less genetic diversity in
Australia, although other factors, such as a smaller available
niche, are crucial when considering observed differences in
distribution (Zhu X, Skoneczny D, Gopurenko D, Meyer L,
Lepschi BJ, Weston PA, Callaway RM, Gurr GM, Weston
LA. A tale of two plant invaders: comparison of the ecology
and genetics of Echium plantagineum and E. vulgare in
southern Australia. Scientific Reports, in preparation).

Diverse population genetics and invasion
history
Assessment of genetic diversity can assist in pinpointing the
origins, introduction history and invasion path of a particular
species, and also point out invasion-prompting factors
(Burrell et al., 2015). Little or no genetic variation has been
noted in some invasive plant populations, including barbed
goat grass (Aegilops triuncialis; Meimberg et al., 2006), cat’s
claw creeper (Macfadyena unguis-cati; Prentis et al., 2009),
North American populations of perennial pepper weed
(Lepidium latifolium; Gaskin et al., 2013) and giant reed
(Arundo donax; Ahmad et al., 2008). Likewise, M. unguis-
cati showed 27 chloroplast DNA haplotypes in its native
range and only one haplotype in its invaded range (Sexton
et al., 2002; Prentis et al., 2009). Sometimes invaded popula-
tions are far less diverse than their source populations, and
such is the case in C. lanatus and C. myriocarpus in Australia
(Shaik et al., 2015). In other cases, the level of genetic diver-
sity in the non-native range can be similar to the native range,
as is the case in Australian E. plantagineum when observed
using isozyme marker studies (Burdon and Brown, 1986).

Alternatively, plant invaders can exhibit post-invasion
genetic diversity (Jakobs et al., 2004) through mutation and
novel chromosomal or ploidy changes, and also by hybrid-
ization and/or introgression with closely related congeners
present in the invasive range (Prentis et al., 2009; Meyerson
and Cronin, 2013; Ndlovu et al., 2013). The adaptability of
such species can also be influenced by post-introduction gen-
etic changes, including adaptive evolution through selection
and genetic drift, resulting in the development of locally
adapted ecotypes (Hahn et al., 2012; Wang et al., 2012;

Oduor et al., 2016). For example, genes involved in stress
responses were found to be over-expressed in annual rag-
weed (Ambrosia artemisiifolia) in its introduced range
(Prentis and Pavasovic, 2013). Conversely, the genetically
depauperate invasive populations of Japanese knotweed
(Fallopia japonica) showed higher epigenetic variation (lead-
ing to phenotypic variation) than genetic variation (Richards
et al., 2012). This demonstrates that a high level of genetic
diversity in the invaded population is not always an essential
prerequisite to invasion success.

It is also important to evaluate the invasive population’s gen-
etic make-up at both its native location and the invaded range,
as careful study can provide information on the evolutionary
processes that have occurred, as well as their role in invasion suc-
cess (Hornoy et al., 2013), and invasion history (Le Roux et al.,
2011), including the potential number of introductions
(Meimberg et al., 2006). Greater knowledge can also assist in
the reconstruction of introduction pathways (Novak and Mack,
2001; Le Roux et al., 2011; Hornoy et al., 2013; Kelager et al.,
2013). Multiple introductions or a single introduction of multiple
genotypes of a particular species to a location from diverse
source populations can also result in enhanced genetic diversity
in the invaded range, e.g. rugosa rose (Rosa rugosa) populations
were diverse in the introduced European range, suggesting mul-
tiple introductions from their source populations in Japan
(Simberloff, 2009; Hornoy et al., 2013; Kelager et al., 2013). In
turn, this may result in the development of locally adapted
ecotypes/genotypes through natural selection (Sexton et al.,
2002; Prentis et al., 2008). Additionally, potential source popula-
tions of the invader can be identified (Clark et al., 2013; Kelager
et al., 2013), and these populations may help further to locate
associated natural enemies (Ellstrand and Schierenbeck, 2000;
Ndlovu et al., 2013), which may later be useful as biological
control agents (Goolsby et al., 2006).

Diverse management opportunities
Intraspecific diversity of an invasive plant species can have
important implications for management; the genetic diversity
among populations may be sufficiently great to warrant dif-
ferent control strategies. For example, in any invasive popu-
lation, the presence of a mixture of resistant and non-
resistant genotypes potentially impedes chemical and bio-
logical control (Burdon et al., 1981, 1984; Prentis et al.,
2008). Hence, a genetically variable invasive plant popula-
tion may be difficult to control because of naturally variable
genotypes within the introduced population or the possibility
of newly emerged resistant plants as a result of ongoing nat-
ural selection (Sterling et al., 2004). Such diverse populations
may also show variable response to control by biocontrol
agents (Bruckart et al., 2004). Knowledge of existing genetic
variability in an invasive population provides further insight
into the responses of weed populations to specific manage-
ment strategies (Ward et al., 2008). Differential responses to
the same management method have been observed in genet-
ically diverse populations (Goolsby et al., 2006). Therefore
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an understanding of genetic diversity of invasive populations
may help to predict the likelihood of successful management
of invasive weeds, including the use of biocontrol pro-
grammes (Burdon and Marshall, 1981; Chapman et al.,
2004; Gaskin et al., 2005). Knowledge of the source popula-
tion of an invasive weed may also aid in finding potential
biocontrol agents in the plant’s native environment (Paterson
et al., 2009).

In the case of five invasive Australian weeds described
above, genetic characterization allows managers to approach
each of the species differently based on the degree of vari-
ation present. Chemical control is generally used for all of
these species, except E. vulgare (Johnson et al., 2006a).
However, a uniform chemical control technique is recom-
mended for populations of the two annual melon species in
Australia and is currently efficacious, possibly because these
species are related and are also genetically uniform (i.e. C.
lanatus and C. myriocarpus). For the other three species,
control tactics should logically be designed to account for
regional or local differences, especially if it is shown that
responses to specific controls vary among genotypes. For
example, different ecotypes of a biological agent currently
being tested for use against knotweed (Fallopia spp.) in
North America have been shown to favour particular
Fallopia species, and there are three closely related target
species, including Fallopia × bohemica, which form a hybrid
swarm (Grevstad et al., 2013; Clements et al., 2016). In E.
plantagineum, the success of biocontrol agents in Australia
was clearly associated with long-term regional adaptation of
each biocontrol organism; however, genetic differences
among regional plant populations may also influence biocon-
trol (Weston et al., 2012), but this requires further
investigation.

Conclusions
Comparisons among the five taxa evaluated in these case
studies (Table 1) reveal a variety of patterns in species and
population genetic diversity, dependent on invasion and life
history and breeding systems, with implications for strategic
management approaches. Invasive plants with varying levels
of genetic diversity can provide important models with which
to study plant invasion success. DNA sequencing technolo-
gies provide precise and clear information related to the iden-
tity of invasive plant species, along with information on
genetic diversity and phylogeographic history. New sequen-
cing technologies are also likely to continue to allow greater
resolution of genetic relationships among invasive plant
populations, thus improving our understanding of mechan-
isms driving successful invasion.
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