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Abstract
We report herein the use of an exonuclease III and G-quadruplex probe to construct a
G-quadruplex-based luminescence detection platform for Hg2+. Unlike common DNA-based
Hg2+ detection methods, when using the dsDNA probe to monitor the hairpin formation, the
intercalation of the dsDNA probe may be influenced by the distortion of dsDNA. This ‘mix-and-
detect’ methodology utilized the G-quadruplex probe as the signal transducer and is simple,
rapid, convenient to use and can detect down to 20 nM of Hg2+.
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1. Introduction

Mercury ions (Hg2+) are a hazardous pollutant produced by
refineries, factories, power station or runoff from landfills.
Long-term absorption of mercury may result in kidney
damage, memory impairment and other severe health pro-
blems [1, 2]. Living organisms will absorb and then accu-
mulate mercury in fatty tissue via eating and drinking.
Therefore, exposure of the human body to mercury should be
minimized due to potential metal accumulation. According to
the United States Environmental Protection Agency, the

maximum safe concentration of mercury in drinking water is
2 ppb, the quantitative detection of which would require a
very sensitive instrument [3–5]. Unfortunately, existing ana-
lytical methods for the sensitive detection of Hg2+ are not
satisfactory for in-field use due to expensive instrumentation
and labor-intensive sample preparation protocols. These
instrumental methods include atomic absorption spectroscopy
(AAS), inductively-coupled plasma mass spectrometry (ICP-
MS) [6] and ion-selective electrodes [7, 8].

In 2004, Ono and co-workers discovered that Hg2+ is
able to coordinate with thymine nucleobases [9–12]. This
discovery has sparked a wave of novel Hg2+ detection
methods, such as oligonucleotide-based luminescence [13–
28], colorimetric [29–40], electrochemical [41, 42] and sur-
face-enhanced Raman scattering methods [43–46]. Later on,
they reported the crystal structure of a DNA duplex
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containing the T−HgII−T mismatch, which showed that the T
−HgII−T bond largely distorts DNA structure and also sta-
bilizes B-form DNA [12]. Moreover, C−AgI−A [47] and C
−AgI−T mismatches have also been reported [11].

The G-quadruplex is a DNA secondary structure which is
formed from a guanine-rich DNA sequence with four or more
G-tracts. It is stabilized by monovalent cations such as K+,
Na+ or NH4

+ to form square-planar arrangements of guanine
residues [48, 49]. Because of its rich structural polymorphism,
the G-quadruplex has been widely used to construct analytical
detection platforms [43, 44, 50–64] or various types of logic
gates [65–67].

Exonuclease III (ExoIII) is a nuclease that catalyzes the
stepwise removal of mononucleotides from the 3′-terminus of
duplex DNA. Exo III has been used as a component of oli-
gonucleotide-based detection platforms for different targets or
as a tool for signal amplification [68, 69]. Interestingly, ExoIII
has been reported to cleave DNA duplexes containing T
−Hg2+−T mismatches and release Hg2+ into solution [42].

In our previous study, we constructed AND, OR and
INHIBIT logic gates utilizing HgII and AgI ions as signal
inputs. The ‘Klenow fragment’ polymerase was utilized as
one of the signal transducing elements that catalyzes the
extension of designed DNA in the 5′ to 3′ direction to form a
duplex product and displace the split G-quadruplex sequence
in the presence of Ag+ and Hg2+ [70]. Moreover, previous
investigations demonstrated that the photophysical properties
of iridium(III) complexes could be fine-tuned by changing the
C^N or N^N donor ligand. We report herein a novel detec-
tion platform for Hg2+ using a novel iridium(III) complex.
Unlike common detection methods using dsDNA probes to
monitor the hairpin formation, which could be influenced by
the distortion of dsDNA by mismatches, our approach utilized
a G-quadruplex probe and is based on the newly discovered
phenomenon that ExoIII cleaves DNA duplexes containing T
−Hg2+−T mismatches. The detection mechanism of this
platform is outlined in scheme 1. The DNA probe contains a
G-quadruplex-forming sequence (green line), and its com-
plementary sequence (red line), as well as 3′ and 5′ polyT

(poly thymine) overhangs. The overall DNA structure
assumes a hairpin formation with unhybridized 3′ and 5′-
termini. Since ExoIII is unable to recognize single-stranded
DNA (ssDNA) as substrate, it will not cleave the unhy-
bridized 3′ overhang and the hairpin DNA will not be
digested in the absence of Hg2+. Upon exposure to Hg2+

however, the 3′ and 5′ polyT overhangs form T−Hg2+−T
bridges, creating a duplex DNA structure that is vulnerable to
ExoIII digestion from the 3′-terminus (red line). ExoIII
cleavage releases the G-quadruplex-forming sequence. The
G-quadruplex structure binds with the luminescent
G-quadruplex-selective iridium(III) complex 1, with a switch-
on emission response. Furthermore, the Hg2+ may be recy-
cled as they are re-released into solution following the ExoIII
cleavage step.

2. Experimental details

2.1. Materials

Reagents, unless specified, were purchased from Sigma
Aldrich (St. Louis, MO, USA) and used as received. Iridium
chloride hydrate (IrCl3·xH2O) was purchased from Precious
Metals Online (Australia). All oligonucleotides were synthe-
sized by Techdragon Inc. (Hong Kong, China).

2.2. Synthesis

Complex 1 was prepared according to (modified) literature
methods and was characterized by proton nuclear magnetic
resonance (1H-NMR), 13C-NMR and high resolution mass
spectrometry (HRMS). Complex 1. 1H NMR (400MHz,
acetone-d6) δ 8.80 (d, J=8.8 Hz, 2H), 8.53 (d, J=8.8 Hz,
2H), 8.14-8.09 (m, 4H), 7.89 (d, J=8.8 Hz, 2H), 7.83-7.81
(m, 2H), 7.67-7.63 (m, 2H), 7.42-7.38 (m, 2H), 7.31-7.27
(m, 2H), 7.21-7.17 (m, 2H), 7.15-7.06 (m, 6H), 6.58
(d, J=7.6 Hz, 2H); 13C NMR (100MHz, DMSO-d6)
δ 181.0, 161.3, 148.9, 148.8, 147.8, 142.1, 140.0, 132.5,
132.1, 131.7, 131.3, 129.9, 129.7, 129.6, 128.5, 127.5, 127.3,
126.9, 125.0, 123.9, 122.1, 118.1; HRMS: calculated for
C44H28IrN4S2 [M–PF6]

+ 869.1385; found 869.1332; ana-
lyzed (C44H28IrN4S2PF6). C, H, N: calculated 52.12, 2.78,
5.53; found 52.34, 2.77, 5.58.

3. Results and discussion

Complex 1 is a cyclometalated iridium(III) complex: [Ir
(pbt)2(biq)]PF6 (1, where pbt=2-phenylbenzo[d]thiazole,
biq=2,2′-biquinoline, figure 1). The synthesis, character-
ization and photophysical properties of 1 are given in the
supplementary information (table S1, figure S1). No sig-
nificant change in the UV–visible absorption spectrum of 1
was observed in aqueous buffered solution over 48 h, indi-
cating that the complex is stable in aqueous solution and may
be suitable for long term use. By itself, complex 1 was weakly
emissive in aqueous buffered solution (20 mM Tris, pH 7.0).

Scheme 1. Schematic representation of the ExoIII-assisted label-free
G-quadruplex-based assay for Hg2+.
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Encouragingly, we found that a significant increase in lumi-
nescence response of 1 can be triggered by the presence of
G-quadruplex DNA, as shown by emission titration experi-
ments. We then explored the effect of the addition of various
types of DNA (figure 2). ssDNA or double-stranded DNA
(ds17, ds26) had only a minor effect on the luminescence of
1. However, in the presence of the Pu27 G-quadruplex, the
luminescence of 1 was significantly increased (about 3-fold).
We anticipate that the G-quadruplex shields the metal center
of 1 from solvent quenching by non-radiative decay of the
excited state, thus recovering 3MLCT phosphorescence. To
validate this hypothesis, the G-quadruplex fluorescent inter-
calator displacement (G4-FID) assay was utilized to investi-
gate the binding affinity of 1 for G-quadruplex and dsDNA.
The result showed that only 2 μM of 1 could displace 50% of
thiazole orange (TO) from G-quadruplex-TO assemble. On
the other hand, only about 30% of TO could be displaced
from dsDNA-TO assemble in the presence of 5 μM of com-
plex 1 (figure 3). It outlines the G-quadruplex selective
property of complex 1.

As complex 1 displays the property of a G-quadruplex-
selective probe, we sought to apply it in our Hg2+ sensing
platform. Encouragingly, we observed that the presence of
Hg2+ enhanced the luminescence intensity of the complex 1–
hairpin DNA system (figure 4). To validate that the lumi-
nescence enhancement is due to the switching of the DNA
structure, we also sought to exclude the possibility of direct

interaction between complex 1 and Hg2+ as a contributor to
the response. We found that no luminescence increase was
observed for the system lacking hairpin DNA (figure S2). We
propose that the observed luminescence enhancement of the
system is due to the formation of the T−Hg2+−T mismatched
duplex in the 3′ and 5′ overhangs, which allows ExoIII
digestion of the hairpin DNA, resulting in the release of the
G-quadruplex-forming sequence and the formation of a
G-quadruplex structure that is recognized by the
G-quadruplex-selective complex 1 with a switch-on emission
response.

The linear detection range of the system was found to be
from 20 to 200 nM of Hg2+ (figure 4). Maximal luminescence
was reached at 200 nM. The detection limit of the present
assay was determined to be 20 nM of Hg2+ by the 3σ method.
The selectivity of this detection platform for Hg2+ over other
metal ions was also evaluated. The results showed that the

Figure 1. Chemical structure of cyclometalated iridium(III) com-
plex 1.

Figure 2. (a) Emission spectrum and (b) luminescence enhancement of complex 1 (1 μM) in the presence of 5 μM of ssDNA, ds17, ds26 or
Pu27 G-quadruplex.

Figure 3. Percentage of TO displaced from DNA duplex ds26 or
Pu27 G-quadruplex upon addition of complex 1.

Figure 4. Emission enhancement of the system ([1]=1 μM,
[DNA]=1.5 μM, [K+]=100 mM) with increasing concentration
of Hg2+.
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luminescence response of the system for Hg2+ was sig-
nificantly stronger than that for 5-fold excess concentrations
of the other metal ions (figure 5).

In order to investigate the effectiveness of this Hg2+

assay in a practical application, we applied it to the detection
of Hg2+ in spiked natural water samples. No Hg2+ was
detected in the natural water samples by ICP-MS. Therefore,
the natural water samples (Nam Sang Wai River in Hong
Kong) were diluted 50-fold with Tris buffer and spiked with
various concentrations (20, 50, 100, 200 and 500 nM) of
Hg2+. The samples showed a gradual increase in lumines-
cence intensity with Hg2+ (figure 6). This result demonstrates
that our detection platform could potentially be further
developed as a sensitive probe for natural water sample
analysis of Hg2+.

4. Conclusions

In conclusion, a novel luminescent iridium(III) complex
which shows the G-quadruplex probe property, was investi-
gated and utilized for the construction of an exonuclease-
assisted, label-free G-quadruplex-based luminescence detec-
tion platform for Hg2+. Compared with the modified DNA,
the cost label-free approach using unmodified DNA is rela-
tively low. Unlike common detection methods, when using
the dsDNA probe to monitor the hairpin formation, the
intercalation of the dsDNA probe may be influenced by the
distortion of dsDNA. This ‘mix-and-detect’ methodology
utilized the G-quadruplex probe as the signal transducer and it
is simple, rapid, convenient to use and can detect down to
20 nM of Hg2+, which is comparable to recently reported
label-free DNA-based Hg2+ ion detection methods. For
comparison, we have also summarized those reported meth-
ods in table S2. Furthermore, the potential application in a
real water sample was also demonstrated, which shows the
robustness of the system.
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