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Abstract
Metal–organic frameworks (MOFs) have attracted considerable attention for various applications
due to their tunable structure, porosity and functionality. In general, MOFs have been
synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal
conditions via one-spot reactions. The emerging precursor approach and kinetically tuned
dimensional augmentation strategy add more diversity to this field. In addition, to speed up the
crystallization process and create uniform crystals with reduced size, many alternative synthesis
routes have been explored. Recent advances in microwave-assisted synthesis and
electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches
have been shown to be powerful tools to synthesize MOFs with modified functionality, which
cannot be attained via de novo synthesis. In this review, some current accomplishments of post-
synthetic modification (PSM) based on covalent transformations and coordinative interactions as
well as post-synthetic exchange (PSE) in robust MOFs are provided.

Keywords: metal–organic frameworks, solvothermal synthesis, microwave-assisted synthesis,
electrochemical synthesis, post-synthetic modification, post-synthetic exchange

1. Introduction

Metal–organic frameworks (MOFs), also known as porous
coordination polymers (PCPs) or porous coordination net-
works (PCNs), are a rather new class of porous crystalline
materials consisting of metal ions or clusters and organic
linkers [1–3]. Due to their tunable structure, porosity and
functionality, MOFs have attracted considerable attention
during the past two decades for applications in many areas,
including gas storage [4–8], gas separation [9, 10], catalysis
[11–18], sensing [19–22], light harvesting [23], and optical
luminescence [24, 25].

In the last few years, considerable efforts have been
made to synthesize MOFs. By judicious choice of inorganic
joints and organic struts, MOFs with various structures and

functionalities have been successfully synthesized [26–28].
So far, MOFs have been generally synthesized from isolated
metal ions and organic linkers under hydrothermal or sol-
vothermal conditions via conventional electrical heating on
small scales. Recently, the development of the precursor
approach and kinetically tuned dimensional augmentation
strategy [29] provides more possibilities to obtain novel
MOFs with new structures and interesting properties. In order
to accelerate the crystallization process and generate uniform
crystals with reduced size, many alternative synthesis routes
have been investigated, such as microwave-assisted synthesis
[30–33], electrochemical synthesis [34–36], sonochemical
synthesis [37, 38], mechanochemical synthesis [39, 40] and
spray-drying synthesis [41–44]. These methods provide pos-
sibilities to synthesize MOFs in a shortened time and with
higher quality, which is favorable for industrial applications
of MOFs.

Functionality plays a significant role in MOF chemistry
since the access to a wide range of potential applications of
MOFs depends heavily on the possibility to integrate various
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chemical functionality into MOFs. However, introducing
functionality into MOFs via de novo synthesis is not feasible
in some cases due to a series of challenges such as limited
linker solubility, thermal stability, chemical stability, func-
tional group compatibility, and undesired interference
between metal ions and linker functional moieties during
MOF assembly. To address these issues, post-synthetic
approaches [46–50] have been investigated to functionalize
preformed MOFs, including post-synthetic modification
(PSM), post-synthetic deprotection (PSD), and post-synthetic
exchange (PSE). The achievements in post-synthetic
approaches add an additional dimension to the synthetic
variability and increase the scope of chemical functionality
of MOFs.

This review highlights recent development in the synth-
esis of MOFs for a wide variety of applications. To begin, we
will discuss several synthesis routes towards MOFs, including
conventional solvothermal synthesis, microwave-assisted
synthesis, and electrochemical synthesis. The precursor
approach and kinetically tuned dimensional augmentation
strategy will be presented in this part. However, other
synthesis methods such as mechanochemical synthesis,
sonochemical synthesis, and spray-drying synthesis are
beyond the scope of this review. Then we will talk about post-
synthetic approaches as useful tools to modify the function-
ality of preassembled MOFs. In this section, some current
work on PSM based on covalent transformations and coor-
dinative interactions as well as PSE implemented in robust
MOFs will be presented. Finally, a short summary and
comments on future directions will be provided.

2. Synthesis routes

2.1. Conventional solvothermal synthesis

In general, MOFs have been synthesized under solvothermal
conditions via conventional electrical heating. The self-
assembling process of MOFs usually starts from isolated
metal ions and organic linkers. In 1999, two representative
MOFs, HKUST-1 [45] and MOF-5 [52] were reported,
symbolizing a benchmark in MOF chemistry. In HKUST-1,
Cu paddlewheel secondary building units (SBUs) are coor-
dinated via 1,3,5-benzenetricarboxylate (BTC) to form three-
dimensional porous cubic networks (figure 1). On the other
hand, MOF-5, with the chemical formula of Zn4O
(BDC)3·(DMF)8(C6H5Cl) where BDC stands for terephthalic
acid and DMF for dimethylformamide, consists of Zn4O
clusters connected to ditopic linear BDC linkers (figure 2).
With a similar synthetic method, many representative MOFs
exhibiting interesting features have been obtained, such as
MIL-53 [53–57], MIL-100 [58–65], MIL-101 [58, 59, 61, 66,
–70], MOF-74 [71–74], UiO-66 [75–77] and PCN series
[78–85].

An alternative route to synthesize MOFs is the use of
prebuilt inorganic building blocks. The structures and func-
tions of these preformed polynuclear coordination complexes
are similar to or the same with the inorganic bricks of the

MOF. For example, MIL-88 and MIL-89 were synthesized by
replacement of the monocarboxylate (acetate) ligand of a
trinuclear oxo-bridged iron(III) acetate by dicarboxylate
moieties (fumarate, 2,6-naphthalate, and trans,trans-muco-
nate) [87, 88]. Also, the same group reported the synthesis
of porous zirconium dicarboxylates with the UiO-66

Figure 1. The structure of HKUST-1 viewed down the [100]
direction, showing nanochannels with fourfold symmetry. Copper
atoms, carbon atoms and oxygen atoms are shown in blue, grey and
red. Reprinted with permission from Chui et al [45]. Copyright 1999
American Association for the Advancement of Science.

Figure 2. The structure of MOF-5 shown as Zn4O tetrahedra (blue
polyhedra) joined by benzene dicarboxylate linkers (O: red and C:
black) to give an extended 3D cubic framework. Reprinted with
permission from Kaye et al [51]. Copyright 2007 American
Chemical Society.
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architecture by using zirconium methacrylate oxocluster
[Zr6O4(OH)4(OMc)12] (OMc=CH2=CH(CH3)COO) as
the precursor (figure3) [86]. Similarly, this precursor
approach has been applied in the synthesis of MOF-5. Start-
ing from [M4(μ4-O)(OAc)6], MOF-5(Zn) and MOF-5(Be)
were obtained. In addition, cobalt oxopivalate containing two
[Co4O]

6+ building units was used to generate MOF-5(Co)
[89]. The introduction of metals other than zinc added new
features to IRMOFs, such as magnetic properties in MOF-
5(Co).

Recently, our group reported the synthesis of a series of
mesoporous metalloporphyrin-based MOFs, namely PCN-
600(M) (M=Mn, Fe, Co, Ni, Cu) by using preassembled
[Fe3O(OOCCH3)6] building block (figure 4) [90]. PCN-600
exhibited a one-dimensional channel as large as 3.1 nm and
experimental pore volume of 1.80 cm3 g−1 as well as very
high chemical stability. PCN-600(Fe) has been proved as an
active peroxidase mimic to catalyze the co-oxidation reaction.
Our group also presented a kinetically tuned dimensional
augmentation synthetic route to prepare highly crystalline and
robust Fe-MOF with preformed inorganic building blocks
[Fe2M(μ3-O)(CH3COO)6] (M=Fe2+,3+, Co2+, Ni2+, Mn2+,
Zn2+) [29]. By rationalizing the process of MOF growth from
both a thermodynamic and a kinetic perspective, large single
crystals of 34 different Fe-MOFs with different ligands and
various connecting modes of the cluster were obtained
(figure 5). Among them, PCN-250(Fe2Co) exhibited high
volumetric uptake of methane and hydrogen as well as sta-
bility in water and aqueous solutions with a wide range of
pH values.

2.2. Microwave-assisted synthesis

Microwave irradiation has been used to provide energy for the
growth of MOFs. Microwave-assisted synthesis is based on
the interaction between electromagnetic waves and mobile
electric charges, such as polar solvent molecules or ions in the
solution. The advantages of this method include high effi-
ciency, phase selectivity, particle size reduction, and mor-
phology control. Due to the overwhelming amount of related

literature [32, 92–96], we will mainly focus on some recent
examples here.

Cr-MIL-101 is one of the most widely studied MOFs
because of ultrahigh surface area and pore volume as well
as high thermal and chemical stability, which makes it
attractive for various applications, such as gas separation,
energy storage, drug delivery and heterogeneous catalysis
[58, 59, 66, 69, 70]. In 2011, nano-sized Cr-MIL-101 crystals
were obtained by microwave heating at 210 °C [97]. The
study of the effect of water concentration and pH on MOF
growth revealed that the size of crystals decreases with the
increase of water concentration and pH value. In an optimized
condition, Cr-MIL-101 with the size of 50 nm was generated
easily and efficiently. Similarly, Cr-MIL-101 with size of
about 100 nm was synthesized by Zhao et al [98], which

Figure 3. Schematic view of the synthesis of zirconium dicarbox-
ylate MOF starting from Zr6 methacrylate oxoclusters. Metal
polyhedral, carbon atoms and oxygen atoms are shown in green,
grey and red, respectively. Reprinted with permission from Guillerm
et al [86]. Copyright 2010 Royal Society of Chemistry.

Figure 4. The structure of PCN-600(M) synthesized from metallo-
porphyrin (C: black, N: blue, O: red, metal: cyan) and preformed
metal cluster (C: black, O: red, metal: cyan). Reprinted with
permission from Wang et al [90]. Copyright 2014 American
Chemical Society.

Figure 5. Four different connecting modes of the [Fe2M(μ3-O)]
cluster (Fe and M: cyan, O: red). Carboxylates on ligands and
terminal acetates are represented by black and purple, respectively.
Reprinted with permission from Feng et al [29]. Copyright 2014
Nature Publishing Group.
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adsorbed benzene up to 16.5 mmol g−1 at 288 K and
56.0 mbar.

In 2012, microwave-assisted synthesis of CPM-5 was
first reported by Sabouni et al [91] (figure 6). This rapid and
facile method enabled the generation of CPM-5 with a high
surface area of 2187 m2 g−1 in about 10 min, showing high
carbon dioxide uptake. Compared to the microwave-assisted
approach, the conventional solvothermal method requires
several days for crystallization and the surface area of the
product is only 580 m2 g−1. Following this work, the same
group investigated the adsorption equilibrium and diffusion of

carbon dioxide in CPM-5 by a volumetric approach at 273 K,
298 K and 318 K and gas pressures up to 105 kPa [99].
Interestingly, this crystalline porous material showed selective
adsorption of carbon dioxide over nitrogen, which can be
applied for separation of carbon dioxide from flue gas.

In recent years, Zr-based MOFs have attracted great
attention due to exceptionally high thermal, hydrothermal and
chemical stability [101]. The ultrahigh stability of Zr-based
MOFs mainly comes from the strong coordinative interac-
tions between Zr(IV) ions of high charge density and the
oxygen atoms of organic linkers. Liang et al [100] reported

Figure 6. Scanning electron microscopy (SEM) images of (a) CPM-5M and (b) CPM-5(OV) at two different magnifications. Reprinted with
permission from Sabouni et al [91]. Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 7. SEM images of (a) MIL-140A-MW, (b) MIL-140A-CE, (c) MIL-140B-MW, (d) MIL-140B-CE and (e) MIL-140A-NH2-MW
(scale bar=3 mm). Reprinted with permission from Liang et al [100]. Copyright 2013 Royal Society of Chemistry.
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the synthesis of MIL-140 by the microwave-assisted sol-
vothermal method in 2013. They obtained products with purer
phase and higher quality in significantly (>95%) less time
than the conventional electrical heating method (figure 7).
UiO-66, a prototype of Zr-based MOFs, was synthesized by
Ren et al [102] in 2014. Using the microwave-assisted
method, highly crystalline UiO-66 octahedral shaped crystals
were obtained in a short reaction time of 5 min and showed
hydrogen storage capacity of 1.26 wt.%.

2.3. Electrochemical synthesis

The first example of electrochemical synthesis of MOFs is
HKUST-1, which was reported in 2005 by researchers at
BASF [103], aiming to exclude anions for large-scale pro-
duction of MOFs. Since then, this synthesis route has been
widely applied in MOF chemistry, including the synthesis of
Zn-based MOFs, Cu-based MOFs, and Al-based MOFs
[104]. In this part, we would like to discuss some recent
progress in electrochemical synthesis of MOF thin films,
which can be useful in sensing and electrochemical devices.

In 2013, synthesis of MIL-100(Fe) by electrochemical
deposition under high temperature and high pressure was
reported for the first time by Campagnol et al [105]. Solution
A containing 1,3,5-benzenetricarboxylic acid (H3BTC) in a
2:1 ethanol:Milli-Q water solvent mixture was heated in a
high temperature, high pressure (HT-HP) electrochemical
(EC) cell. Using Fe as the anode, MIL-100(Fe) was generated
at various temperatures (110–190 °C) and current densities
(2–20 mA cm−2) both as crystals in the solution and as a
coating on the top of pure iron substrates (figure 8). Taking
HKUST-1 as an example, they also showed that this HT-HP
cell can be used to modify the crystal morphology of MOFs.

Potential-modulated formation of biphasic thin films of
MOFs was reported in 2014 by Li et al [106]. The authors
originally proposed using triethylammonium as a probase to
form trimethylamine and facilitate the cathodic electro-
deposition of MOFs. With the presence of high concentration
of triethylammonium, no Zn deposition was observed and the

anionic framework (Et3NH)2Zn3(BDC)4 was formed. This is
mainly caused by etching of the Zn layer by triethylammo-
nium and the low effective concentration of trimethylamine to
induce the generation of MOF-5 since trimethylamine buffers
the pH. By reducing the concentration of triethylammonium,
formation of (Et3NH)2Zn3(BDC)4 at higher potential and
MOF-5 at lower potential was accomplished. In addition,
synthesis of mixed film and bilayer film was achieved by
controlling the potential (figure 9). This report clearly
demonstrated the potential of using electrochemical methods
to synthesize heterogeneous multiphasic and multilayered
MOF thin films and membranes.

Although electrochemical synthesis has been demon-
strated as an active route for generation of MOF layers, a
limitation of anodic electrodeposition, which consists of
anodic generation of the metal ions required for MOF for-
mation in a solution containing organic linkers, is that only
MOFs with the same metal as the substrate can be synthe-
sized. Campagnol et al [107] recently presented the pre-
paration of MOF films with metal oxide as the substrate by
anodic electrodeposition. With this method, Tb-BTC on Al
and Zn-BTC doped with Tb(III) on zinc were successfully
synthesized without using expensive rare earth substrates. The
luminescent Tb-containing MOF films showed efficiency in
detecting 2,4-dinitrotoluene (DNT), a by-product of 2,4,6-
trinitrotoluene (TNT).

Recently, Stassen et al [108] reported both the anodic
and cathodic electrochemical film deposition of UiO-66
with zirconium foil as the only metal source (figure 10).
First, the synthesis solution containing BDC:HNO3:H2O:AA:

Figure 8. Layer of Fe-BTC MIL-100(Fe) synthesized at 190 °C with
solution A on the Fe substrate. Reprinted with permission from
Campagnol et al [105]. Copyright 2013 Royal Society of Chemistry.

Figure 9. Schematic view of the formation of a biphasic mixed film
at (cathodic) potential, El (El<Em<Eh). Reprinted with permis-
sion from Li et al [106]. Copyright 2014 Royal Society of
Chemistry.

Figure 10. Scheme of the anodic and cathodic electrochemical
deposition mechanisms. Reprinted with permission from Stassen
et al [108]. Copyright 2015 American Chemical Society.

5

Sci. Technol. Adv. Mater. 16 (2015) 054202 Y Sun and H-C Zhou



DMF=1:2:4:5/10/50:130 was prepared and heated to
383 K. Then, film deposition was accomplished by applying a
current of 80 mA at 383 K. Superior adhesion of the MOF
layer onto the zirconium substrate was observed for anodic
deposition due to the formation of an oxide bridging layer. On
the other hand, cathodic deposition possessed the advantage
of wide substrate flexibility. This synthesis method showed
patterned deposition capability and allowed the straightfor-
ward utilization of UiO-66 in a miniaturized sorbent trap for
applications such as online analytical sampling as well as
concentration of dilute volatile organic complexes.

3. Functionality modification

Functionality plays an important role in MOF chemistry since
the access to a wide range of potential applications of MOFs
depends on the possibility of incorporating various chemical
functionality into MOFs to a great extent. However, in some
cases, introducing functionality into MOFs via direct synth-
esis approaches is not suitable due to several challenges such
as limited linker solubility, thermal stability, chemical stabi-
lity, functional group compatibility, and undesired inter-
ference between metal ions and linker functional moieties
during MOF assembly. To address these issues, post-synthetic
approaches were investigated to modify the functionality of
preassembled MOFs, such as post-synthetic modification
(PSM) [46–48], post-synthetic deprotection (PSD) [109], and
post-synthetic exchange (PSE) [49, 50]. The achievements in
post-synthetic approaches add an additional dimension to the
synthetic variability and increase the scope of chemical
functionality that can be integrated into MOFs. Through these
methods, functionality of specific interest can be introduced
into MOFs while maintaining the structural integrity, which is
difficult to achieve via direct synthesis of MOFs. In this
section, we will primarily focus on current accomplishments
in PSM and PSE.

3.1. PSM

One of the most extensively applied PSM approaches is the
modification of organic linkers via chemical reactions with
the preservation of lattice structure. So far, various kinds of
covalent transformations have been successfully investigated
by a number of researchers to modify preassembled MOFs,
such as amide coupling [110–112], imine condensation [113–
115], urea formation [111, 116], salicylaldehyde condensa-
tion [117], N-alkylation [11], click reactions [118–121],
bromination [112], and protonation [122, 123]. Many of these
transformation reactions have been implemented in amino-
functionalized MOFs. For example, Nagata et al [124]
reported a surface- selective PSM method to modify UiO-66-
NH2 with a thermoresponsive polymer poly(N-iso-
propylacrylamide) (PNIPAM). The conformational change of
PNIPAM with the temperature led to an ‘open’ state at lower
temperature and a ‘closed’ state at higher temperature
(figure 11). This smart UiO-66-PNIPAM showed promising

applications in controlled release of the guest molecules such
as resorufin, caffeine, and procainamide.

Azide-functionalized MOFs have been utilized to undergo
click reactions. In 2014, the first MOF nanoparticle-nucleic
acid conjugates were prepared by Morris et al [120]. These
conjugates were generated by a strain promoted click reaction
between DNA modified with dibenzylcyclooctyne and azide-
functionalized UiO-66-N3 to covalently functionalize the
surface of the MOF with oligonucleotides while preserving the
structure of the framework (figure 12). They exhibited higher
stability and cellular uptake in aqueous NaCl than unfunctio-
nalized MOF particles of similar size. This work presented
the synthesis of a new class of nanostructures for potential
applications in chemistry, materials science and biology.

In addition to covalent bond formation, some PSM
approaches are based on coordinative interactions. For
example, Li et al [125] reported the synthesis of a Lewis
acid@Brønsted acid MOF, named MIL-101-Cr-SO3H·Al(III).
This MOF was prepared by the reaction of AlCl3 with MIL-
101-Cr-SO3H in ethanol followed by water treatment.
Because of strong Lewis acidity, Al(III) centers were suc-
cessfully incorporated into the Brønsted acidic MIL-101-Cr-
SO3H to obtain MIL-101-Cr-SO3H·Al(III) (figure 13). The
synergy between Lewis acidic Al(III) centers and the
Brønsted acidic framework improved the catalytic activity of
MIL-101-Cr-SO3H·Al(III) in benzylation of mesitylene with
benzyl alcohol. Notably, it was revealed that the catalytic
performance of this post-synthetically modified MOF excee-
ded two benchmark zeolite catalysts (H-Beta and HMOR).
This work provided a new way to enhance the activity of
MOFs as heterogeneous catalysts.

3.2. PSE

Beyond above widely studied PSM approaches, many con-
ceptually distinct post-synthetic routes have emerged in recent
years. Post-synthetic exchange, also known as building block
replacement (BBR) [50, 126], involves the replacement of

Figure 11. (a) Schematic view of controlled release by PNIPAM-
modified MOF. (b) Preparation of PNIPAM-modified MOF.
Reprinted with permission from Nagata et al [124]. Copyright 2015
Royal Society of Chemistry.
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key structural components of the preassembled MOF. With
the development of MOF chemistry, synthesizing MOFs with
both excellent stability and desired functionality have been a
sought after goal due to the importance in practical applica-
tions. Here, we would like to take UiO-66 as an example to
present current advances in functionalization of robust MOFs.

Solvent-assisted linker exchange (SALE) is one of the
most widely used PSE approaches to tune the functionality of
UiO-66. For example, BDC linkers in UiO-66 were exchan-
ged by various flexible alkanedioic acids (AD) by Hong et al
[127] to generate a series of modified UiO-66-ADn deriva-
tives (ADn: HOOC-(CH2)n-COOH, n=4, 6, 8, and 10).
During the exchange process, one BDC linker was substituted
by two AD to form UiO-66 modified with pendant carboxylic
groups. This functionalized UiO-66 showed enhanced selec-
tivity for CO2 uptake over CH4, which is promising for
separation of CO2 from landfill gas. In 2014, Fei et al [109]
reported the modification of UiO-66 with catechol function-
ality by SALE in a DMF/H2O solution of CATBDC for 2
days at 85 °C. After metalation, Cr-metalated MOFs were
synthesized and showed high activity in catalytic oxidation of
alcohols to ketones (figure 14). The same group also obtained
thiocatechol-functionalized UiO-66 [128]. After metalation
reaction with Pd(OAc)2 at 55 °C for 4 days, UiO-66-PdTCAT
was synthesized (figure 15), which is efficient in regioselec-
tive functionalization of sp2 C−H bond. Recently, Nickerl
et al [129] successfully incorporated dihydro-1,2,4,5-tetra-
zine-3,6-dicarboxylate into UiO-66 by linker exchange. The
obtained tetrazine functionalized UiO-66 was studied as an
optical sensor to detect oxidative agents such as nitrous gases.
Interestingly, reversible oxidation and reduction of the tetra-
zine unit in UiO-66 led to a significant color change of
the MOF.

Transmetalation at inorganic nodes represents another
kind of PSE route. In 2012, Kim et al [130] reported the
synthesis of the first Ti(IV) analogue of UiO-66(Zr) by
transmetalation. UiO-66(Zr/Ti) was obtained by exposing
UiO-66(Zr) to DMF solutions of Ti(IV) salts for 5 days at
85 °C, which was confirmed by positive-ion ATOFMS
spectra for the presence of Ti(IV) ion. Followed by this work,
Hon et al [131] demonstrated that transmetalation of Zr by Ti

Figure 12. (a) Synthesis of UiO-66-N3 nanoparticles. (b) DNA
functionalization of UiO-66-N3 nanoparticles. (c) Strain promoted
click reaction between the MOF and DNA. Reprinted with
permission from Morris et al [120]. Copyright 2014 American
Chemical Society.

Figure 13. (a) Schematic view of the synthesis of Lewis
acid@Brønsted acid MOF. (b) Schematic view of the synthesis
process for MIL-101-Cr-SO3H·Al(III). Reprinted with permission
from Li et al [125]. Copyright 2015 American Chemical Society.

Figure 14. Schematic view of catechol-functionalized UiO-66 after
metalation for catalytic oxidation of alcohols to ketones. Reprinted
with permission from Fei et al [109]. Copyright 2014 American
Chemical Society.
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in UiO-66 could lead to almost doubled CO2 uptake due to
decreased pore size and increased adsorption enthalpy. More
recently, Lee et al [132] reported that UiO-66(Zr/Ti) could
undergo photocatalytic CO2 reduction to form HCOOH upon
visible light irradiation in the presence of 1-benzyl-1,4-
dihydronicotinamide (BNAH) and triethanolamine (TEOA).
Notably, mixed-ligand UiO-66(Zr/Ti) exhibited better cata-
lytic performance due to formation of new energy levels in
the band structure of the framework.

Moreover, solvent-assisted linker incorporation (SALI)
has been applied in UiO-66, which is facilitated by the
missing-linker defects in UiO-66 [133, 134]. Recently,
DeCoste et al [135] demonstrated the modification of UiO-66
with oxalic acid for broad-spectrum removal of toxic che-
micals, including ammonia and cyanogen chloride. During
the modification process, the vacant sites of UiO-66 were
incorporated by oxalic acid, where one carboxylate group
coordinates to the Zr6 cluster and the other is free in the pore
(figure 16).

4. Conclusions

In previous sections we talked about recent advances in the
synthesis of MOFs. With the goal of creating new compounds
and structures with intriguing properties, this field has been
developed and is expanding rapidly. In general, MOFs have
been synthesized from isolated metal ions and organic linkers
under hydrothermal or solvothermal conditions via conven-
tional electrical heating. The development of precursor
approach and kinetically tuned dimensional augmentation
strategy diversifies this field and facilitates the discovery of
MOFs with new structures and interesting properties. So far,
many alternative routes have been established, including
microwave-assisted synthesis, electrochemical synthesis,
sonochemical synthesis, mechanochemical synthesis and
spray-drying synthesis. These approaches have demonstrated
to be suitable for some materials, leading to compounds, often
under milder reaction conditions and in a short time, with
pure phase, reduced particle size, and controlled morphology.
However, the reproducibility of these procedures needs to be
improved. In addition, only a few unknown compounds have
been synthesized by these unconventional routes. In order to
obtain novel MOFs, various factors should be considered
during the synthesis, such as concentration of starting mate-
rials, solvent, pH, reaction temperature, and reaction time.
The emerging high-throughput methods provide ideal tools to
study MOFs systematically by combining the ideas of par-
allelization, miniaturization, and automation within the
workflow. We expect that the effective combination of high-
throughput approaches and various synthesis routes will
contribute to optimization of the synthetic procedure and
accelerate the discovery of novel MOFs.

On the other hand, post-synthetic approaches have been
shown to be useful tools to synthesize MOFs with tuned
functionality in the past few years, including PSM, PSD, and
PSE. These methods provide possibilities to introduce func-
tionality into MOFs while preserving their structural integrity,
which cannot be achieved via de novo synthesis due to limited
linker solubility, thermal stability, chemical stability, func-
tional group compatibility, and undesired interference
between metal ions and linker functional moieties during
MOF assembly. The accomplishments in post-synthetic
approaches add an additional dimension to the synthetic
variability and increase the scope of chemical functionality
that can be integrated into MOFs. However, there are some
disadvantages of post-synthetic approaches. For example, it is
challenging to spatially resolve the distribution of functional
groups post-synthetically incorporated into the MOF. As a
result, most of the MOF structures are hypothesized. In some
cases, the degree to post-synthetically integrate functional
groups into MOFs is very limited. In addition, further studies
are required to investigate the chemical principles of these
specific phenomena, including SALE, SALI, and transmeta-
lation, in order to better guide the synthesis of MOFs with
desired functionality. With the development of various
synthesis routes and deeper understanding of post-synthetic
approaches, we expect that synthesis of robust MOFs with

Figure 15. Schematic view of the synthesis of UiO-66-TCAT and
UiO-66-PdTCAT. Reprinted with permission from Fei et al [128].
Copyright 2015 American Chemical Society.

Figure 16. Scheme of the synthesis of UiO-66, UiO-66-vac, and
UiO-66-ox. RT stands for room temperature. Reprinted with
permission from DeCoste et al [135]. Copyright 2015 Royal Society
of Chemistry.
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new structures and interesting properties for various practical
applications will be achieved in the future.
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