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Transcriptome analysis of cortical tissue reveals shared sets
of downregulated genes in autism and schizophrenia
SE Ellis1, R Panitch1, AB West2 and DE Arking1

Autism (AUT), schizophrenia (SCZ) and bipolar disorder (BPD) are three highly heritable neuropsychiatric conditions. Clinical
similarities and genetic overlap between the three disorders have been reported; however, the causes and the downstream effects
of this overlap remain elusive. By analyzing transcriptomic RNA-sequencing data generated from post-mortem cortical brain tissues
from AUT, SCZ, BPD and control subjects, we have begun to characterize the extent of gene expression overlap between these
disorders. We report that the AUT and SCZ transcriptomes are significantly correlated (Po0.001), whereas the other two
cross-disorder comparisons (AUT–BPD and SCZ–BPD) are not. Among AUT and SCZ, we find that the genes differentially expressed
across disorders are involved in neurotransmission and synapse regulation. Despite the lack of global transcriptomic overlap across
all three disorders, we highlight two genes, IQSEC3 and COPS7A, which are significantly downregulated compared with controls
across all three disorders, suggesting either shared etiology or compensatory changes across these neuropsychiatric conditions.
Finally, we tested for enrichment of genes differentially expressed across disorders in genetic association signals in AUT, SCZ or
BPD, reporting lack of signal in any of the previously published genome-wide association study (GWAS). Together, these studies
highlight the importance of examining gene expression from the primary tissue involved in neuropsychiatric conditions—the
cortical brain. We identify a shared role for altered neurotransmission and synapse regulation in AUT and SCZ, in addition to two
genes that may more generally contribute to neurodevelopmental and neuropsychiatric conditions.
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INTRODUCTION
The aggregation of psychiatric conditions and symptoms in families
has long been recognized,1–5 with more recent genetic analyses
suggesting an overlap between a number of disorders.1,6–9 Recent
studies considering single-nucleotide polymorphism-based
genetic correlation demonstrated a marked correlation between
schizophrenia (SCZ) and bipolar disorder (BPD) and to a lesser
extent between SCZ and autism spectrum disorder,1 suggesting
shared genetic etiologies. However, because of limited brain-
tissue availability, there have been fewer studies at the level of
gene expression. We and others hypothesize that gene expression
studies may begin to unravel how genetic correlations may
functionally overlap in neuropsychiatric disorders.
In a recent publication, Zhao et al.10 suggested that SCZ and

BPD show concordant differential gene expression (R= 0.28) and
that the genes contributing to this overlap are enriched for
genetic association signal in both SCZ and BPD while highlighting
several biological pathways.10 Two separate recent studies of gene
expression in autism (AUT) have resolved gene expression
changes related to altered synaptic and neuronal signaling as
well as immunological differences in AUT-affected brains.11,12 In
particular, a marked increase was observed in gene expression
related to alternative activation of the innate immune system, or
the M2 response in AUT-affected brains, relative to controls.12

Here we set out to analyze RNA-sequencing (RNA-Seq) data in
combination from AUT, SCZ and BPD to identify cross-disorder
transcriptomic relationships. We highlight the highly correlated
nature of the SCZ and AUT transcriptomes, which together

demonstrate a downregulation of genes involved in neurotrans-
mission and synapse regulation across the two disorders.

MATERIALS AND METHODS
AUT sample information
RNA-Seq for 104 cortical brain-tissue samples across three brain regions
(BA10, BA19 and BA44/45), comprising 57 samples from 40 control subjects
and 47 samples from 32 AUT subjects, was previously carried out.12 We
note that, as in the initial publication of these data,12 AUT samples
harboring copy number variants recurrent in AUT spectrum disorder
have not been included in these analyses. Details related to samples,
sequencing, quality control and informatics can be found in Gupta et al.12

and are summarized in Supplementary Table 1.

SCZ and BPD sample information
RNA-Seq data were obtained from the Stanley Medical Research Institute
(SMRI, http://www.stanleyresearch.org/) consisting of 82 (31 SCZ, 25 BPD
and 26 controls) anterior cingulate cortex (BA24) samples. Detailed
sequencing information can be found in Zhao et al.10 Sample information
for those included in this analysis can be found in Supplementary Table 2.

RNA-Seq, alignment and quality control
Sequencing, alignment, quality control and gene expression estimation for
the AUT samples were carried out as previously described.12 The reads
from both the AUT and SMRI sequencing were subjected to a common
analysis pipeline12 in which quality control of raw sequences included
removing both polyA stretches and adaptor sequence contamination
using a Python script, ‘cutadapt’ (v1.2.1).13 Sequences were then aligned to
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the Genome Reference Consortium Human build 37 (GRCh37/hg19)
assembly using TopHat2 (refs 14,15), allowing for only uniquely aligned
sequences with fewer than three mismatches to align.

Gene expression estimation and normalization
Gene count estimates were obtained for 62 069 Ensembl gene annotations
(GRCh37/hg19) using HTSeq (http://www-huber.embl.de/users/anders/
HTSeq/) under an intersection-strict model. Of these, 8856 genes with at
least 10 reads across 75% of the SMRI samples were then normalized for
gene length and GC content using conditional quantile normalization.16 In
the AUT samples, the 13 262 genes previously included for analysis12 were
normalized for gene length and GC content using conditional quantile
normalization. Outliers were then removed from the conditional quantile
normalization-normalized gene expression estimates on a per-gene basis
as described previously.17 In either data set, any sample whose gene
expression value was more than 2.7 s.d. from the mean of the gene
expression was excluded from analysis at that particular gene before linear
modeling.

Differential gene expression analysis
Due to the unique experimental design in which multiple brain regions
were sequenced from the same individual, AUT gene expression estimates
were fit using a linear mixed effects model, with subject ID included as a
random intercept term, and case–control status as the primary variable of
interest. Age, sex, site of sample collection, brain region and 12 surrogate
variables (SVs)18 were included as fixed effects in the model to account for
known and unknown covariates. SVs function to remove batch effects and
sources of noise in gene expression data by adjusting for unknown or
unmodeled sources of variation and are therefore included for analysis.18

SCZ and BPD RNA-Seq data were analyzed using standard linear
regression, with case–control status as the primary variable of interest. The
known covariates to which we had access and that were included in the
analysis by Zhao et al.10 (age, sex, cumulative antipsychotic use, brain pH
and post-mortem interval) were incorporated into the model here along
with SVs to account for unknown sources of variation.
Because the SCZ and BPD cases share controls, two separate differential

gene expression analyses were performed. For the comparison with AUT,
all cases (SCZ or BPD) and all controls from the SMRI data set were
included in the analysis. Alternatively, when SCZ and BPD were to be
compared directly, we employed a strategy similar to how these data were
handled previously, in which controls were divided randomly into half.10

One set of controls was then compared with the SCZ cases, whereas the
other set of controls was compared with the BPD cases. This procedure
was carried out 100 times for each cross-disorder comparison, and the Z-
scores (effect size/standard error) were recorded for each gene for each
run. The median Z-score for each gene across these 100 runs was then
used for analyses comparing SCZ with BPD.

Null differential gene expression analysis
To obtain a null set of differential gene expression values, each of the
analyses in the previous section was carried out modeling the data exactly
as described above, save for the permutation of case–control status. In AUT
data sets, the case–control status was randomized between samples from
the same collection sites, as described previously.12 To minimize the
possibility of reporting false-positive findings, 1000 null permutations were
utilized to determine significance.

Calculating genes differentially expressed across disorders
To determine which genes were differentially expressed across disorders,
Z-scores were multiplied across each of the three disorder comparisons
(ZSCZ* ZBPD, Z SCZ* ZAUT, ZBPD* ZAUT). Genes with large cross-disorder
Z-scores were considered to be differentially expressed across disorders,
with significance determined by permutation. For each cross-disorder
comparison, the most extreme cross-disorder Z-score for each of these
1000 null permutations was recorded. Of these values, the cross-disorder
cutoff for significance (defined at Po0.05) to determine which genes were
differentially expressed across disorders was determined by taking the
value for which only 5% of the null values were more extreme.
To determine differentially and concordantly expressed genes (DCEGs)

common to all three disorders, Z-scores were multiplied for the 2895 genes
with Z-scores in the same direction across all three disorders (ZAUT* ZSCZ*
ZBPD). As SCZ and BPD are directly compared in the analysis, split-control-

generated Z-scores for SCZ and BPD were utilized to account for the
shared control samples. To assess significance, the same analysis was
carried out with 1000 null permutations as described above.

Calculating the correlation of DCEGs across phenotypes
Pearson’s correlation coefficient (R) was calculated for the Z-scores from
each disorder comparison (SCZ–AUT, SCZ–BPD and BPD–AUT) to assess
the similarity of genes differentially expressed across disorders. To
determine the significance of this correlation, Pearson’s correlation
coefficient was calculated after testing each of the 1000 null permutations.

Pathway analysis of DCEGs
Pathway enrichment analysis was carried out on genes differentially
expressed across disorders. Gene Ontology (GO) gene sets were down-
loaded from MsigDB (1466 gene sets, http://www.broadinstitute.org/gsea/
msigdb/collections.jsp#C5). For each gene and across all three disease
comparisons, Z-scores were summed across disorders using the Stouffer’s
method19 and pathways were tested for enrichment (details can be found
in Supplementary Methods). Significance was determined empirically by
permutation for each cross-disorder comparison (1.51 × 10− 4 for AUT–SCZ,
1.72× 10− 4 for AUT–BPD and 4.25× 10− 6 for SCZ–BPD).
As a complementary approach, we utilized the following two open

source programs for pathway analysis: WebGestalt (v2, http://bioinfo.
vanderbilt.edu/webgestalt/)20,21 to run a GO analysis22,23 and Database for
Annotation, Visualization and Integrated Discovery (DAVID)24 (v6.7, https://
david.ncifcrf.gov/) for functional pathway analysis. As the input for these
approaches requires gene lists, we input genes that were differentially
expressed (absolute value (Z-score) 42.2) in both disorders of the
comparison: (1) SCZ–AUT (191 genes), (2) BPD–AUT (38 genes) and (3)
SCZ–BPD (16 genes).
GO analysis used a hypergeometric test for enrichment utilizing the

Benjamini–Hochberg method25 for multiple test corrections. GO categories
whose adjusted P-valueso0.001 were considered to be statistically
significantly enriched. For DAVID, gene lists were uploaded and a
‘Functional Annotation Chart’ was generated using default settings.
Functional categories whose Bonferroni-adjusted P-valueo0.05 were
reported as significant.
To ensure that results from these analyses were not biased by the

different number of gene input into the pathway analysis, we also carried
out the GO and DAVID analyses described above with a fixed number of
191 genes from each cross-disorder comparison.

Enrichment for genetic signal analysis
Genome-wide association study (GWAS) results were downloaded from the
Psychiatric Genetic Consortium (http://www.med.unc.edu/pgc/) for AUT,
BPD and SCZ.
Gene-based P-values were computed on the summary data for each

disorder using FAST (v1.8)26 for the 8856 genes included in the cross-
disorder differential gene expression analysis (DGEA). Details for settings
used can be found in the Supplementary Methods. To test for enrichment
of genetic signal, we first took suggestive genes (gene-based Po0.05) for
each individual GWAS (SCZ, BPD and AUT) and compared these to P-values
from the DGEA. Data were plotted in a QQ-plot among 100 null
permutations to look for enrichment relative to the null data. To ensure
that this analysis was not a reflection of the gene-based P-value restriction
imposed on the data, a more permissive (Po0.1) and more restrictive
(Po0.01) GWAS cutoff were used and the same enrichment analysis
carried out.

Code availability
Codes used throughout for data processing, quality control and analysis
are available from corresponding author.

RESULTS
Sample summary
Of the 105 samples in the SMRI array collection, 82 cortical brain
samples (BA24) were sequenced and included for analysis (31 SCZ,
25 BPD and 26 controls). To accompany these data, 104 AUT
samples from three cortical brain regions (BA10, BA19 and
BA44/45) were included for analysis, composed of 57 control
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and 47 AUT samples. A summary of sample statistics is provided in
Table 1 with detailed sample information in Supplementary Tables
1 and 2 for AUT and SMRI data, respectively. Further sample
information can be found in the original publications.10,12

Genes differentially expressed across SCZ, BPD and AUT
Nine genes were differentially expressed (Po0.05) in both SCZ
and AUT. None were significant when comparing BPD to SCZ, and
one gene reached significance in the AUT–BPD comparison
(Table 2 and Supplementary Tables 3 and 4). We note that the
single gene differentially expressed between AUT–BPD, IQSEC3, is
significant in both AUT–SCZ and AUT–BPD comparisons. The
relatively large Z-scores in SCZ (Z=− 3.59) and BPD (Z=− 3.46)
suggest that this result is not simply driven by the altered gene
expression in AUT alone.
Differentially expressed genes (DEGs) across all three disorders

were identified in a joint analysis of genes whose direction of
effect was consistent across all three disorders (ZAUT*ZSCZ*ZBPD).
Two genes, IQSEC3 (Z=− 35.45, P= 0.001) and COPS7A (Z=− 22.52,
P= 0.017), are transcriptome-wide significant (Po0.05, absolute
value (ZAUT*ZSCZ*ZBPD)419.56), indicating a common role for
altered gene expression of these genes across all three neuro-
psychiatric disorders (Table 2 and Supplementary Figure 1). We

note that these two genes, IQSEC3 and COPS7A, are syntenic
(12p13.33 and 12p13.31, respectively) with their expression being
markedly correlated in both the SMRI and AUT data sets (R= 0.41
and R= 0.70, respectively; Supplementary Figure 2).

Correlation in gene expression across SCZ, BPD and AUT
The transcriptomic relationship across disorders and correlation of
test statistics (Z-scores) was investigated. SCZ–AUT demonstrated
the most significant correlation (R= 0.298, Po0.001). SCZ–BPD
also demonstrated a positive correlation (R= 0.11). This level of
correlation was neither significant (P= 0.41) nor as high as
previously reported (R= 0.28).10 Similarly, the correlation between
AUT and BPD was minimal and did not differ significantly from the
null (R= 0.06, P= 0.25; Figure 1, Supplementary Figure 3).
To explore the discrepancy between the correlation reported

here for SCZ and BPD and that previously reported, we carried out
the same analysis without the inclusion of SVs in the model. The
failure to include unknown covariates in the model led to a
marked increase in the correlation between SCZ and BPD
(R= 0.50), suggesting that the previously reported correlation
between these disorders may have been influenced by hidden
structure in the data (Supplementary Figure 4).

Pathway enrichment analyses of genes differentially expressed
across disorders
Combined pathway analysis utilizing lists of genes differentially
expressed across disorders (absolute value (Z-score)42.2 in both
disorders) was carried out using both GO enrichment and DAVID
pathway analysis. For this analysis, 191 DEGs for AUT–SCZ, 38 for
AUT–BPD and 16 for SCZ–BPD met these criteria. DAVID pathway
analysis highlighted the role of neuron projection development
(PBonferroni = 0.012) in those genes differentially expressed in both
AUT and SCZ (Table 3). Similarly, when these genes were
characterized by GO, there was a clear abundance of altered
gene expression in neuronal and synapse-related GOs (Figure 2).
Further, when these DEGAUT–SCZ genes were split up into those
either concordantly up- or downregulated in both disorders, 106
genes differentially downregulated in both disorders were driving
the GO enrichments, with no contribution from the 69 genes
upregulated in both disorders (Supplementary Figure 5). As for
AUT–BPD comparisons, there were no enrichments detected for
any gene ontologies, and the only emergent DAVID pathway
was genes related to phosphoproteins (PBonferroni = 1.2 × 10− 4;

Table 1. Sample summary

N Unique individuals Mean age (years) Sex

F M

AUT
CTL 57 40 20 12 33
AUT 47 32 24 9 18
Total 104 72 22 21 51

SMRI
CTL 26 26 44 4 22
BPD 25 25 47 12 13
SCZ 31 31 42 7 24
Total 82 82 44 23 59

Abbreviations: AUT, autism; BPD, bipolar disorder; CTL, control; F, female;
M, male; SCZ, schizophrenia; SMRI, Stanley Medical Research Institute.

Table 2. Genes significantly differentially expressed across disorders

Number of Sig. genes Cross-disorder Sig. cutoff Ensembl gene IDs Gene name Chr Zcross-disorder ZAUT ZSCZ ZBPD

AUT–SCZ 9 12.42 ENSG00000106261 ZKSCAN1 7 15.24 4.08 3.74 0.68
ENSG00000172005 MAL 2 14.66 5.24 2.80 1.20
ENSG00000120645 IQSEC3 12 14.53 − 4.04 − 3.59 − 3.46
ENSG00000046653 GPM6B X 14.16 3.62 3.91 0.26
ENSG00000167191 GPRC5B 16 13.85 3.72 3.72 0.78
ENSG00000129521 EGLN3 14 13.62 4.76 2.86 0.13
ENSG00000164068 RNF123 3 12.81 − 3.46 − 3.71 − 0.99
ENSG00000134780 DAGLA 11 12.54 − 4.22 − 2.98 − 0.57
ENSG00000183597 TANGO2 22 12.53 − 3.83 − 3.27 0.25

AUT–BPD 1 12.29 ENSG00000120645 IQSEC3 12 14.00 − 4.04 − 3.59 − 3.46

SCZ–BPD 0 21.71 − − − − − − −

AUT–SCZ–BPD 2 19.56 ENSG00000120645 IQSEC3 12 − 35.45 − 4.04 − 2.95 − 2.97
ENSG00000111652 COPS7A 12 − 22.52 − 3.31 − 3.14 − 2.17

Abbreviations: AUT, autism; BPD, bipolar disorder; chr, chromosome; SCZ, schizophrenia; Sig., significant; Z, Z-score.
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Table 3). Similarly, no GO or DAVD pathways were found to be
significant for DEGSCZ–BPD. Substantially, similar results were
observed when the number of genes from each cross-disorder
comparison input into the pathway analysis was fixed rather than
imposing a Z-score cutoff (Supplementary Table 5 and
Supplementary Figures 6). Finally, we found that the number of
cross-disorder discordant DEGs (upregulated in one disorder but
downregulated in the other) differs across the three comparisons,
such that there are fewer discordant cross-disorder DEGs (16/191,
8.4%) in the comparison between SCZ and AUT than in the
comparison between AUT and BPD (76/191, 39.8%) or between
SCZ and BPD (38/191, 19.9%), further supporting the transcrip-
tomic similarities between AUT and SCZ.
Traditional pathway analysis requires a significance cutoff for

the gene input for analysis. To avoid a potential bias by choosing
an arbitrary cutoff, we used a Z-score-based approach (see
Methods) and identified gene enrichment of DCEGs common to
all three disorder comparisons using the GO data from MSigDB.
Three GO pathways—each of which indicated some enrichment
for altered gene expression in transporter genes—were enriched
for DEGs in both AUT and SCZ. No pathways were study-wide
significant in the other two disorder comparisons (Supplementary
Table 6).

Cross-disorder DEG enrichment in association signals
To test whether genes differentially expressed across disorders
were enriched for genetic associations, we compared cross-
disorder DGEA results to gene-level GWAS results. We first directly
compared gene-based GWAS P-values (Po0.05) from each
individual GWAS (AUT, SCZ and BPD) to P-values from the cross-
disorder DGEA (AUT–SCZ, AUT–BPD and SCZ–BPD). No compar-
ison was identified that would suggest any enrichment in signal

overlap with respect to the null (Supplementary Figure 8). Three
additional P-value cutoffs (Po0.1, Po0.01 and Po1) demon-
strated that neither these null findings nor the inflation seen are a
function of the gene-based P-value cutoff imposed on the data
(Supplementary Figures 9–11, Supplementary Table 7). Likewise,
there were no enrichments for cross-disorder DEGs seen in these
analyses relative to the null. Finally, loss of function variants have
recently been reported in a number of AUT studies;27–32 however,
Gupta et al. demonstrated that these gene expression data are
neither enriched for the findings from the exome studies nor for
SVs.12 Accordingly, these lists of variants have not been included
in these analyses.

DISCUSSION
To our knowledge, this is the first study to combine next-
generation sequencing gene expression analyses across AUT, SCZ
and BDP to assess the transcriptomic relationship and how gene
expression relates to GWAS findings. We report that, at the
transcriptome level, AUT and SCZ demonstrate a highly over-
lapping gene expression profile. The cross-disorder DEGs between
AUT and SCZ highlight a shared relationship in synapse and
projection formation, suggesting a role for neuronal development
underlying the correlation. Further, despite the lack of global
significant differential transcriptomic correlation between either
BPD and SCZ or AUT and BPD, we highlight two genes, IQSEC3 and
COPS7A, for their consistent downregulation across all three
disorders, and support further investigation into these specific
genes’ expression and function to better understand their role in
neuropsychiatric disorders. Finally, we report that the genes
differentially expressed across disorders were not enriched in
genetic association signals for AUT, SCZ or BPD.

Correlations in differential gene expression across disorders
highlight similarities between AUT and SCZ
After modeling the data for each individual-disorder comparison
relative to their controls, the cross-disorder comparison demon-
strated that SCZ and AUT share a similarly altered transcriptome
(Po0.001), whereas AUT–BPD and SCZ–BPD (P= 0.25 and P= 0.41,
respectively) do not show a significant correlation (Figure 1;
Supplementary Figure 3). We note that the lack of significant
correlation between BDP–SCZ in our analysis is in conflict with a
previous report,10 and is likely because of our inclusion of SVs to
account for unknown sources of variation, suggesting that the
previously reported analysis of these data is overstated (see
Supplementary Discussion). Further, although these data do not
directly support transcriptomic overlap between SCZ and BPD, this

Figure 1. Correlation of cross-disorder differential gene expression. Z-scores for each cross-disorder comparison ((a) AUT–SCZ (autism–
schizophrenia), (b) AUT–BPD (AUT–bipolar disorder) and (c) SCZ–BPD) are plotted. The best fit line is in red. Pearson’s Correlation Coefficient
(R) is included on the graph, quantifying the level of correlation between the transcriptomes of each cross-disorder comparison.

Table 3. DAVID pathway analysis for cross-disorder DEGs

Total Up Down Discordant DAVID pathways

AUT–SCZ 191 69 106 0 Neuron projection
development (P= 0.012)

AUT–BPD 38 8 19 11 Phosphoprotein
(P= 1.2 × 10−4)

SCZ–BPD 16 2 13 1 --

Abbreviations: AUT, autism; BPD, bipolar disorder; DEG, differentially
expressed gene; SCZ, schizophrenia.
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is likely reflective of the shared control design of the experiment.
This experimental design results in a smaller effective sample size
and a study underpowered to assess overlap between these two
disorders. Given the genetic relationship between these disorders
(where SCZ–BPD4AUT–SCZ4AUT–BPD),1 future work utilizing
a larger sample for analysis may likely demonstrate a shared
transcriptomic profile between SCZ and BPD; however, these data
do not.
Analyzing the pathways in which DEGs in both SCZ and AUT

were involved, we found that the genes differentially expressed in
AUT and SCZ were enriched for neuron projection development
(P= 0.012, Table 3). In addition, there was a clear enrichment for
genes involved in synaptic and neuronal processes. The other two
nonsignificant cross-disorder comparisons (AUT–BPD and SCZ–
BPD) failed to demonstrate any enrichment for biological process
ontology, even when controlling for the number of cross-disorder
DEGs, further supporting the conclusion that differential tran-
scriptomic correlation is biologically relevant between SCZ and
AUT but is not observed in the other two cross-disorder
comparisons (Supplementary Figure 6). When the DEGs across
AUT and SCZ were broken down into those concordantly
upregulated versus those concordantly downregulated, the
enrichment in GO was only present in those genes concordantly
downregulated (Supplementary Figure 5), suggesting that these

synaptic and neuronal alterations were a result of decreased brain
expression in both disorders.
Finally, in assessing which specific genes were differentially

expressed across disorders, we identified IQSEC3 and COPS7A as
differentially expressed in all three disorders (Table 2). IQSEC3
(KIAA1110) is a protein-coding gene that has been shown to be
specifically expressed in the human adult brain with particularly
high levels in the human cortex.33 IQSEC3 has been suggested to
act as a guanine exchange factor for ARF1 in endocytosis,33 and
ARF1 critically regulates actin dynamics in neurons and synaptic
strength and plasticity, potentially aligning with pathways
previously implicated in AUT, SCZ and BPD. COPS7A is expressed
broadly across tissues,34 and encodes part of the COP9 signalo-
some, a multisubunit protease with a role in regulating the
ubiquitin–proteasome pathway.35

Differences in genetic variation not explained by overlapping
gene expression profiles
We report no enrichment for significant cross-disorder DEGs
among GWAS signal in any of the comparisons (Supplementary
Figure 8) relative to the null. These findings suggest either that (1)
alterations at the genetic level do not largely manifest themselves
in altered gene expression concordantly across these disorders or

Figure 2. Gene Ontology (GO) analysis of cross-disorder DEGAUT–SCZ. Genes differentially expressed in both autism (AUT) and schizophrenia
(SCZ; absolute (Z-score)42.2) were analyzed for ontological enrichment of biological processes, developmental processes and cellular
component. Onotological categories with at least five genes and an adjusted P-valueo0.001 are highlighted in red. This tree highlights the
role of nerve impulse transmission, synaptic transmission and neurotransmitter transport in those genes differentially expressed in both AUT
and SCZ.
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(2) that primary genetic defects do not result in altered gene
expression across disorders at the time points measured but
could, perhaps, alter gene expression at other time points, such as
during development or (3) the effects of these genetic perturba-
tions are small and that increased sample sizes will be required to
detect these slight differences in cross-disorder altered gene
expression. Regardless, large differences in gene expression across
these disorders appear to be independent of known genetic
variation in each of these disorders.
There were a number of limitations associated with our

observations. As the analyses combine data across two studies
with notable design differences in each (shared controls in the
SMRI data, multiple brain regions from the same individual in the
AUT data, limited ability to detect lowly expressed genes and
comparison of different cortical brain regions), there was certainly
variation unrelated to the disease state introduced into the
differential gene expression analyses. However, we have con-
trolled for this to the best of our ability by accounting for
unknown covariates in all analyses and by determining all levels of
significance relative to null permutations. Although we have
controlled for the differences in experimental design in our
analysis, we note that the reported overlap in AUT and SCZ was
significant (Po0.001), despite the fact that different cortical brain
regions were studied in the two data sets. Owing to this limitation,
we hypothesize that our observed correlation between AUT and
SCZ may underestimate the true transcriptomic correlation and
that the similarities may be even more pronounced between AUT
and SCZ, had the same brain regions been studied. Similarly,
sequencing depths in these data sets are lower than many RNA-
Seq data sets currently being published. Thus, whereas lowly
expressed genes are not well-estimated here, their omission from
analysis would only lead to false negatives—or genes missing
from overlap. This does not detract for the findings, herein, but
simply acknowledges that some genes may not be included in the
analysis, herein. Conversely, we acknowledge that our power to
detect correlation between SCZ and BPD is limited because of the
smaller effective sample size, a consequence of the shared control
design of the experiment and that, given a larger sample size,
transcriptomic correlation between these two disorders may likely
become evident and reflective of the known genetic
relationships.1

With future studies employing larger sample sizes and more
powerful characterizations, we will gain a better understanding of
the transcriptomic relationships that are common and disparate
among neuropsychiatric disorders. Besides providing context for
how the altered genetic landscape of each disorder affects the
brain, we hope that identification of common aspects underlying
susceptibility might be novel targets to therapeutically address
the underlying pathogenic mechanisms.
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