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Abstract

Formaldehyde, a common indoor air pollutant, exacerbates
asthma and synergizes with allergen to induce airway
hyperresponsiveness (AHR) in animal models. The mechanisms
mediating formaldehyde-induced AHR remain poorly understood.
We posit that formaldehyde modulates agonist-induced contractile
response of human airway smooth muscle (HASM) cells to
elicit AHR. HASM cells were exposed to formaldehyde or vehicle
and agonist-induced intracellular Ca21 ([Ca21]i) and myosin
light-chain phosphatase (MYPT1) phosphorylation were
determined. Air–liquid interface–differentiated human bronchial
epithelial (HBE) cells were exposed to formaldehyde or vehicle and
cocultured with HASM cells. Agonist-induced [Ca21]i and MYPT1
phosphorylation were determined in the cocultured HASM cells.
Precision-cut human lung slices were exposed to PBS or varying
concentrations of formaldehyde, and then carbachol-induced airway
narrowingwas determined 24 hours after exposure.HASMcells were
transfected with nontargeting or nuclear factor erythroid-derived 2,
like 2 (Nrf-2)-targeting small interfering RNA and exposed to
formaldehyde or vehicle, followed by determination of antioxidant
response (quinone oxido-reductase 1 and thioredoxin 1) and basal
and agonist-induced MYPT1 phosphorylation. Formaldehyde
enhanced the basal Rho-kinase activity andMYPT1phosphorylation
with little effect on agonist-induced [Ca21]i in HASM cells.
Formaldehyde induced Nrf-2–dependent antioxidant response in
HASMcells, although theMYPT1 phosphorylationwas independent

ofNrf-2 induction.AlthoughHBEcells exposed to formaldehyde had
little effect on agonist-induced [Ca21]i or MYPT1 phosphorylation
in cocultured HASM cells, formaldehyde enhanced carbachol-
induced airway responsiveness in precision-cut human lung slices.
In conclusion, formaldehyde induces phosphorylation of the
regulatory subunit of MYPT1, independent of formaldehyde-
induced Nrf-2 activation in HASM cells. The findings suggest that
the Rho kinase-dependent Ca21 sensitization pathway plays a role
in formaldehyde-induced AHR.
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Clinical Relevance

Formaldehyde, an indoor air pollutant, enhances asthma
symptoms, although the mechanisms involved remain poorly
understood. We examined whether formaldehyde modulates
procontractile signaling in human airway smooth muscle
(ASM) cells. We report that formaldehyde modulates a key
Ca21 sensitization pathway in ASM cells and enhances
agonist-induced airway narrowing in precision-cut human
lung slices. The study sheds light on airway structural cells as
the potential mediators of formaldehyde-induced airway
hyperresponsiveness.
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Asthma, a chronic airway disorder, manifests
as airway inflammation, hyperresponsiveness,
and remodeling. Higher incidence of
airway disorders, such as asthma, in some
populations is attributed to increased air
pollution (1). Evidence also shows that air
pollution adversely affects lung health in
healthy individuals and in patients with
asthma (2, 3). Although outdoor air
pollutants, such as ozone, nitric oxide,
and particulate matter of 2.5 mm or less,
induce exacerbations of asthma and chronic
obstructive pulmonary disease (4–6);
formaldehyde, an indoor air pollutant,
exacerbates asthma in children and adults
(7–10). In animal models of asthma,
formaldehyde exposure enhances the
allergic airway inflammation and airway
hyperresponsiveness (AHR) (11, 12).
Studies in animal models suggest that
airway inflammation from irritation and
oxidative stress may be the mechanisms
enhancing formaldehyde-induced AHR.
Whether formaldehyde modulates airway
structural cell functions, airway epithelium,
and airway smooth muscle (ASM) remains
unknown.

Shortening of ASM cells directly regulates
airway resistance and hyperresponsiveness
in asthma (13, 14). Agonist-induced Ca21

mobilization and subsequent activation of
actin–myosin cross-bridge formation are
required for ASM cell shortening. In ASM
cells isolated from subjects with asthma,
expression and function of proteins
involved in Ca21 homeostasis are
dysregulated (14–16). A second pathway
that does not directly involve Ca21

mobilization can also amplify ASM
responses to contractile agonists.

Ca21 sensitization pathways amplify
the contractile response to agonists
through signaling entities, such as
RhoA/RhoA-associated kinase (ROCK)
(17). ROCK signaling pathway regulates
Ca21 sensitization in smooth muscle cells
by phosphorylating the regulatory subunit
of myosin light-chain phosphatase (myosin
phosphatase target [MYPT] subunit 1)
(18, 19). Phosphorylation of T696 in the
regulatory subunit MYPT1 inactivates the
phosphatase activity of myosin light chain
phosphatase (20), thus maintaining the
phosphorylation of myosin light chain
(MLC) and enhancing bronchomotor tone.
In animal models of allergen-induced AHR,
ROCK-dependent Ca21 sensitization plays
an important role in enhancing airway
resistance (19). Fungal allergens from

Aspergillus fumigatus (Af) enhance MYPT1
phosphorylation in human ASM (HASM)
cells, suggesting that ROCK-dependent
Ca21 sensitization is an important
mechanism in A. fumigatus–induced AHR
(21). Evidence suggests that toxicants can
impact signaling pathways in airway
structural cells, such as airway epithelial
and smooth muscle cells, to modulate lung
functions. In addition to the protective role,
airway epithelial cells also act as mediators
of intercellular signals to modulate the
other cells, such as ASM cells (22, 23).
Environmental toxicants also can
directly act on ASM cells, especially
in pathophysiological conditions that
disrupt the epithelial barrier (24). The
environmental toxicants, acrolein and
ozone, modulate agonist-induced Ca21

homeostasis, which impacts the contractile
functions of ASM, thereby altering
pulmonary function (25, 26). These
observations underscore the importance
of airway structural cells and in mediating
the adverse effects of respiratory toxicants.
We hypothesized that formaldehyde
modulates agonist-induced contractile
response of HASM cells to elicit AHR. Our
findings show that formaldehyde enhances
agonist-induced airway narrowing in
human lung slices without significant
changes in HASM cellular Ca21 response.
Collectively, these findings suggest that
ROCK activation mediates formaldehyde-
induced AHR in human small airways.

Materials and Methods

Reagents
Ham’s F-12 medium, PBS, FBS, 0.05%
trypsin and EDTA, Lipofectamine
RNAimax, Opti-MEM, cDNA synthesis
kit, TriZol, SYBR green quantitative PCR
reaction mixture, and all PAGE/immune
blotting supplies were purchased from Life
Technologies (Grand Island, NY). Primers
for ROCK1, ROCK2, and cyclophilin
were purchased from IDT (Coralville, IA).
Carbachol, bradykinin, and thrombin
were purchased from Sigma-Aldrich
(St. Louis, MO). Nontargeting small
interfering RNA (siRNA) and nuclear
factor erythroid-derived 2, like 2 (Nrf-
2)–targeting siRNA were purchased from
ThermoFisher Scientific (Dharmacon,
Lafayette, CO). Antibodies against
phosphorylated MYPT1 (pMYPT1) were
obtained from Millipore (Billerica, MA).

pMLC and a-tubulin were from Cell
Signaling Technology (Danvers, MA) and
quinone oxido-reductase (NQO) 1 and
thioredoxin (Trx) 1 were from Santa Cruz
Biotechnology (Santa Cruz, CA; ). Y27642
was purchased from Cayman Chemicals
(Ann Arbor, MI). Chemiluminescent
reagent was obtained from ThermoFisher
Scientific (Pierce, Rockford, IL).

Culture of HASM and Human
Bronchial Epithelial Cells
Primary HASM cells were isolated from
donor lung trachea as described previously
(27, 28). HASM cells (passage 2–4) were
grown in Ham’s F-12 medium containing
10% FBS to confluence. Before experiments,
the cells were serum starved for 48 hours.
Human bronchial epithelial (HBE) cells
were cultured and differentiated in
air–liquid interface, as previously described
(29). Differentiated cells were exposed to
vehicle or formaldehyde for 1 hour and
placed on serum-starved HASM cells for
24 hours. pMLC/pMYPT1 or agonist-
induced intracellular Ca21 ([Ca21]i) were
determined in cocultured HASM cells.

Formaldehyde Exposure
Neutral buffered formalin solution (10%;
VWR International, Radnor, PA) in PBS
was placed in a glass impinger and
atmospheric air was drawn by vacuum force
(5 L/min) to generate formaldehyde vapor.
Formaldehyde vapor was delivered into a
chamber containing precision-cut human
lung slice (PCLSs) or cells. Various
concentrations of formalin solutions
were used in preliminary trials to obtain
vapor concentrations of 0.2, 0.8, or
2 ppm formaldehyde within the exposure
chamber. Chamber formaldehyde levels
were measured by passive formaldehyde
monitors (product no. 3721; 3M, St. Paul,
MN) placed in the chamber and submitted
for analysis (Bureau Veritas, Novi, MI).
PCLSs or cells were exposed to PBS or
formaldehyde vapor (0.2, 0.8, or 2 ppm)
for 1 hour and readouts were determined
24 hours after exposure.

Determination of [Ca21]i in HASM
Cells
Agonist-induced [Ca21]i in HASM cells
was determined as previously described
(21) with some modifications. Bradykinin
(1 nM) or histamine (1 mM) was used as
agonist.
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Mediator Release from PCLSs and
HASM Cells
IL-6 and IL-8 levels were determined in
culture supernatants of lung slices or
HASM cells following the manufacturer’s
instructions (R&D Systems, Minneapolis,
MN). Cytokine levels were normalized to
the total protein of the supernatants.

ROCK Assay
Lysates were collected from HASM cells
in Tris-sucrose lysis buffer with protease
and phosphatase inhibitors. Protein (10 mg)
was used in duplicate to determine ROCK
activity following the manufacturer’s
instructions (catalog no. CSA001;
Millipore).

Immunoblotting
Lysates were collected from HASM cells
in Tris-sucrose buffer with protease and
phosphatase inhibitors. Protein (10 mg)
was run in SDS-PAGE for immunoblotting.
The membrane was blocked with 3% BSA
solution and probed for nicotinamide adenine
dinucleotide phosphate reduced–NQO1, Trx,
and a-tubulin. To detect phosphoproteins,
lysates were collected in 0.6 N HClO4.

siRNA Transfection
HASMcells were transfectedwith nontargeting
or Nrf-2 siRNA using Lipofectamine
RNAiMAX as previously described (30).
Nrf-2 silencing was confirmed by NQO1
and Trx1 expression. HASM cells were

exposed to formaldehyde at 72 hours after
transfection and cell lysates were collected
24 hours after formaldehyde exposure.

Human PCLS and Carbachol
Dose–Response
Human lungs were obtained through NDRI
(Philadelphia, PA) or IIAM (Edison, NJ).
Samples were deidentified and therefore
exempted by the University of Pennsylvania
(Philadelphia, PA) Institutional Review
Board. PCLSs were prepared and carbachol
(1028–1024 M) dose–response parameters
(half-maximal effective concentration
[log EC50], area under the curve, and
maximal effect) were determined as
previously described (31).
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Figure 1. Formaldehyde has little effect on agonist-induced intracellular Ca21 [Ca21]i in human airway smooth muscle (HASM) cells. HASM cells
were loaded with the Ca21-binding dye fluo-8 and stimulated with agonists to determine the global changes in [Ca21]i. There was no significant effect on
the (A) bradykinin-induced (1 nM) or (C) histamine-induced (1 mM) [Ca21]i in cells exposed to formaldehyde. Area under the curves (AUCs) of [Ca21]i
transients induced by (B) bradykinin or (D) histamine were comparable between PBS-treated and formaldehyde-treated HASM cells (n = 3 donors with 3
technical replicates per condition); A and C, mean RFU; B and D, mean6 SEM. FA, formaldehyde; ppm, parts per million; RFU, relative fluorescence unit.
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Statistical Analysis
HASM cells from at least three donors
or PCLSs from at least five donors
were used in the studies. In PCLS
studies, from each donor, a minimum
of three slices per experimental group
were used. Data are expressed as
mean or mean (6SEM). GraphPad
Prism 6.0 (GraphPad Software, Inc.,
La Jolla, CA) was used for statistical
analysis (one way ANOVA or Student’s
t test) and means were considered

significantly different when P was less than
or equal to 0.05.

Results

Formaldehyde Has Little Effect on
Agonist-Induced [Ca21]i, but
Enhances ROCK Activity in HASM
Cells
Mobilization of [Ca21]i in ASM cells is a
pivotal signaling event in regulating

agonist-induced ASM shortening. To
determine whether formaldehyde exposure
alters agonist-induced [Ca21]i in HASM
cells, bradykinin or histamine-induced
[Ca21]i was determined in HASM cells
24 hours after exposure to formaldehyde.
The magnitude of bradykinin-induced
[Ca21]i (area under the curve of the Ca21

transients) was comparable in PBS and
formaldehyde-treated HASM cells (Figures
1A and 1B). Similarly, histamine (1 mM)
evoked comparable magnitudes of [Ca21]i
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Figure 2. Formaldehyde enhances myosin light-chain phosphatase (MYPT1) phosphorylation in HASM cells. Rho-associated kinase (ROCK) activity
was determined in HASM cell lysates by assessing phosphorylated (p) MYPT1 (pMYPT1) levels, either by ELISA or immune blotting. (A) Formaldehyde
(0.2 ppm) increased the basal ROCK activity in HASM cells compared with PBS-treated control (mean6 SEM; n = 3 donors; *P, 0.05).
(B) Phosphorylation of MYPT1, the downstream target of ROCK, was increased in HASM cells exposed to 0.2 ppm formaldehyde. Stimulation with
the contractile agonist carbachol (10 mM for 10 min) increased the pMYPT1 in PBS-treated HASM cells but not in formaldehyde-treated cells
(blot representative of five experiments). Formaldehyde exposure has little effect on the expression of (C) ROCK1/2 mRNA (mean6 SEM, n = 3)
or (D) ROCK2 protein in HASM cells (representative blot for n = 3; mean6 SEM). CCh, carbachol concentration.
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responses in HASM cells exposed to PBS
and formaldehyde (Figures 1C and 1D).
Furthermore, formaldehyde had little
effect on basal and thrombin-induced
[Ca21]i in HASM cells (Figure E1). Ca21

sensitization is a complementary
mechanism that sensitizes the contractile
apparatus to an existing [Ca21]i level so
that the contractile response is enhanced
without an increase in agonist-induced
[Ca21]i. ROCK pathway is a key modulator
of Ca21 sensitization in smooth muscle
cells (19). We next determined ROCK
activity in HASM cell lysates by assessing
the pMYPT1 level, either by ELISA or by

immunoblotting. In ELISA assays, ROCK
activity was significantly increased in
HASM cells exposed to 0.2 ppm
formaldehyde compared with PBS-treated
cells (Figure 2A). We confirmed
increased MYPT1 phosphorylation by
immunoblotting lysates from HASM cells
exposed to formaldehyde. The basal
MYPT1 phosphorylation was increased by
formaldehyde exposure, even in the absence
of a contractile agonist (Figure 2B). To
determine whether formaldehyde alters
ROCK gene expression, we examined
ROCK I and 2 mRNA expression levels
in HASM cells 24 hours after exposure to

PBS or formaldehyde. Formaldehyde
has little effect on ROCK1 or
ROCK2 mRNA levels in HASM cells
(Figure 2C). Similar to ROCK mRNA
levels, formaldehyde had little effect on
ROCK2 protein expression in HASM cells
(2 D). In ASM cells, ROCK activation is
regulated by the upstream small molecular
weight G protein RhoA. To determine
whether formaldehyde induces MYPT1
phosphorylation via Rho activation, HASM
cells were exposed to formaldehyde in
the presence of Rho Inhibitor I (CT04 or
exoenzyme C3 transferase of C.botulinum).
Rho Inhibitor has little effect on
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Figure 3. Formaldehyde has little effect on inflammatory mediator release from precision-cut human lung slices (PCLSs) or HASM cells. In the supernatants of
lung slices, formaldehyde reduced the (A) IL-6 and (B) IL-8 levels, although the reduction was not statistically significant (mean6 SEM; n = 3 donors). (C) IL-6
levels in the culture supernatants of HASM cells were not altered by formaldehyde exposure. TNF-a (10 ng/ml, 24 h) induced a robust IL-6 level in the
HASM cells (mean6 SEM; n = 4 donors). To confirm whether formaldehyde adversely affects the viability of slices, lactate dehydrogenase (LDH) activity was
determined in supernatants. (D) Formaldehyde caused marginal LDH release compared with 10% Triton X 100 (six slices from two independent donors).
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Air–liquid interface–differentiated HBE cells were exposed to formaldehyde and co-incubated with HASM cells for 24 hours. Agonist-induced [Ca21]i
and phosphorylation status of myosin light chain (MLC) and MYPT1 were determined in the HASM cells. Co-culture of HASM cells with formaldehyde-treated
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formaldehyde-induced MYPT1
phosphorylation (Figure E2).

Formaldehyde Has Little Effect on
Inflammatory Mediator Release from
PCLSs or HASM Cells
ASM cells contribute to asthma
pathogenesis, not only by modulating
bronchomotor tone, but also by releasing
inflammatory mediators. IL-8 and IL-6
are two major inflammatory mediators
released by ASM cells. Ozone, an
important environmental pollutant,
induces IL-6 release from HASM and
airway epithelial cells (29). To determine
whether formaldehyde induces cytokine
or chemokine secretion, PCLSs or HASM
cells were exposed to PBS or
formaldehyde and the culture
supernatants were analyzed for IL-6 and
IL-8. In PCLSs, supernatant IL-6 or IL-8
levels were unaffected in response to
formaldehyde exposure (Figures 3A and
3B). Furthermore, formaldehyde has little
effect on IL-6 release from HASM cells,
while TNF-a (10 ng/ml) increased IL-6
levels (Figure 3C). IL-8 levels followed a
similar pattern in HASM cell culture
supernatant after formaldehyde exposure
(data not shown). To address whether
formaldehyde induces cytotoxicity in lung
slices, lactate dehydrogenase
(LDH) activity was determined in the
slice supernatants. Formaldehyde-
induced LDH release was minimal in
slices when compared with the Triton
X-100, which was the positive inducer of
toxicity (Figure 3D).

Formaldehyde-Treated HBE Cells
Have Little Effect on Agonist-Induced
[Ca21]i or MYPT1 Phosphorylation in
HASM Cells
Epithelial cells that line the airway are likely
some of the first cells exposed to inhaled
formaldehyde. In vitro, airway epithelial
cells exposed to formaldehyde exhibit
altered cell structure and functions (32).
To determine whether epithelial cells
mediate formaldehyde effects on the
HASM cells, air–liquid
interface–differentiated HBE cells were
exposed to formaldehyde and then
co-cultured with HASM cells for 24 hours.
Coculture of formaldehyde-treated HBE
cells with HASM cells has little effect on
agonist-induced [Ca21]i (Figures 4A and
4B). There was a trend toward
enhancement of basal MLC

phosphorylation in HASM cells
co-cultured with formaldehyde-treated
HBE cells (Figures 4C and 4D).
Formaldehyde-treated HBE cells had
little effect on the phosphorylation of
MYPT1 (Figures 4C and 4E).

Formaldehyde Elicits
Nrf-2–Dependent Antioxidant
Response in HASM Cells
In other cells types, formaldehyde effects
are partly attributed to oxidative injury
(33). Typical cellular antioxidant
response is mediated by stabilization and
activation of nuclear factor erythroid-
derived 2, like 2 (Nrf-2) and subsequent
up-regulation of antioxidant and
cytoprotective genes (34). We sought to
determine whether formaldehyde induces
Nrf-2 activation in HASM cells. The
cytoprotective enzyme, nicotinamide
adenine dinucleotide phosphate
reduced–NQO1, and the antioxidant
protein, Trx1, served as the surrogates of
Nrf-2 activation in these experiments.
NQO1 and Trx1 expression levels
increased as early as 2 hours after
formaldehyde exposure and remained
elevated 18 hours after exposure
(Figure 5A). In subsequent experiments,
NQO1 and Trx1 expression levels were
determined after 18 hours exposure to
PBS or formaldehyde. The lowest
concentration of formaldehyde (0.2 ppm)
increased NQO1 and Trx1 levels in
HASM cells (Figures 5C and 5D) while
exposure to higher concentration (2 ppm)
also increased, albeit to a lesser level
(Figure 5D).

Formaldehyde-Induced MYPT1
Phosphorylation Is Independent of
Nrf-2 Induction in HASM Cells
Cellular antioxidant response elicited by
Nrf-2 plays a protective role against
oxidants and environmental toxicants
(35). To determine whether Nrf-2 has a
role in formaldehyde-induced MYPT1
phosphorylation, HASM cells were
exposed to PBS or formaldehyde after
transiently transfecting them with
Nrf-2–targeted siRNA. After
transfection of Nrf-2–targeting siRNA,
both basal and formaldehyde-induced
NQO1 or Trx1 expressions were
completely abolished (Figure 6A).
Although there was a variable response
to Nrf-2 silencing among the 5 donors,
on average, silencing of Nrf-2 has little

effect on formaldehyde-induced MYPT1
phosphorylation in HASM cells
(Figure 6B).

Formaldehyde Enhances Carbachol-
Induced Airway Narrowing in PCLSs
Our findings show that formaldehyde
enhances a key Ca21 sensitization
pathway in HASM cells, potentially
enhancing agonist-induced excitation-
contraction coupling in HASM cells. To
determine whether formaldehyde
enhanced airway responsiveness, human
PCLSs were exposed to PBS or
formaldehyde and carbachol-induced
contractile response was determined 24
hours after exposure. Exposure to 2 ppm
formaldehyde enhanced carbachol-
induced contractile response in PCLSs
(Figure 7A). The maximal contractile
response was comparable in PBS- and
formaldehyde-treated slices (Figure 7B).
Sensitivity to carbachol, as measured by
log EC50, was significantly increased
in 2 ppm formaldehyde-treated slices
compared with the PBS-treated
slices (Figure 7C). Area under the
curve of the carbachol dose–response
curve was significantly increased in
slices exposed to 2 ppm formaldehyde
compared with that of PBS-treated slices
(Figure 7D).

Discussion

Formaldehyde induces asthma exacerbations
in humans and AHR in animal models of
asthma (7, 9, 11). The underlying mechanisms,
however, remain poorly understood. We
hypothesized that formaldehyde induces
AHR and asthma exacerbation through
modulating the contractile response of
ASM cells to agonists. Our findings show
that formaldehyde enhances contractile
response of human lung slices to agonist.
Furthermore, formaldehyde exposure
enhanced MYPT1 phosphorylation in
HASM cells, suggesting Ca21 sensitization
as a possible mechanism causing AHR.
To the best of our knowledge, this is
the first report on the effect of formaldehyde
on a signaling pathway that leads to
enhanced contractile response in ASM
cells.

Ca21 mobilization and elevated
[Ca21]i regulate excitation–contraction
coupling in various types of smooth
muscle cells (reviewed in Ref. 36). Altered

ORIGINAL RESEARCH

548 American Journal of Respiratory Cell and Molecular Biology Volume 55 Number 4 | October 2016



Ca21 mobilization mechanisms are
reported in ASM cells isolated from
donors with asthma, potentially
accounting for enhanced agonist-induced

ASM cell shortening in asthma (15, 16).
Toxicants, such as acrolein and ozone,
enhance agonist-induced airway
narrowing by altering the Ca21

mobilization in ASM cells (25, 37). Lack
of significant effects by formaldehyde
on ASM cell Ca21 dynamics prompted
us to focus on an alternate mechanism
of hypercontractility in ASM
cells.

Ca21 sensitization, a mechanism in
which the contractile apparatus of smooth
muscle cells is rendered more sensitive
to [Ca21]i levels, amplifies even smaller
increments in [Ca21]i to cause a larger
magnitude of ASM cell shortening
(reviewed in Ref. 38). In smooth muscle
cells, RhoA/RhoA-associated kinase
(RhoA/ROCK) signaling is a key regulator
of Ca21 sensitization (39). Our results
show that ROCK activity is increased
24 hours after formaldehyde exposure.
This observation, taken together with
unaltered ROCKI/II levels, implied either:
(1) an enhancing effect on ROCK enzyme
activity by formaldehyde; or (2) increased
RhoA activity upstream of ROCK.
Our studies, using a cell-permeant Rho
inhibitor, suggested that formaldehyde-
induced MYPT1 phosphorylation is Rho-
independent. Studies in vascular smooth
muscle, however, show that oxidative
stress and reactive oxygen species modulate
ROCK-dependent Ca21 sensitization (40).
Furthermore, in rodent models of AHR,
formaldehyde exposure increased oxidative
stress and attenuated antioxidant responses
(33). These observations prompted us to
determine whether similar mechanisms
are functional in HASM cells exposed to
formaldehyde.

Formaldehyde induced a typical
Nrf-2–dependent antioxidant response in
HASM cells. However, the effect of Nrf-2
silencing on formaldehyde-induced MYPT1
phosphorylation was heterogeneous among
the five donors used in the experiments.
The variability among donors may be due
to differential basal redox capacity. It is
difficult to speculate on specific signaling
molecules involved in this redox status
heterogeneity, although various redox-
related polymorphisms have been reported
in humans. For instance, polymorphisms in
g glutamyl cysteine synthetase, the key
enzyme of glutathione synthesis, are known
to be associated with cystic fibrosis and
certain lung cancers (41, 42). Alternatively,
formaldehyde-induced MYPT1
phosphorylation and oxidative injury may
be independent events in HASM cells.
Because formaldehyde is an electrophile, the
enhancing effects on ROCK activity may be
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Figure 5. Formaldehyde elicits nuclear factor erythroid-derived 2, like 2 (Nrf-2)–dependent antioxidant
response in HASM cells. Whole-cell lysates from HASM cells exposed to PBS or formaldehyde
were immune blotted for the markers of antioxidant (thioredoxin [Trx] 1) and cytoprotective (quinone
oxido-reductase [NQO] 1) responses, as surrogate measures of Nrf-2 activation. (A) In response to
formaldehyde exposure (0.2 and 0.8 ppm), NQO1 and Trx1 were elevated compared with the PBS-treated
cells. NQO1 and Trx1 increases were noticed as early as 2 hours after exposure and remained elevated
18 hours after exposure (representative immune blot, n=2). (B–D) At 18 hours after exposure, the
lowest concentration of formaldehyde (0.2 ppm) caused a significant increase in NQO1 (*P=0.017, n=4)
and Trx1 (*P=0.0054, n=4 donors), whereas a higher level of formaldehyde (2 ppm) caused relatively
subdued induction of NQO1 and Trx1 (**P=0.012, n=4 donors). (B) Representative immune blot for n=4
donors; (C and D) densitometry ratio; black lines show the mean for n=4 donors. NS, not significant.
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mediated directly by electrophile attack
and be independent of reactive oxygen
species generation. Our findings, that
formaldehyde-induced Rho kinase activity
is independent of Rho activation, lend

further support to the aforementioned
hypothesis. Although it remains to be
determined whether this is the
mechanism, the physicochemical
properties of formaldehyde, such as higher

solubility and smaller molecular weight,
support this hypothesis.

Airway epithelial cell–ASM
interaction is another plausible
mechanism for formaldehyde-induced
AHR that we observed in lung slices. HBE
cell–HASM cell coculture studies were
designed to test this possibility. We
showed that HBE cells exposed to
formaldehyde have little effect on
agonist-induced Ca21 mobilization in
HASM cells. However, formaldehyde-
treated HBE cells trended toward
enhancing pMLC levels in the HASM
cells, suggesting that the epithelial cells
may be an integral component in the
formaldehyde-enhanced airway
responsiveness seen in PCLSs.

Formaldehyde is primarily an indoor
air pollutant, although it is an important
component in outdoor emissions from
automobiles and industries (43). In the
developed countries, indoor
formaldehyde levels in households range
between 0.005 and 0.136 ppm, depending
on the method of measurement (7, 10,
44–46). In the United States, the National
Institute for Occupational Safety and
Health recommended exposure limit over
an 8-hour period is 0.016 ppm. A recent
study by Dannemiller and colleagues (7)
found that a significant proportion of
households in their study population had
formaldehyde levels well above the
National Institute for Occupational Safety
and Health standard. We chose 0.2 ppm
as our minimum formaldehyde level to
account for the shorter exposure time
(1 h) in the cells and PCLSs. The lowest
level of formaldehyde (0.2 ppm) induced
antioxidant response and ROCK
activation in HASM cells, whereas only
the highest dose (2 ppm) elicited
enhanced airway narrowing in lung slices.
It is likely that, compared
with a monolayer of cells, the lung slices
(z350 mm in thickness) had additional
barriers to the distribution of
formaldehyde, requiring 10-fold higher
formaldehyde concentration to elicit a
response.

Most of the studies examining the
effects of formaldehyde have focused on
in vitro cultures of airway epithelial cells.
These studies showed that formaldehyde
exposure alters gene expression profile of
airway epithelial cells and enhances
inflammatory mediator release (47–50).
Evidence on the direct effects of
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ORIGINAL RESEARCH

550 American Journal of Respiratory Cell and Molecular Biology Volume 55 Number 4 | October 2016



formaldehyde on ASM cells are few (51).
Studies show that inhaled toxicants,
including formaldehyde, however, impair
the structural integrity of the airway
epithelial cells, thus allowing diffusion of
toxicants to submucosal sites (32, 52, 53).
These observations provide a rationale for
directly exposing HASM cells to
formaldehyde vapor to examine the
outcomes. To account for the role of
airway epithelial cells in mediating
formaldehyde-induced AHR, we also used
HBE–HASM cell coculture system in our

studies. Furthermore, human PCLSs are an
integrative platform to study the effects of
inhaled toxicants, and our findings provide
physiological significance to the effects of
formaldehyde on AHR in humans.

In summary, the current study
identifies MYPT1 phosphorylation and
ROCK-dependent Ca21 sensitization in
HASM cells as plausible mechanisms for
formaldehyde-induced AHR. Although not
related to MYPT1 phosphorylation in our
studies, an Nrf-2–dependent antioxidant
response is elicited by formaldehyde in

HASM cells. In human PCLSs,
formaldehyde exposure enhanced airway
narrowing, indicating that the augmented
MYPT1 phosphorylation manifests into
AHR. The findings suggest that
formaldehyde-induced AHR, and
potentially asthma exacerbations that result
from formaldehyde exposure, may be
therapeutically targeted at the level of
ROCK-mediated Ca21 sensitization. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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Figure 7. Formaldehyde enhances carbachol-induced airway narrowing in PCLSs. PCLSs were exposed to PBS or formaldehyde (0.2, 0.8, or
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