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Abstract

Supraphysiological concentrations of oxygen (hyperoxia) can
compromise host defense and increase susceptibility to bacterial
infections, causing ventilator-associated pneumonia. The phagocytic
activity ofmacrophages is impaired by hyperoxia-induced increases in
the levels of reactive oxygen species (ROS) and extracellular high-
mobility group box protein B1 (HMGB1). Ascorbic acid (AA), an
essential nutrient and antioxidant, has been shown to be beneficial
in various animal models of ROS-mediated diseases. The aim of this
study was to determine whether AA could attenuate hyperoxia-
compromisedhostdefense and improvemacrophage functions against
bacterial infections. C57BL/6 male mice were exposed to hyperoxia
(>98% O2, 48 h), followed by intratracheal inoculation with
Pseudomonas aeruginosa, and simultaneous intraperitoneal
administration of AA. AA (50mg/kg) significantly improved bacterial
clearance in the lungs and airways, and significantly reduced HMGB1
accumulation in the airways. The incubation of RAW 264.7 cells (a
macrophage-like cell line) with AA (0–1,000 mM) before hyperoxic
exposure (95%O2) stabilized thephagocytic activityofmacrophages in
a concentration-dependent manner. The AA-enhanced macrophage
function was associated with significantly decreased production of

intracellular ROS and accumulation of extracellular HMGB1. These
data suggest that AA supplementation can prevent or attenuate the
development of ventilator-associated pneumonia in patients receiving
oxygen support.

Keywords: hyperoxia; ascorbic acid; pneumonia; high-mobility
group box 1

Clinical Relevance

Patients receiving oxygen therapy are highly susceptible to
pulmonary infections, which may lead to ventilator-associated
pneumonia (VAP). Data in this study suggest that ascorbic acid
(AA) levels can be significantly reduced in patients receiving
oxygen therapy, and AA supplementation can prevent or
attenuate the development of VAP in these patients. Thus, our
findings demonstrate that boosting the host defense with a
simple and inexpensive antioxidant, ascorbate, may help to
reduce mortality and morbidity in patients receiving oxygen
support.

Supraphysiological concentrations of oxygen
(hyperoxia) are routinely used to treat
patients with respiratory distress and those
undergoing surgery (1–5). However, oxygen
toxicity from prolonged exposure to

hyperoxia can contribute to the
complications, such as ventilator-associated
pneumonia (VAP) and acute lung injury,
observed in these patients (6–12). Prolonged
exposure to hyperoxia can compromise the

host defense against bacterial infections
by impairing the efficacy of alveolar
macrophages to migrate, phagocytose, kill,
and clear bacteria (7, 13–18). Hyperoxia-
induced deleterious effects are mainly
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attributable to an increase in the levels of
reactive oxygen species (ROS), resulting in
oxidative stress, which ultimately surmount
the antioxidant defense mechanisms
(19, 20). ROS can cause lipid peroxidation,
protein, and DNA oxidation, and alter signal
transduction pathways, leading to cell
damage (21–25). Exposure of cultured
macrophages to hyperoxia induces actin
oxidation and subsequent cytoskeleton
disorganization, resulting in a decrease in
the ability to phagocytose bacteria (16, 18).
Treatment of hyperoxia-exposed
macrophages with antioxidants, such as
superoxide dismutase and procysteine, can
preserve actin cytoskeleton organization
and increase the phagocytosis of bacteria
(18, 26). Hyperoxia-exposed cells
overexpressing antioxidant enzyme,
manganese superoxide dismutase, exhibit
reduced bacterial adherence, increased
phagocytic activity (26, 27), and attenuated
ROS-induced damage (28). These
aforementioned findings suggest that
antioxidants may be useful in attenuating
ROS-induced cellular damage and
impairment of macrophage functions.

Ascorbic acid (AA), an essential
nutrient, is a well known reductant and
scavenger of intracellular ROS (29–32).
AA can donate two electrons that are lost
sequentially, and is considered to be an
efficacious antioxidant, as it reduces a
reactive free radical with the formation of a
less reactive compound (30, 33, 34).

Recent studies in our laboratory have
demonstrated that high-mobility group box
protein 1 (HMGB1), a late mediator of
inflammation (35, 36), can significantly
attenuate the phagocytic function of
macrophages in airways (7, 37). In mice
exposed to hyperoxia, elevated levels of
airway HMGB1 are associated with an
increase in both the lung bacterial burden
and lung damage. Neutralizing or
inhibiting HMGB1 by monoclonal
antibodies or compounds, such as
3-(2,4-dimethoxybenzylidene)-anabaseine
dihydrochloride (GTS)-21, respectively, in
these mice, significantly decreases lung
injury and hyperoxia-compromised
bacterial clearance (7, 38).

In this study, we tested the hypothesis
that AA supplementation can attenuate
hyperoxia-compromised host defense by
scavenging hyperoxia-induced excessive
intracellular ROS and reducing HMGB1
levels in the airways. We show that AA
significantly: (1) preserved macrophage

phagocytic function and host defense against
bacterial infections, leading to improved
survival; (2) decreased intracellular oxidative
stress in cultured macrophages by replenishing
the intracellular levels of AA; and (3) reduced
extracellular HMGB1 levels in both in vitro
and in vivomodel systems. Some of the results
presented in this study have been previously
reported in the form of an abstract (39).

Materials and Methods

Refer to the online supplement for detailed
methods.

Animal Studies
C57BL/6 mice (male, 8–12 wk old; The
Jackson Laboratory, Bar Harbor, ME) were
used in this study, in accordance with the
Institutional Animal Care and Use
Committees of St. John’s University
(Queens, NY). Mice were randomized
to receive either sodium L-ascorbate
(50 mg/kg dissolved in saline; Sigma-
Aldrich, St. Louis, MO) or saline (200 µl),
administered by intraperitoneal injection
every 12 hours, starting 24 hours after the
onset of hyperoxic exposure. After 48 hours
of hyperoxic exposure, mice were
anesthetized with sodium pentobarbital
(60–70 mg/kg intraperitoneal) and
inoculated with 13 107 CFUs of
Pseudomonas aeruginosa PAO1 (PA) by
making an approximately 1-cm incision on
the neck to expose the trachea, and kept at
room air (21% O2). Mice were either killed
18 hours later using intraperitoneal sodium
pentobarbital (120 mg/kg) to obtain
bronchoalveolar lavage fluids (BALFs) and lung
tissues, or observed for survival after bacterial
inoculation, as described previously (7).

Measurement of Phagocytic
Activity, HMGB1 Levels, and
Immunofluorescence Analyses
RAW 264.7 cells were seeded in 24-well
plates and allowed to adhere overnight
at 378C. Cells were exposed to hyperoxia
(95% O2) for 24 hours (7) while in media
supplemented with AA (0–1,000 µM).
The phagocytic activity was assessed by
counting 200 consecutive individual
macrophages per well in duplicates, as
previously described (17, 18). The levels of
HMGB1 in the culture media of RAW
264.7 cells and BALF samples obtained
from mice were measured by Western blot
analysis, as described previously (7).

HMGB1 and NF-kB localization was
observed, as mentioned previously (17).

Assay for Oxidative Stress
Oxidative stress was measured by assessing
oxidation–reduction potential (ORP) using
the RedoxSYS Diagnostic System (Luoxis
Diagnostics, Inc., Englewood, CO).
Cultured macrophages were exposed to
hyperoxia and treated with AA, as
indicated, and cell lysates were prepared.
ORP of samples (30 ml) was measured at
room temperature, using the protocol
provided by the manufacturer.

Measurement of Intracellular
Ascorbate
After the treatments of cultured RAW 264.7
macrophages in six-well plates, the cells
were lysed as described previously (40),
except that the adherent cell monolayer
was rinsed with ice-cold PBS and the
resulting lysate was centrifuged at 13,000 3 g
for 10 minutes at 38C. Supernatants were
analyzed by HPLC and intracellular
concentrations of AA were calculated using
the equation described previously (40, 41),
with minor modifications. Samples (50 ml)
were injected and separation was performed
on Agilent HC-C18 (2) column (5 µm,
4.63 1.50 mm; Agilent Technologies, Santa
Clara, CA). AA was detected by its ultraviolet
absorption at a wavelength of 260 nm on a
Waters 486 tunable absorbance detector
(Waters, Milford, MA). At a flow rate of
1 ml/min, AA was eluted at roughly 3 minutes.

Statistical Analyses
The data are presented as the mean (6SEM)
of at least two independent experiments.
The data were analyzed using Student’s
unpaired t test or ANOVA. The Kaplan-
Meier survival curve was analyzed using the
log-rank (Mantel-Cox) test. A P value of
less than or equal to 0.05 was considered
statistically significant. The post hoc
analyses were conducted using Dunnett’s or
Sidak’s multiple comparison test.

Results

AA Significantly Increases Hyperoxia-
Compromised Bacterial Clearance
To determine whether AA can improve
hyperoxia-compromised host defense
against PA pneumonia, bacterial counts
were assessed in the airways and lung tissues
in a mouse model of VAP, as described
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previously (7). These mice were treated
with either 50 mg/kg of AA or saline
(control), as described in the MATERIALS AND

METHODS. Bacterial counts in the lungs of
AA-treated mice were significantly less than
that of saline-treated mice (0.46 0.23 108

versus 1.16 0.33 108/lung; t = 1.66,
degrees of freedom [df] = 42, P = 0.05;
Figure 1A). Similar results were obtained
in the airways (1.56 0.63 107 versus
3.56 0.93 107/ml BALF; t = 1.78, df = 41,
P, 0.05; Figure 1B). In addition, the total
protein content in BALF, an important
marker of lung injury, was significantly
lower in AA-treated mice compared with
the controls (3,6666 508.3 versus 4,9836
408.9 mg/ml BALF of saline-treated mice;
t = 2.02, df = 42, P, 0.05; Figure 1C).
Moreover, a significant decrease in animal
mortality was observed in the AA-treated
group (87.5 versus 100% in the saline-
treated group; chi-square = 4.07, df = 1,
P, 0.05; Figure 1D). These results
indicate that AA improves bacterial
clearance and acute lung injury, which

results in an increase in survival in this
mouse model of VAP. Interestingly,
treatment of mice without prior exposure to
hyperoxia with the same dose of AA did
not significantly alter bacterial counts in
either lung tissues or airways compared
with that of saline-treated mice (lungs:
7.06 5.43 107 versus 6.06 4.73 106;
t = 1.19, df = 14, P = 0.25; BALF: 1.16
0.73 107 versus 8.66 6.03 105/ml; t = 1.34,
df = 13, P = 0.20; not shown in figures).
Similar results were obtained for the total
protein content in the airways (3,9176 843.5
versus 3,5686 597.5 µg/ml BALF of saline
controls). These data suggest that the
beneficial effects of AA in enhancing
innate immunity against bacterial
infections are limited to mice with
hyperoxia-compromised host defense.

AA Significantly Attenuates the
Impairment in Macrophage
Phagocytosis Induced by Hyperoxia
Hyperoxia-compromised macrophage
functions play a critical role in the reduced

host defense against bacterial infections (7).
To determine the cellular mechanisms in
AA-improved host defense, RAW 264.7
cells were exposed to hyperoxia in the
presence of a series of AA concentrations
(0–1,000 mM). Consistent with previous
observations (7, 13, 16, 18, 26),
macrophages exposed to hyperoxia in the
absence of AA showed a significant
decrease in phagocytosis, as indicated by
a significant decrease in the number of
phagocytosed beads compared with
macrophages that remained in room air
(21% O2 control; 63.9 versus 100%; F-statistic
(F(6,35)) = 10.18, P, 0.0001; Figures 2A
and 2B). Phagocytosis in hyperoxic
macrophages cultured in AA-supplemented
media was significantly increased compared
with those exposed to hyperoxia in the
absence of AA, indicated by higher
numbers of phagocytosed beads at 10, 100,
and 1,000 mM (87.4, 86.4 and 100.1,
respectively, versus 63.9%; F(6,35) = 10.18,
P, 0.01; Figures 2A and 2B). These results
suggest that AA can enhance innate
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Figure 1. Ascorbic acid (AA) decreases hyperoxia-compromised bacterial clearance in mice. Male C57BL/6 mice, exposed to 98% O2 or higher for
48 hours, were inoculated with Pseudomonas aeruginosa (PA; 13 107 CFU) intratracheally. Mice were randomized to receive either AA (50 mg/kg) or saline
intraperitoneally. Bronchoalveolar lavage fluid (BALF) and lung tissues were harvested 18 hours after infection. Number of viable bacteria in lungs (A) and
BALF (B) were determined by plating serial dilutions of either homogenized lung tissues or BALF, respectively. The total protein content in BALF (C) was
measured using the bicinchoninic acid assay (n = 21 mice per group). In another set of experiments, mice were observed for survival after inoculation
with PA (n = 13–18 mice per group) (D). Data represent the mean6 SEM of at least four independent experiments. *P< 0.05 compared with control mice.

ORIGINAL RESEARCH

Patel, Sampat, Espey, et al.: Vitamin C Attenuates Hyperoxia-Compromised Host Defense 513



immunity against bacterial infections by
improving macrophage phagocytic activity
under hyperoxic conditions.

AA Significantly Decreases Oxidative
Stress in Hyperoxia-Exposed
Macrophages
To determine the mechanisms underlying
AA-attenuated hyperoxia-compromised

macrophage phagocytic function (Figure 2),
ORP, an indicator of oxidative stress, was
measured in RAW 264.7 cells exposed to
hyperoxia in the presence of a series of
AA concentrations (0–1,000 mM).
Macrophages exposed to hyperoxia had
significantly higher ORP compared with
those exposed to room air (21% O2;
227.7 versus 205.1 mV; F(5,32) = 11.19,

P, 0.01; Figure 3). Cells incubated with
AA showed a concentration-dependent
decrease in ORP, which was significantly
less at 1,000 µM, compared with
macrophages exposed to hyperoxia
in the absence of AA (189.8 versus
227.7 mV; F(5,32) = 11.19, P, 0.0001;
Figure 3). These results suggest that AA
enhances macrophage functions by
blunting hyperoxia-induced oxidative
stress.

Exposure to Hyperoxia Reduces
Intracellular AA Levels in
Macrophages
Immune cells, especially macrophages,
maintain very high concentrations
of AA compared with plasma (40).
To determine if exposure to hyperoxia
alters AA levels in macrophages, the
intracellular concentrations of AA were
measured. Because AA was undetectable
in cultured RAW 264.7 cells (data not
shown), RAW cells were incubated
with 1,000 µM AA for 1 hour before
hyperoxia exposure. Exposure to
hyperoxia significantly reduced the
intracellular AA levels compared with
control RAW cells exposed to room air
(0.476 0.07 versus 1.816 0.24 arbitrary
unit (AU); t = 5.66, df = 11, P, 0.001;
Figure 4A). These data indicate that
intracellular AA levels in macrophages are
rapidly exhausted upon hyperoxia exposure.

We further investigated whether
continuous AA (10–1,000 µM)
supplementation for 24 hours with
simultaneous exposure of RAW cells to
hyperoxia can maintain intracellular AA
levels. Data presented in Figure 4B show
that RAW cells with supplementation of
1,000 µM AA had similar intracellular
AA levels upon exposure to hyperoxia as
that of room air–exposed cells (101.5
versus 100%; t = 0.08, df = 24; Figure 4B).
However, intracellular AA levels were
significantly lower in hyperoxia-
exposed cells when RAW cells were
supplemented with 10 or 100 µM
AA as compared with the room air
control groups (35.94 and 48.81 versus
100%; t = 3.72 and 2.97, respectively,
df = 24, P , 0.05; Figure 4B). These
results suggest that a continuous supply
with appropriate concentrations of
AA mitigates hyperoxia-induced
decrease in intracellular AA levels and
maintains the intracellular antioxidant
capacity.
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Figure 2. AA attenuates hyperoxia-compromised macrophage phagocytic function. RAW 264.7 cells
either remained at room air (RA; 21% O2) or were exposed to 95% O2 for 24 hours in the presence of
AA (0–1,000 mM). Cells were then incubated with FITC-labeled latex mini-beads for 1 hour and
stained with phalloidin and 49,6-diamidino-2-phenylindole (DAPI) to visualize the actin cytoskeleton
and nuclei, respectively. Representative immunofluorescent images of RAW 264.7 cells (red, F-actin
cytoskeleton; green, latex mini-beads; blue, nuclei) are shown. Scale bars: 10 mm (A). For
quantification of phagocytic activity, at least 200 cells per well were counted and the numbers of
beads per cell were represented as a percentage of the 21% O2 (0 mM) control group (B). Each value
represents the mean6 SEM of three independent experiments for each group. *P< 0.05 compared
with the 95% O2 (0 mM) control group; #P< 0.05 compared with 21% O2 (0 mM) control group. O2,
95% oxygen; RA, 21% oxygen.
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AA Significantly Reduces the
Extracellular Accumulation of HMGB1
in Hyperoxia by Inhibiting Its
Translocation
Previous studies in our laboratory have
shown that elevated levels of airway
HMGB1 contribute to hyperoxia-
compromised macrophage functions
(7, 17). To determine whether or not
AA enhances the functions of hyperoxic
macrophages by reducing the levels of
extracellular HMGB1, we determined the
levels of HMGB1 in the airways of mice
exposed to hyperoxia, as described in the
MATERIALS AND METHODS section. Figure 5A

illustrates that mice receiving AA
supplementation had significantly lower
HMGB1 levels in BALF compared with the
unsupplemented controls (186 6.7 versus
1006 10.1%; t = 7.26, df = 4, P, 0.0001;
Figure 5A). To further delineate the AA-
induced increase in macrophage function,
the levels of extracellular HMGB1 were
assessed in the culture media of RAW
264.7 cells that were exposed to hyperoxia
in the presence of AA (0–1,000 mM).
Macrophages exposed to hyperoxia had a
significant increase in the levels of
extracellular HMGB1 accumulation as
compared with the 21% O2 control

(100 versus 3.2%; F(6,14) = 11.92, P, 0.0001;
Figure 5B). AA at 1, 10, 100, and 1,000 mM
significantly reduced the levels of
extracellular HMGB1 as compared with
cells exposed to hyperoxia in the absence of
AA (30.9, 42.0, 38.7, and 11.7 versus 100%,
respectively; F(6,14) = 11.92, P, 0.01;
Figure 5B).

The translocation of HMGB1 from
the nucleus to the cytoplasm is a critical
step in the extracellular secretion of HMGB1
(42, 43). Therefore, we determined the
effect of AA on the nucleocytoplasmic
translocation of HMGB1 in hyperoxic
macrophages. Macrophages exposed to
hyperoxia exhibited intense staining of
HMGB1 (red) in the cytoplasm as
compared with control cells that remained
in room air (21% O2), where the
predominant stain was in the nucleus
(Figure 5C). The macrophages incubated
with 1–1,000 mM of AA displayed distinct
staining of HMGB1 in the nucleus
compared with the negligible nuclear
staining in macrophages incubated with
either hyperoxia alone or in the presence of
0.1 µM AA (Figure 5C; images for 10, 100,
and 1,000 µM not shown). These results
indicate that AA significantly reduces the
hyperoxia-elevated HMGB1 accumulation
in the extracellular milieu by inhibiting its
translocation from the nucleus to the
cytoplasm.

AA Inhibits Nuclear Translocation of
NF-kB in Hyperoxic Macrophages
NF-kB activation plays a critical role in
mediating the release of HMGB1 from
cultured macrophages under stress stimuli,
including exposure to hyperoxia (17, 38, 44).
NF-kB activation was assessed by
immunostaining the p65 subunit of NF-kB,
as described in the published studies. In
nonactivated cells, NF-kB is primarily
localized in the cytoplasm, as indicated by a
prominent cytoplasmic stain and a distinct
hollow nucleus in cells that remained at
21% O2 (Figure 6A). Upon hyperoxic
exposure, NF-kB translocates into the
nucleus, as indicated by a profound nuclear
staining (Figure 6A; images for 100 and
1,000 µM not shown). However,
macrophages exposed to hyperoxia and
incubated with AA at 1, 100, and 1,000 µM
had significantly reduced nuclear staining
compared with cells exposed to hyperoxia
alone (0.82, 0.83, and 0.84 versus 0.90,
respectively; F(5,2374) = 49.58, P, 0.0001;
Figures 6A and 6B). These results suggest
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Figure 3. AA decreases oxidative stress in hyperoxia-exposed macrophages. RAW 264.7 cells either
remained at RA (21% O2) or were exposed to 95% O2 for 24 hours in the presence of AA
(0–1,000 mM). Cell lysates were prepared and used to measure oxidation–reduction potential (ORP).
Values represent the mean6 SEM of three independent experiments. *P< 0.05 compared with 95%
O2 (0 mM) control group; #P< 0.05 compared with 21% O2 (0 µM) control group.
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Figure 4. Exposure to hyperoxia reduces intracellular AA levels in macrophages. RAW 264.7 cells
were pretreated with AA (1,000 mM) for 1 hour, followed by replacing media with fresh media, and
cells were exposed to either RA (21% O2) or 95% O2 for 24 hours (A). In a different set of experiments,
RAW 264.7 cells either remained at RA or were exposed to 95% O2 for 24 hours in the presence of
AA (0–1,000 mM) (B). Intracellular AA levels were determined using HPLC–ultraviolet spectrometry.
Values represent the mean6 SEM of three independent experiments. *P< 0.05 compared with RA
control group.
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that AA inhibits HMGB1 release, at least
in part, by preventing hyperoxia-induced
NF-kB activation.

Discussion

The results of this study indicate that AA
protects against hyperoxia-induced lung
injury and enhances innate immunity
against pulmonary PA infection in a mouse
model of VAP. In addition, AA can
effectively restore hyperoxia-compromised
phagocytic function of cultured
macrophages. AA-increased macrophage
phagocytic function was associated with a
decrease in hyperoxia-induced: (1) elevation
in intracellular oxidative stress; and (2)
accumulation of extracellular HMGB1. The
AA-mediated decrease in the extracellular
accumulation of HMGB1 was associated
with inhibition of the translocation of
nuclear HMGB1 to the cytoplasm, which

was associated with attenuated NF-kB
activation.

Prolonged exposure to hyperoxia
increases the susceptibility of subjects
to lung microbial infections (7, 13, 45).
The results in Figure 1 show that AA
significantly increases bacterial clearance in
the airways and lungs of mice exposed to
hyperoxia (Figures 1A and 1B). Hyperoxia-
induced lung permeability, a marker of
tissue injury, can also be reduced by AA
(Figure 1C). This increase in host immunity
was associated with an improved survival of
these animals (Figure 1D). Interestingly,
AA did not significantly increase bacterial
clearance and lung injury under normoxic
(healthy) conditions. Similarly, AA
(100 mg/kg/12 h) does not significantly
increase the clearance of Streptococcus
pneumoniae in normoxic, healthy mice
(46). These results may provide further
explanations, other than the route of
administration of AA, for the difference in

the incidence of infections observed in
clinical trials of AA administration.
Glazebrook and Thomson (47) reported
that AA administration did not affect the
incidence of viral infections in healthy
youth, whereas Heyland and colleagues (48)
found that patients on mechanical
ventilation receiving supplementation
of AA, in combination with other
antioxidants, had reduced occurrence of
intensive care unit–acquired pneumonia
(71 [z42.3%] versus 95 patients [z52.5%]
in the control group without antioxidant
supplementation, P = 0.06). A similar
protective effect of AA (50 or 200 mg/kg/24 h)
against organ failure and tissue injury
has also been observed in patients with
severe sepsis (49). These findings suggest
that the protective effect of AA is specific to
pathological conditions with AA deficiency.
Oxidative stress induced by prolonged
exposure to hyperoxia or by pronounced
inflammatory responses may cause a
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Figure 5. AA decreases the hyperoxia-induced release of high-mobility group box protein B1 (HMGB1) by inhibiting its translocation from the nucleus to
the cytoplasm. Male C57BL/6 mice, exposed to 98% O2 or higher for 48 hours, were inoculated with PA (13 107 CFU) intratracheally. Mice were
randomized to receive either AA (50 mg/kg) or saline intraperitoneally. HMGB1 levels in the BALF were analyzed by Western blot analysis. *P< 0.05
compared with hyperoxia control group (A). RAW 264.7 cells either remained at RA (21% O2) or were exposed to 95% O2 for 24 hours with AA (0–1,000 mM).
HMGB1 levels in cell culture media were analyzed by Western blot analysis. The data obtained are represented in percentage of the 95% O2 control group.
*P< 0.05 compared with 95% O2 (0 mM) control group; #P< 0.05 compared with 21% O2 (0 mM) control group (B). The translocation of HMGB1 was
assessed by immunostaining the cells with anti-HMGB1 antibody (red). DAPI stain was used to visualize the nuclei (blue). Scale bars: 10 mm (C). Each value
represents the mean6 SEM of three independent experiments.
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critical reduction or even depletion of
the AA reservoir in the system. AA
supplementation brings about repletion to
attenuate the adverse effects of oxidative
stress. This hypothesis is supported by the
results presented in Figures 4A and 4B,
which show that exposure to hyperoxia
depletes intracellular AA levels in
cultured macrophages, and continuous
supplementation with 1,000 µM AA can
replenish and maintain the levels of
intracellular AA.

Prolonged exposure to hyperoxia has
been shown to result in excessive production
of mitochondrial ROS in lung cells (20).
Our results indicate that hyperoxia
increases intracellular oxidative stress
in cultured macrophages (Figure 3).
Supplementation with AA can reduce
hyperoxia-increased levels of ORP to
similar levels observed under normoxic
conditions (Figure 3). In hyperoxic
macrophages without AA supplementation,
oxidative stress can cause actin oxidation
and subsequently increase stress fiber
formation (16, 18), and oxidation of actin’s
regulatory proteins, thereby causing
dysfunction in normal actin polymerization
(24, 50), leading to the compromised
macrophage phagocytic function. AA has
also been shown to decrease the levels of
the hydrogen peroxide–induced ROS (51).
Interestingly, plasma AA provides

protection against aqueous peroxyl radicals
in healthy human subjects (29).
Macrophages normally accumulate and
maintain very high intracellular levels of
AA compared with plasma via specific
sodium-dependent transporters, thus
providing an effective mechanism to
neutralize excessive ROS in these cells (40).
However, levels of intracellular AA can be
significantly decreased after activation
of phagocytosis (52). Thus, AA
supplementation under oxidative stress
may help to maintain the levels of
intracellular AA, and subsequently the
antioxidant capacity of the alveolar
macrophages during phagocytosis, leading
to the improvement in phagocytic activity,
as in the results shown in Figure 2. Similar
to these observations in macrophages, AA
has also been shown to improve phagocytic
functions of monocytes and neutrophils in
humans (53, 54) and murine peritoneal
macrophages (55, 56). These results
demonstrate that AA can effectively
maintain the phagocytic functions of
macrophages under oxidative stress.

HMGB1, a potent proinflammatory
cytokine, can impair macrophage
phagocytosis when it is present in the
extracellular milieu (7, 37). High levels of
airway HMGB1 are observed in animals
exposed to hyperoxia and/or mechanical
ventilation, as well as in patients with VAP

(7, 11, 57–59). The results of this study
indicate that AA can inhibit hyperoxia-
induced HMGB1 accumulation in the
extracellular milieu (Figure 5). This effect
was associated with an increase in
macrophage phagocytosis function
(Figure 2), and a decrease in the
cytoplasmic translocation of HMGB1 from
nuclei in hyperoxic macrophages, which is
the first step in the release of HMGB1 into
the extracellular milieu (Figure 5).
Consistent with these results, it has been
reported that the administration of AA
significantly inhibited LPS-stimulated
HMGB1 secretion from cultured
macrophages (60, 61). These results suggest
that AA significantly increases macrophage
phagocytosis not only by reducing the
intracellular oxidative stress, but also by
inhibiting the translocation and the release
of nuclear HMGB1 from these cells.

NF-kB is a redox-sensitive
transcription factor (62–65) that is
activated under oxidative stress conditions,
including hyperoxia (66–68). Activation of
NF-kB has been shown to play a critical
role in the release of HMGB1 from
macrophages exposed to hyperoxia or LPS
(17, 44, 69). Our results indicate that AA
can significantly inhibit NF-kB activation
by attenuating the hyperoxia-induced
nuclear translocation of NF-kB in cultured
macrophages (Figure 6). This effect is
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Figure 6. AA inhibits the nuclear translocation of NF-kB in hyperoxic macrophages. RAW 264.7 cells either remained at RA (21% O2) or were exposed to
95% O2 for 24 hours in the presence of AA (0–1,000 mM). The localization of NF-kB was assessed by immunostaining the cells with anti-p65 antibody
(red). DAPI stain was used to visualize nuclei (blue). Scale bars: 10 mm (A). Fluorescence was quantified using ImageJ software (National Institutes of
Health, Bethesda, MD) and represented as the fluorescence ratio of nucleus to cytoplasm (N/C) (B). *P< 0.05 compared with 95% O2 (0 µM) control
group; #P< 0.05 compared with 21% O2 (0 mM) control group.
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accompanied by the inhibition of
cytoplasmic translocation and extracellular
accumulation of HMGB1 in these cells
(Figure 5). Previously, it has been reported
that AA significantly inhibits NF-kB

activation produced by TNF-a in cultured
human epithelia, endothelia, and
monocytes (70). Cárcamo and colleagues
(70) showed that AA can block the
phosphorylation of IkBa, a key step that

allows for the nuclear translocation of
NF-kB and subsequent activation of gene
expression (70, 71). Our results suggest
that the AA-induced decrease in the
accumulation of HMGB1 in extracellular
milieu is mediated, at least in part, by
suppressing NF-kB activation.

In this study, we demonstrate the
protective effects of AA against PA infection
under hyperoxic conditions. The data
presented implicate the involvement of
parallel pathways, consisting of hyperoxia-
induced elevation of both intracellular levels
of ROS and extracellular HMGB1, in
hyperoxia-compromised macrophage
functions. Through these pathways, AA
effectively enhanced macrophage functions
that were compromised by prolonged
exposure to hyperoxia (Figure 7). Although
other antioxidants have been shown
to be effective in rescuing hyperoxia-
compromised macrophage functions
(18, 26), AA might be more advantageous,
due to its relatively nontoxic properties,
affordable cost, and easy commercial
availability (30, 72). Thus, our findings
suggest that supplementation with AA
during supportive oxygen therapy may be
an effective intervention to attenuate or
prevent the development of VAP in these
patients. n
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