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Abstract: Neuropsychiatric symptoms (NPS) are an integral part of the dementia 

syndrome and were therefore recently included in the core diagnostic criteria of 

dementia. The near universal prevalence of NPS in Alzheimer’s disease (AD), com-

bined with their disabling effects on patients and caregivers, is contrasted by the fact 

that few effective and safe treatments exist, which is in part to be attributed to our in-

complete understanding of the neurobiology of NPS. In this review, we describe the 

pathological alterations typical for AD, including spreading and evolution of burden, 

effect on the molecular and cellular integrity, functional consequences and atrophy of 

NPS-relevant brain regions and circuits in correlation with specific NPS assessments. 

It is thereby clearly established that NPS are fundamental expressions of the underly-

ing neurodegenerative brain disease and not simply reflect the patients’ secondary response to their ill-

ness. Neuropathological studies, moreover, include a majority of end-stage patient samples, which 

may not correctly represent the pathophysiological environment responsible for particular NPS that 

may already be present in an early stage, or even prior to AD diagnosis. The burdensome nature and 

high prevalence of NPS, in combination with the absence of effective and safe pharmacotherapies, 

provide a strong incentive to continue neuropathological and neurochemical, as well as imaging and 

other relevant approaches to further improve our apprehension of the neurobiology of NPS. 
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1. INTRODUCTION 

As the prototype of cortical dementias, Alzheimer’s dis-
ease (AD) presents with prominent cognitive deficits in sev-
eral domains, including episodic and semantic memory, ex-
ecutive and attentional processing, as well as visuospatial 
functioning [1], which have been intensely studied for many 
decades. In addition to the declining cognitive function, AD 
and related dementias are equally associated with a high 
prevalence of behavioral and psychiatric disturbances [2], 
consisting of depression, apathy, agitation, aggression, sleep 
disorders, delusions and hallucinations (psychosis), activity 
disturbances, anxieties/phobias, irritability, disinhibition and 
euphoria/dysphoria [3-7]. Originally labelled as behavioral 
and psychological signs and symptoms of dementia (BPSD) 
[8], these symptoms have more recently also been clustered 
under the umbrella term of neuropsychiatric symptoms 
(NPS) [7]. 
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NPS are an integral part of the dementia syndrome and 
affect the majority of all dementia subjects over the course of 
their illness [9]. NPS have an important impact on patients, 
caregivers/relatives, and society at large. They impact pa-
tients’ functioning and often cause premature transition to 
structured living environments and institutionalization [10]. 
Since they are often more difficult to cope with than cogni-
tive changes, they imply a major burden to family members 
and health care professionals [11]. Moreover, NPS have been 
linked to accelerated cognitive decline [12], increased risk of 
secondary morbidity or injury [13], as well as greater risk of 
mortality [10]. Altogether, NPS are a major cause of dimin-
ished quality of life for both patients and caregivers and con-
tribute significantly to the overall costs of dementia care 
[14].  

Despite being almost universally present during the 
course of dementia, only in the recently published fifth edi-
tion of the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM), NPS have finally been recognized as an inte-
gral part of the disease process, and, moreover, have been 
included in the core diagnostic criteria of dementia, referred 
to as ‘major or mild neurocognitive disorder (NCD)’ [15]. 
DSM-V criteria circumscribe NPS as ‘specifiers’, i.e. psy-
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chotic features, mood disturbances (depression, anxiety, and 
elation), agitation, apathy, disinhibition, sleep disturbances, 
hyperphagia and hoarding. Furthermore, in the additional 
description of ‘major or mild NCD due to Alzheimer’s dis-
ease’, depression and apathy in the earliest stages of AD, 
together with psychotic features, irritability, agitation, com-
bativeness, and wandering in the advanced stages of the dis-
ease, are all classified as ‘associated features supporting the 
diagnosis’ [15], thereby at last rightly acknowledging the 
importance of NPS in dementia diagnosis.  

Given that up to 80-97% of AD patients in the general 
population may suffer from NPS at some point during their 
disease course [16], this near universal prevalence of NPS in 
AD, combined with their serious and disabling effects on 
patients and caregivers, has recently focused significant at-
tention on the fact that few effective and safe treatments ex-
ist, which can – at least partially – be attributed to our in-
complete comprehension of the neurobiology of NPS. This 
paper will describe the pathological alterations typical for 
AD, including spreading and evolution of burden, effect on 
the molecular and cellular integrity, functional consequences 
and atrophy of NPS-relevant brain regions and related cir-
cuits. Although the main focus will be on human studies, 
also a few relevant animal model approaches will be dis-
cussed. The development and phenotyping of animal models 
is indeed essential in AD-related research as valid models 
enable the appraisal of early pathological processes – which 
are often not or poorly accessible in patients [17, 18]. 

2. NEUROPATHOLOGICAL FEATURES OF AD 

The neuropathological hallmarks of AD include “posi-
tive” lesions such as amyloid plaques, cerebral amyloid an-
giopathy, neurofibrillary tangles, and neuroinflammatory 
responses, and “negative” lesions, such as neuronal and syn-
aptic dysfunction and loss. 

2.1. Amyloid-Related Pathology 

One of the major positive hallmarks of both familial and 
late-onset AD is the extracellular accumulation of amyloid-β 
(Aβ) peptides in amyloid or senile plaques (SP). Aβ is a 36-
43 amino acid fragment of the transmembrane and extracel-
lular domains of the amyloid precursor protein (APP) [19]. 
The APP amyloidogenic pathway is responsible for produc-
ing Aβ, and involves the cleavage of APP by β -secretase, 
followed by γ-secretase. The non-amyloidogenic pathway, in 
which APP is first cleaved by α-secretase, results in a neuro-
protective sAPPα fragment. Although the excessive aggrega-
tion and deposition of Aβ has been reported to cause neu-
rodegeneration in AD, the amyloidogenic pathway is a 
physiological process important for normal neuronal func-
tioning [20], especially as modulator of synaptic plasticity in 
its monomeric form [21]. Aβ is characterized by the intrinsic 
tendency to form aggregates that are referred to as oli-
gomers, protofibrils or mature amyloid fibrils, depending on 
their appearance in electron and atomic force microscopy 
[22, 23]. Aβ1-40 and Aβ1-42 are the most common types 
with the more hydrophobic Aβ1-42 being particularly prone 
to aggregation [24, 25]. Although typically Aβ plaques are 
classified into diffuse, dense-core and neuritic plaques, based 
on their morphology and positive or negative staining with 

Thioflavin-S or Congo Red, they exist as a continuum in 
which complex mixtures of fibrillar, granular, and even 
soluble Aβ forms are associated with highly varying degrees 
of surrounding glial and neuritic alterations [26, 27].  

Although some have reported that the insoluble form of 
Aβ is the major variant causing AD pathology [28], others 
state that both insoluble and soluble forms are observed in 
symptomatic AD patients, as well as in presymptomatic 
cases [29]. In this respect, several lines of investigation now 
support the view that increased levels of soluble Aβ1-42 
oligomers might lead to synaptic damage, neurodegenera-
tion, and, accompanying memory loss, mainly by inhibiting 
long-term potentiation, damaging spines and interfering with 
activity-regulated cytoskeleton associated protein distribu-
tion [26, 30]. 

Familial forms of AD can be caused by mutations in APP 
on chromosome 21 [31]. The greater part of these mutations 
are located at the secretase cleavage sites, or the transmem-
brane domain of APP. Mutations near the β- and γ-secretase 
cleavage sites have been reported to lead to an overproduc-
tion of total Aβ, or an increased Aβ1-42/Aβ1-40 ratio. Fur-
thermore, mutations within Aβ are hypothesized to increase 
its tendency to form aggregates [32, 33]. Since presenilin 
(PSEN)-1 and PSEN2 proteins constitute the active site of γ-
secretase [34], mutations in their coding genes (PSEN1 and 
PSEN2) result in a deficient γ-secretase and can also lead to 
AD pathology [35]. In fact, most familial AD cases are at-
tributed to mutations in PSEN1 or PSEN2 [34]. Of interest to 
note here is Down syndrome (DS) considered a human over-
expression model of AD based on trisomy of chromosome 
21 which harbors the APP gene [36]. In addition to the con-
genital intellectual disability, DS is associated with acceler-
ated ageing, including a significantly increased risk of de-
veloping early-onset AD; approximately 50-70% of DS indi-
viduals develop AD by the age of 60-70 years [37, 38]. Tri-
somy of APP is likely to make a significant contribution to 
the increased frequency of dementia in people with DS, al-
though other genes than APP located on chromosome 21 
may also contribute to the early onset of AD in DS [39].  

Regarding sporadic AD, the apolipoprotein E (APOE) ε4 
allele is believed to account for most of the genetic risk, but 
as a susceptibility gene it is neither necessary nor sufficient 
to cause late-onset AD [40]. APOE is a cholesterol trans-
porter in the brain, and is essential for deposition and fibrilli-
zation of Aβ and plaque formation [41]. 

2.1.1. Amyloid Cascade Hypothesis 

It is widely assumed that the neuropathology of AD is 
initiated by abnormal aggregation and deposition of Aβ pep-
tide, either due to increased Aβ production or decreased Aβ 
clearance. The aggregation and deposition of Aβ are hy-
pothesized to subsequently cause neuronal damage and de-
mentia. This theory is generally known as the amyloid cas-
cade hypothesis, and is supported by several lines of evi-
dence [35, 42]. Firstly, the discovery that presenilin 1 and 2 
(PSEN1 and PSEN2) enhance the processing of APP to amy-
loidogenic Aβ, through a direct effect on γ-secretase, is a 
first indication [43, 44]. Secondly, mutations in the gene 
encoding tau protein cause frontotemporal lobar degenera-
tion with parkinsonism [45]. This dementia subtype is char-
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acterized by a severe deposition of abnormal tau in the brain, 
while no Aβ inclusions can be found. This indicates that se-
vere alterations in tau metabolism are not able to induce 
amyloid pathology. Therefore, it was considered that neu-
rofibrillary tangles (NFTs, see 2.2) in AD only appeared 
after the occurrence of amyloid pathology, rather than before 
[35]. A third indication supporting the amyloid cascade hy-
pothesis is that transgenic mice overexpressing mutant hu-
man APP and human tau, show increased NFT formation 
compared to mice overexpressing tau alone. Moreover, the 
number and structure of SP remained unaltered [46], sug-
gesting that modified APP processing occurs before the ap-
pearance of NFT [35]. Fourthly, overexpression of chromo-
some 21-located genes in DS is associated with an increased 
risk of developing AD, neuropathologically associated with 
extensive deposition of Aβ plaques, as well as neuroinflam-
mation and substantial NFTs (Wisniewski et al., 1985), 
whereas other types of dementia, for example frontotemporal 
or Parkinson’s disease dementia are not observed within this 
population [47].  

However, observations by other research groups do not 
comply easily with the amyloid cascade hypothesis. It has 
been reported, for instance, that amyloid burden does not 
correlate with the severity and duration of the dementia syn-
drome, whereas several other clinicopathological studies 
confirmed that the amount and distribution of NFT indeed 
correlated with the severity and duration of the disease [26, 
48]. The amyloid hypothesis therefore remains a debatable 
theory until present [35, 49]. Moreover, despite plaque pa-
thology being present in virtually all DS individuals aged 
>40 years [50] and increased Aβ expression, 30-50% of DS 
subjects will never develop clinical AD [51], implying in-
deed that the amyloid cascade theory may not fully cover 
AD etiology. 

2.1.2. Topographic Distribution of Amyloid Pathology 

As illustrated by (Fig. 1A), amyloid plaques mainly ac-
cumulate in the neocortex, but with a poorer predictability as 
opposed to NFT spreading. Amyloid deposits involve all six 
layers of the neocortex, even though layers I and VI are less 
affected than layers II-V [53]. In advanced AD cases, lesions 
can even be detected in the transitional area of cortical layer 
VI with the adjacent white matter. In general, two overall 
staging systems have been proposed. Firstly, Braak and 
Braak [54] distinguished three stages: stage A, with amyloid 
deposits preferentially in the basal portions of frontal, tem-
poral and occipital lobes; stage B, in which all neocortical 
association areas are affected, except for the primary sen-
sory, motor and visual cortices, and with only mild lesions in 
the hippocampus; and stage C, characterized by additional 
plaque formation in these primary neocortical areas, and 
sometimes amyloid deposits in the molecular layer of the 
cerebellum and several subcortical nuclei, such as striatum 
and thalamus among others. Secondly, Thal et al. [55] pro-
posed five stages: stage 1 or the neocortical stage; stage 2, 
with additional depositions in the entorhinal cortex, hippo-
campal formation, amygdala, and, insular and cingulated 
cortices; stage 3, with extra lesions in subcortical nuclei, 
such as basal forebrain cholinergic nuclei, thalamus, and, 
even white matter; stage 4, characterized by involvement of 
brainstem structures, such as substantia nigra and colliculi; 

and, finally, stage 5, where amyloid deposits are localized in 
the pons (raphe nuclei and locus coeruleus e.g.) and molecu-
lar layer of the cerebellum as well. 

Recently, Aβ deposit staging as measured according to 
the phases of deposition described by Thal et al. [55] have 
been implemented by Montine et al. [56] into an overall 
“ABC scoring” approach, which includes Aβ plaque scoring 
(A score), as well as Braak NFT staging (B score; see section 
2.2 Tau-related pathology) and neuritic plaque scoring (C 
score). The five stages of Aβ plaque scoring [55] have been 
translated into the A score as follows: A score 0 = stage 0; A 
score 1 = stage 1 or 2; A score 2 = stage 3; A score 3 = stage 
4 or 5. 

2.2. Tau-Related Pathology  

NFT consist of abnormally paired fibrils that are wound 
around each other, also referred to as paired helical frag-
ments. The major component of NFT is hyperphosphorylated 
microtubule-associated protein tau (MAPT), although other 
proteins, such as ubiquitin [57, 58] and cholinesterases [59] 
might also be present. MAPT is an axonal protein binding to 
microtubules, hereby promoting microtubule assembly and 
stability [34]. Tau hyperphosphorylation in AD is initiated 
intracellularly and causes sequestration of tau and other mi-
crotubule-associated proteins. This, in turn, results in im-
paired axonal transport by disassembly of the microtubules, 
and impaired neuronal and synaptic function [60]. Moreover, 
aggregation of hyperphosphorylated tau into fibrils further 
hampers neuronal functioning. The distribution and extent of 
NFT in the brain of AD patients is associated with the sever-
ity and duration of the disease [48], suggesting that these 
lesions have a direct impact on neuronal functioning [58]. In 
the early stages, NFT are observed in the transentorhinal 
cortex, while in following stages, NFT further spread to the 
amygdala and hippocampus. As the disease progresses, NFT 
can also be found in neocortical association areas [61]. 

Three morphological stages have been defined: (1) pre- 
or diffuse NFT within the cytoplasm with well-preserved 
dendrites and a centered nucleus; (2) mature or fibrillary 
intraneuronal NFT consisting of cytoplasmatic filamentous 
tau aggregates causing displacement of the nucleus towards 
the periphery of the soma and distorted dendritic segments 
(neuropil threads); and (3) extraneuronal ‘ghost’ NFTs as a 
result of death of tangle-bearing neurons [26, 62].  

The combination of the intracellular location of tau ag-
gregates with the diverse ultrastructural conformations, 
based on the (combination of) different isoforms and various 
possible posttranslational modifications, as well as colocali-
zation with other β-sheet structured protein deposits, compli-
cates the development of ligands for tau imaging. Neverthe-
less, several selective tau radiotracers have been developed, 
but still lack the more widespread clinical application of 
Pittsburgh compound-B [63, 64].  

2.2.1. Topographic Distribution 

NFT accumulation starts in the allocortex of the medial 
temporal lobe (i.e. entorhinal cortex and hippocampus) and 
spreads to the associative isocortex, relatively sparing the 
primary sensory, motor, and visual areas (Fig. 1B). In total, 
Braak and Braak [55] distinguished six stages (I-VI). 
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In stage I, NFT appear consistently in the 
(trans)entorhinal cortex, along with the CA1 region of the 
hippocampus in stage II. Thereafter, limbic structures be-
come affected, such as the subiculum of the hippocampal 
formation (stage III), the amygdala, thalamus, and, claustrum 
(stage IV). Finally, NFT spread to virtually all isocortical 
areas (isocortical stage), with the associative areas being 
affected prior and more severely (stage V) than the primary 
sensory, motor, and visual areas (stage VI). Notably, NFT 
lesions in striatum and substantia nigra might occur during 
the late isocortical stage. The stellate neurons of layer II, the 
superficial portion of layer III, and, the large multipolar neu-
rons of layer IV of the entorhinal cortex are preferentially 
lesioned, whereas the same applies to mainly layers III and 
V of the isocortical areas [53, 54]. As mentioned before, the 
Braak staging approach of NFT in AD brain has recently 
been included in the overall “ABC” scoring consensus of 
Montine et al. [56]. The NFT-based B score refers to the 
Braak staging as follows: B score 0 = stage 0; B score 1 = 
stage I or II; B score 2 = stage III or IV and B score 3 = stage 
V or VI.  

2.3. Other Protein Inclusions 

The misfolding, aggregation and accumulation of pro-
teins in the brain, resulting in synaptic dysfunction and neu-
ronal loss is a seminal pathological mechanism in diverse 
neurodegenerative diseases [65]. Although the distribution 
and composition of prion-like protein aggregates are consid-
ered different in each neurodegenerative disease [65], AD 
brain may also contain other types of protein deposits be-
sides amyloid plaques and NFT. More than 50% of AD pa-
tients also exhibit abundant accumulation of α-synuclein (α-
Syn)-positive Lewy bodies [66] and are termed the Lewy 
body variant of AD, which typically exhibits an accelerated 
disease course and a more pronounced cognitive decline than 
pure AD patients [67, 68]. It has been hypothesized that Aβ 

and a-Syn can interact synergistically thereby accelerating 
the pathology and cognitive decline [69], although it has also 
been postulated that a-Syn can be neuroprotective against 
Aβ-induced cell death, suggesting a cell defense mechanism 
during the initial stages of the mixed pathology [70].  

The dominantly inherited polyglutamine (polyQ) dis-
eases, such as Huntington disease and spinocerebellar 
ataxias, are caused by unstable trinucleotide repeat expan-
sions, leading to pathogenic glutamine tracts in particular 
proteins [71]. Expansions within the polyQ tract of the 
TATA box-binding protein (TBP), an essential transcription 
factor, result in accumulation of the protein in various polyQ 
diseases. A CAG/CAA repeat expansion in the TBP gene, 
for example, may cause spinocerebellar ataxia with associ-
ated features such as dementia and/or psychiatric manifesta-
tions [72]. Also in AD brain, TBP accumulation has been 
observed within NFT structures, with variable levels be-
tween patients, across brain areas and relative to tau and Aβ 
[73].  

Patients with amyotrophic lateral sclerosis have aggre-
gates mainly composed of superoxide dismutase 1 (SOD1) in 
cell bodies and axons of motor neurons [74]. SOD1, a ubiq-
uitously expressed antioxidant enzyme that plays a key role 
in the cellular defense against harmful superoxide radicals, is 
however also a major target of oxidative damage in AD 
which forms proteinaceous aggregates that are associated 
with amyloid SP and NFTs in AD brains [75]. 

The ubiquitin proteasome system (UPS) is a highly regu-
lated mechanism of intracellular protein degradation and 
turnover and thus plays a role in a variety of cellular func-
tions. Dysregulated ubiquitination and protein clearance has 
been implicated in various neurodegenerative disorders, in-
cluding AD [76]. Ubiquitinated forms of tau and Aβ, as well 
as other ubiquitinated proteins, are major components of the 
AD-typical protein aggregates [77-79]. Components of the 
UPS could be linked to the early phase of AD, marked by 

 

Fig. (1). The accumulation of misfolded proteins in Alzheimer disease follows characteristic and predictable patterns as illustrated by the 

increasing intensity and spreading of color. (A) Amyloid plaques first appear in neocortex, followed by allocortex and finally progressing to 

subcortical regions. The three brain schemata reflect Montine A scores 1 – 3 from left to right. (B) Neurofibrillary tangles appear first in the 

allocortex of the medial temporal lobe and spreads to the associative isocortex, relatively sparing the primary sensory, motor, and visual ar-

eas. The three brain schemata reflect Montine B scores 1 – 3 from left to right. Reprinted with permission from [52]. 
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synaptic dysfunction, as well as to the late stages of the dis-
ease, characterized by neurodegeneration [78, 79]. 

Initially, transactivation responsive region (TAR)-DNA-
binding protein 43 (TDP-43) was considered to be a disease-
specific component of ubiquitin-positive and tau-negative 
inclusions in the brains of patients with frontotemporal lobar 
degeneration with ubiquitin-positive inclusions and 
amyotrophic lateral sclerosis [80]. However, it is now widely 
known that this protein can also abnormally concomitantly 
accumulate in other neurodegenerative diseases, including 
AD with a prevalence of approximately 30%, variable distri-
bution patterns and a modified clinicopathologic and radi-
ologic AD phenotype [81-83]. TDP-43 pathology is thought 
to be triggered by Aβ, independent of tau [84]. 

2.4. Neuroinflammation  

Clinical manifestations preceding the dementia stage 
support an early and substantial involvement of an innate 
neuroimmune response in AD pathogenesis [85-87]. The two 
major inflammation-related cellular players are microglia 
and astrocytes. Microglia have crucial physiological func-
tions in the brain, including tissue surveillance and synaptic 
remodeling [88], which may be compromised by Aβ species 
inducing a dystrophic microglia phenotype, reducing phago-
cytic capacity, and eliciting an increased cytokine production 
[89, 90]. Analogously, since the physiological role of astro-
cytes has been linked to fluid, ion, pH, and transmitter ho-
meostasis, synapse function, regulation of blood flow and 
energy and metabolism, astrocytic atrophy leading to a det-
riment of neuronal support may play a role in AD-related 
symptomatology [87, 91]. Initially, the acute inflammatory 
response is thought to aid clearance and restore tissue ho-
meostasis. Triggers (e.g. pathological ageing with sustained 
exposure to Aβ, genetic mutations) and aggravators (e.g. 
peripheral inflammation, obesity, brain trauma) promote 
sustained immune activation, which ultimately leads to 
chronic neuroinflammation. Pathological accumulation of 
Aβ is considered a key player in the activation of microglia 
and astrocytes in AD brain that leads to the upregulation of a 
myriad of mediators and modulators of neuroinflammation 
[87, 92]. These include among others, cytokines [92], adhe-
sion molecules and chemokines [93, 94], caspases [95], pros-
taglandins [96], complement system components [97], nitric 
oxide and reactive oxygen species [98], and induce altera-
tions to the neurovascular unit [99], which can be detrimen-
tal to neuronal functioning. Perpetuation of glial activation 
causes functional and structural changes that result in neu-
ronal degeneration and scar formation [87, 100]. Although 
neuroinflammation plays a pivotal role in AD pathogenesis, 
detection of inflammatory markers in CSF, blood or directly 
in the brain via imaging paradigms, has not yet been estab-
lished as a valuable and validated diagnostic method and 
progression monitor [87], let alone the potential link between 
neuroinflammation and NPS in AD. Nevertheless, the in-
volvement of (neuro)inflammation in psychiatric disorders 
[101] and AD indicates its possible involvement underlying 
NPS in AD. Therefore, in subsequent sections, relevant stud-
ies assessing neuroinflammatory mediators of NPS will be 
dealt with where relevant.  

It has been previously evidenced that dense-core amyloid 
plaques are commonly associated with reactive astrocytes 
and microglial cells [102, 103]. The latter indicates that Aβ 
might be the major trigger of this response, even though a 
highly significant positive correlation between both astrocy-
tosis and microgliosis and NFT burden, and not amyloid 
plaque burden, has been found as well [104].  

2.5. Neuronal and Synaptic Loss  

The mechanisms underlying AD-related neuronal and 
synaptic loss are very complex and different in nature. Ac-
cumulated Aβ induces multiple cytotoxic effects, such as 
oxidative stress, changes in ionic homeostasis, alterations in 
enzymatic kinase activity, and hyperphosphorylation of tau 
protein. Subsequently, apoptosis, activation of glutamate 
receptors, DNA damage, and, elevation of intracellular cal-
cium levels may occur [105-108]. Eventually, all these Aβ-
induced events may directly or indirectly induce neuronal 
death. However, the quantity of Aβ deposits does not neces-
sarily correlate with clinical features of patients, since SP are 
also found in the brain of elderly without AD [109]. In addi-
tion, accumulation of SP is not associated with the amount of 
synaptic loss [110, 111], nor with clinical disease severity. 
Moreover, because the spatiotemporal and laminar pattern of 
synapse loss matches that of neuron loss, and, concurrently, 
synaptic loss even exceeds the existing neuronal loss within 
a particular cortical area, it becomes very likely that synapse 
loss precedes neuronal loss indeed. Probably this is also why 
synaptic density is the best pathological correlate of cogni-
tive decline in AD [112-114]. Synaptic alterations in AD are 
associated with dendritic pathology [115, 116]. Dendritic 
degeneration and loss in AD brain has been described mostly 
in the perirhinal and entorhinal cortices [54], in the hippo-
campus, particularly in the subiculum, where the dendritic 
arborization index was substantially decreased by up to 66% 
[117], as well as in various other cortical areas [118-121]. 

Although neurotoxicity of Aβ has initially been attributed 
to its fibrillary forms, later studies showed that neurotoxins 
also comprise small diffusible Aβ oligomers, called Aβ-
derived diffusible ligands (also referred to as ADDLs) [23]. 
The presence of high-affinity ADDL-binding proteins in 
hippocampus and frontal cortex, but not cerebellum parallels 
the regional specificity of AD pathology and suggests the 
involvement of a toxin receptor-mediated mechanism [108]. 
Moreover, posttranslational changes to Aβ peptides i.e. nitra-
tion, oxidation, phosphorylation, isomerization, pyroglu-
tamylation, racemization, and glycosylation, affects their 
biochemical properties and functions in the pathophysiology 
of AD [122]. 

3. BRAIN CIRCUITS, NETWORKS AND SYSTEMS 
INVOLVED IN REGULATION OF BEHAVIOUR  

The fact that with progression of the disease, AD affects 
nearly all brain regions, including the epicenters of emotions 
and cognition and their extensive and reciprocal neuronal 
connections, forms a logical foundation for the development 
of both cognitive and NPS-related manifestations. Increasing 
knowledge in behavioral neuroscience and the neurocircuitry 
underlying cognitive and various noncognitive functions 
over the last decades, has founded the basis for the develop-
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ment of theoretical models describing the neurobiological 
underpinnings of NPS in AD [2], with the three major mod-
els being (i) the frontal-subcortical circuitry [123, 124]; (ii) 
cortico-cortical networks [125], and (iii) the ascending 
monoaminergic hypothesis [126]. 

3.1. Frontal-Subcortical Circuitry 

The frontal-subcortical circuitry model is based on 
Geschwind’s theory of disconnection syndromes stating that 
these higher function deficits resulted from white matter le-
sions or lesions of the association cortices, the latter acting 
as relay stations between primary motor, sensory and limbic 
areas [127]. The prototypic structure of all circuits is an ori-
gin in the frontal lobes, projection to striatal structures, con-
nections from striatum to globus pallidus and substantia ni-
gra, projections from these two structures to specific tha-
lamic nuclei, and a final link back to the frontal lobe. In ad-
dition to a motor and an oculomotor circuit, at least three 
frontal-subcortical circuits mediate human behavior: (i) the 
dorsolateral prefrontal circuit mediating planning, organiza-
tion, and executive function, (ii) the lateral orbitofrontal cir-
cuit mediating inhibitory control, and, (iii) the anterior cin-
gulate circuit mediating motivated behavior (Fig. 2; [124]).  

3.2. Cortico-Cortical Network  

The cortico-cortical network model posits that the human 
brain consists of five partially segregated and partially 
overlapping large-scale neurocognitive networks: (i) a right 
hemisphere-dominant spatial awareness network with epi-
centers in the dorsal posterior parietal cortex, the frontal eye 
fields and the cingulate region; (ii) a left hemisphere-
dominant language network with epicenters in Wernicke’s 
and Broca’s areas; (iii) a memory-emotion network with 
epicenters in the hippocampal–entorhinal regions and the 
amygdaloid complex; (iv) a working memory-executive 
function network with epicenters in the prefrontal cortex and 
probably the posterior parietal cortex; (v) a face and object 
identification network with epicenters in the midtemporal 
and temporopolar cortices [125]. These large-scale networks 
are composed of widely separated and interconnected local 
networks that address the neurobiological basis of complex 
cognitive domains.  

The functionality of the memory-emotion network is 
based on the widely distributed but tightly interconnected 
limbic structures [125], that were originally described in the 
first half of the 20

th
 century by C. Jakob (1906), J. Papez 

(1937), P. Yakovlev (1948) and P. MacLean (1949, 1952).  

 
Fig. (2). At least three frontal-subcortical circuits mediate human behavior: (i) the dorsolateral prefrontal circuit mediating planning, organi-

zation, and executive function, (ii) the lateral orbitofrontal circuit mediating inhibitory control and (iii) the anterior cingulate circuit mediat-

ing motivated behavior. The prototypic structure of all circuits is an origin in the frontal lobes, projection to striatal structures, connections 

from striatum to globus pallidus and substantia nigra, projections from these two structures to specific thalamic nuclei, and a final link back 

to the frontal lobe. Indirect pathways projecting from striatum to globus pallidus externa, then to subthalamic nucleus, and back to the globus 

pallidus interna/substantia nigra, as well as connections of the substantia nigra and the subthalamic nucleus are not shown for. Legend: BA, 

Brodman area. Adapted from [124]. 
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The subcortical limbic structures include the amygdala, 
mammillary bodies, hypothalamus, specific thalamic nuclei 
(anterior, intralaminar, and medial dorsal groups) and the 
ventral striatum (nucleus accumbens). The cortical limbic 
components can be separated into limbic and paralimbic 
zones that display increasing anatomical complexity, ranging 
from the corticoid areas of the amygdaloid complex, sub-
stantia innominata, septal and olfactory nuclei, over the allo-
cortex of olfactory and hippocampal regions, up to the para-
limbic or mesocortex including the piriform cortex, entorhi-
nal cortex, the parahippocampal cortex on the medial surface 
of the temporal lobe, and the cingulate cortex [128].  

Based on functional imaging data and insights from neu-
rological disorders associated with limbic pathology, the 
limbic network model has recently been updated and further 
divided in (i) the hippocampal-diencephalic and parahippo-
campal-retrosplenial network dedicated to memory and spa-
tial orientation; (ii) the temporo-amygdala-orbitofrontal net-
work for the integration of visceral sensation and emotion 
with semantic memory and behaviour; (iii) the default-mode 
network involved in autobiographical memories and intro-
spective self-directed thinking. Table 1 summarizes the func-
tions of these limbic networks, the stage they become af-
fected in AD and corresponding symptomatology.  

3.3. The Ascending Monoaminergic Hypothesis  

As extensively reviewed by Trillo et al. [126], the as-
cending monoaminergic system with cell bodies in the brain 
stem diffusely projecting via long axons to virtually all parts 

of the brain is involved in many aspects of behavior. For 
extensive illustration of the different monoaminergic path-
ways, we refer to the highly detailed first three figures in-
cluded in the review by Trillo et al. [126]. 

The ascending dopaminergic system has been classically 
divided in the nigrostriatal pathway originating in substantia 
nigra and targeting striatum (caudate-putamen), and the 
mesolimbic and mesocortical pathways originating in the 
ventrotegmental area and projecting towards limbic region 
and cortical regions, respectively. In more detail, the mesen-
cephalic dopaminergic system targets cortical and subcorti-
cal structures including the medial and dorsolateral prefron-
tal cortex, orbitofrontal cortex, anterior cingulate cortex, 
dorsal and median raphe nucleus, tuberomammilary nucleus, 
nucleus basalis of Meynert, the external segment of the 
globus pallidus, putamen, caudate nucleus, medial septum, 
amygdala, entorhinal cortex, and dentate gyrus. The main 
norepinephrinergic projections arise from neuronal popula-
tion in the locus coeruleus which widely project to the telen-
cephalon, including the olfactory bulb, hippocampus, 
amygdala, thalamus, hypothalamus, ventral striatum, basal 
forebrain (nucleus basalis of Meynert) and various 
(neo)cortical areas, among which anterior cingulate cortex, 
orbitofrontal cortex and dorsolateral prefrontal cortex. Fi-
nally, ascending serotonergic fibers arise from the raphe nu-
clei, which target (neo)cortical areas (for example anterior 
cingulate cortex, orbitofrontal cortex and dorsolateral pre-
frontal cortex), hippocampus, striatum (caudate nucleus and 
putamen) and the external segment of the globus pallidus, 

Table 1. Functional-anatomical division of the limbic system into three distinct but partially overlapping networks and corre-

sponding functions and involvement in Alzheimer’s disease.  

Relevance in Alzheimer’s Disease Limbic Network  Functions  

Disease Stage Related Symptomatology 

Hippocampal-

diencephalic and 

Parahippocampal-

retrosplenial network  

• Memory 

• Spatial orientation  

Early-stage AD 

MCI 

• Hippocampocentric memory 

dysfunction  

• Anterograde and limited retro-

grade memory deficits  

• Difficulties in spatial orientation  

Dorsomedial default 

network 

• Attention 

• Empathy 

• Self-knowledge 

• Mentalizing 

• Response selection and action monitoring 

• Person perception 

• Autobiographical memory  

• Pain perception  

Early-stage AD  

MCI  

• Disrupted episodic memory 

processing 

• Disrupted goal-directed behav-

iors 

Temporo-amygdala-

orbitofrontal network 

• Behavioural inhibition  

• Memory for temporally complex visual information 

• Olfactory-gustatory-visceral functions 

• Multimodal sensory integration 

• Object reward association learning 

• Outcome monitoring 

Advanced AD • Semantic deficits 

• Language difficulties  

• Personality changes 

• NPS (e.g. aggression, disinhibi-

tion) 

Legend: AD: Alzheimer’s disease; MCI: mild cognitive impairment; NPS: neuropsychiatric symptoms. Adapted from [128]. 
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medial septum, thalamus and hypothalamus, and the tubero-
mammillary nucleus. 

Overall, monoaminergic fiber projections are composed 
of generally poorly myelinated axons to innervate the exten-
sive forebrain (including the cortex, basal ganglia, thalamus, 
and amygdala) [129]. However, in order to innervate a dis-
proportionately high number of neurons, a selected number 
of monoaminergic cell bodies make use of a particular 
method of innervation called “volume transmission”, as op-
posed to standard synaptic innervation or “wire transmis-
sion”. According to this theory, monoaminergic neurons are 
able to induce modulatory and trophic effects on a large 
number of neighboring cells through diffusion to distant ex-
tra-synaptic sites [129]. By combining wire and volume 
transmission-based innervation, the monoaminergic system 
imposes a strong modulatory influence on most of the re-
gions of the brain, and, hence many aspects of behavior 
[126]. Moreover, different monoaminergic systems share 
similar input and output regions and directly project to each 
other, thereby further substantiating the highly complex and 
selective modulatory functions of these systems. 

4. STUDIES LINKING PATHOLOGY – NPS  

Over time, the AD-affected brain shrinks dramatically 
due to widespread cell death, affecting consequently nearly 
all its functions. Whole brain atrophy rates differ among 
normal aging individuals and those diagnosed with mild 
cognitive impairment (MCI) and AD [130]. The spatial pat-
tern of neocortical atrophy associated with normal versus 
pathologic aging is not uniform and depends on the degree of 
disease severity (Fig. 3) [131-134]. Atrophy is not uniform 
across cortical and subcortical regions (Fig. 3), nor does it 
follow a linear trajectory [135]. The spatial pattern and rate 
of decline across the spectrum from normal aging to AD is 
of course paralleled by the development of various cognitive, 
functional and behavioral symptoms.  

The different pathways, circuits and networks involved in 
the regulation of behavior (as described in section 3) are 
logically also affected by AD-related pathology and subse-
quent atrophy, which may underlie the development of cog-
nitive and NPS-related symptomatology.  

Various brain regions included in the frontal-subcortical 
circuits mediating human behavior (section 3.1) may be af-
fected by AD-related pathology leading to disturbances in 
the associated behavioral domains, i.e. planning, organiza-
tion, and executive function, inhibitory control and moti-
vated behavior (apathy) [136-138].  

Some structures of the hippocampal-diencephalic and 
parahippocampal-retrosplenial network (section 3.2) are par-
ticularly vulnerable to damage caused by viral infections or 
alcohol, leading to for example encephalitis or Korsakoff’s 
syndrome, respectively [128]. In addition, imaging studies 
have documented altered metabolism and reduced functional 
activation of this network also in age-related neurodegenera-
tive disorders such as MCI and early stages of AD [139, 
140], while damage to the temporo-amygdala-orbitofrontal 
network manifests with cognitive and behavioural symptoms 
characteristic of for example temporal lobe epilepsy, mood 
disorders, traumatic brain injury, psychopathy and neurode-

generative dementias, including advanced AD [128]. Dys-
function of the dorsomedial default-mode network has been 
related to various neuropsychiatric disorders, including 
schizophrenia, epilepsy, anxiety and depression, autism, at-
tention deficit/hyperactivity disorder and importantly, also in 
dementia (including MCI and AD) [141-143].  

In addition to the cholinergic degeneration in AD [144], 
extensive neuropathological studies have established a com-
pelling link between abnormalities in structure and function 
of subcortical monoaminergic systems and the pathophysiol-
ogy of AD (for review: [126, 145]). While the rostral raphe 
complex is especially susceptible to NFT formation, other 
monoaminergic nuclei frequently exhibit both pathological 
markers (SP and NFT) [146]. An additional link between the 
monoaminergic systems and AD pathophysiology is based 
on genome-wide association studies indicative of relation-
ships between polymorphisms in each monoaminergic sys-
tem and AD symptomatology (for review [126]). 

Brain imaging, electrophysiological, neurochemical and 
neuropathological approaches constitute the major tools to 
investigate brain-behavior relationships in general and hence 
also the biological underpinnings of NPS. Neuropathological 
studies of NPS in AD will be the primary focus in subse-
quent sections dealing with particular NPS, but other rele-
vant approaches (e.g. neuroimaging or electrophysiological 
approaches) indicative of underlying neuropathological al-
terations will be briefly touched upon.  

4.1. Depression 

With prevalence clustering around 20-50%, depression is 
one of the most frequent comorbid psychiatric disorders in 
AD with negative consequences for patients and caregivers, 
including faster cognitive decline, poorer quality of life, 
greater disability in activities of daily living and a higher 
mortality rate [147, 148]. Early-onset depression (< age 65 
years) and recurrent depression constitute long-term risk 
factors for the development of dementia, whereas the onset 
of more recent depressive symptoms may reflect a prodromal 
phase of dementia [149], but the neurobiological mechanism 
underlying this association is not yet fully understood. Sev-
eral lines of evidence suggest that depression shares complex 
pathophysiological routes with dementia. 

Several cross-sectional studies were indicative of brain 
changes associated with AD, including reduced temporal 
lobe [150], hippocampal, and amygdala volume [151, 152] 
in depressed elderly. In line with the observation that depres-
sive symptoms may indeed be a clinical marker of prodromal 
AD, depressive symptoms were found to be associated with 
AD-related neuroanatomical changes, particularly in white 
matter regions causing brain atrophy [153]. Compared to 
other common NPS, as for example apathy, depression is 
indeed considered an early sign of a more aggressive neu-
rodegenerative process or considered to lower brain reserve 
capacity, allowing for more rapid progression of AD neuro-
pathology [154]. Nevertheless, this presumed link was not 
observed in all studies linking depression and conversion to 
clinical AD. Results of Royall and Palmer [155] argue 
against the role of AD-related neuropathology as a mediator 
of depression’s effect on cognitive decline, although authors 
could not rule out a significant mediation effect in a subset 
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of cases, perhaps with more severe baseline depressive 
symptoms. 

A lifetime history of major depression in AD was par-
ticularly linked to increased plaque and tau-related patho-
logical alterations within the hippocampus. Patients with 
concurrent major depression present at the time of first diag-
nosis of AD exhibited an even larger number of hippocampal 
amyloid plaques and NFT [159]. Default mode network dys-
function has been proposed to be an important factor in the 
association between depression and AD [156-159].  

In addition, depression is considered to be significantly 
more prevalent in dementia with Lewy bodies (DLB) as 
compared to AD [160-163], potentially reflecting a manifes-
tation of LB pathology. Analogously, a higher likelihood of 
depression has also been observed in the Lewy body variant 
of AD versus AD patient cohorts [164], which is apparently 
associated with the presence of LBs in the amygdala [165], 
the limbic brain region most closely associated with depres-
sion in the general population [166], or in cortical areas 
[165]. The presence of LBs is accompanied by neuronal cy-
toskeleton changes, which may influence neuronal connec-
tivity via alterations to the synaptic network [167, 168].  

Also other brain regions affected by AD pathology have 
been implicated in depression. A disproportionate loss of 
noradrenergic locus coeruleus neurons for example has been 
considered to represent an important organic substrate of 
depression in AD [169, 170], which was further substanti-
ated by reduced cortical noradrenergic levels in demented 
patients with major depression [171, 172]. In addition, an 
impaired noradrenergic neurotransmission in the cerebellar 
cortex might also be associated with depression in AD [173] 
(Fig. 4), which is in line with the fact that a wide range of 
NPS can be observed following cerebellar pathology [174]. 

Interestingly, AD-related neuroinflammation might also 
(at least partially) lie at the basis of certain NPS, including 
depression. There is for example mounting evidence that the 

enzyme indoleamine 2,3-dioxygenase (IDO), which metabo-
lizes the serotonin (5HT) precursor tryptophan into 
kynurenine, is a prominent player in the relation between 
chronic inflammation and depression [175, 176]. IDO activ-
ity is upregulated by neuroinflammatory processes, leading 
to kynurenine catabolization and an overproduction of qui-
nolinic acid, the neurotoxic end product of the tryptophan 
pathway which may contribute to the excitotoxic effects in 
AD brain. Moreover, decreased tryptophan levels conse-
quently affect 5HT synthesis, which is a neurochemical 
hallmark in the etiology of depression. Increased IDO activ-
ity can therefore play an important link between neuroin-
flammation and depression in AD [177]. Recently, a novel 
TNF-α-induced proinflammatory agent, neutrophil ge-
latinase-associated lipocalin (NGAL) or lipocalin 2 (Lcn2), 
has been linked to both AD [178] and late-life depression 
[179]. Interestingly, plasma NGAL levels are significantly 
increased in elderly depressed patients with cognitive im-
pairments [180] and in serum of people with DS [181], 
which are both known population groups at risk to develop 
AD. Neuroinflammation may indeed play a role in depres-
sion, or perhaps even in NPS in general.  

Cerebral blood flow and metabolism appear to be re-
duced in depressed compared with non-depressed AD pa-
tients in (pre)frontal, temporal and parietal areas [182-187]. 
Depression in AD has also been associated with a signifi-
cantly larger volume of right parietal white matter hyperin-
tensities [188]. 

It is well established that abnormalities in serotonergic 
neurotransmission are central to the pathophysiology of de-
pression in younger adults, but few studies have examined 
serotonergic pathological changes in elderly patients and 
especially in elderly patients in which depression occurs in 
dementia. One study found no evidence for loss of seroton-
ergic neurons or the presence of neuritic pathology in the 
dorsal raphe nuclei in older people with depression, with or 
without comorbid AD [189], whereas significantly lower 

A) B) 

   

Fig. (3). Illustration of a magnetic resonance imaging-based analysis technique to determine the pattern of cortical thinning (measure of cor-

tical atrophy) as a function of disease progression. Age-matched control individuals, mild cognitive impairment (MCI) and Alzheimer’s dis-

ease (AD) groups were compared. Panel A: cortical thickness differences between the control and MCI group with the most significant dif-

ference seen in the (left) medial temporal region. Frontal and posterior parietal areas show differences in a more bilateral fashion. Panel B: 

Cortical thickness differences between the control and AD group clearly indicating bilateral medial and lateral temporal lobe differences are 

present bilaterally. Occipital, primary motor and primary sensory cortices show the least significant differences. Reprinted with permission 

from [134]. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment. 
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cortical 5-HT reuptake sites, as well as hippocampal 5-
HT1A receptors and serotonergic compounds were measured 
in depressed AD patients [172, 190-192]. 

 
Fig. (4). Neurochemical correlates of neuropsychiatric symptoms 

(NPS) in Alzheimer’s disease (AD). Scatter plots representing sig-

nificant monoaminergic neurotransmitter correlates of NPS in the 

cerebellar cortex of autopsy-confirmed AD patients. Panel A: posi-

tive correlation between the DOPAC/DA ratio, indicative of DA 

turnover, and physically nonaggressive behavior (R=+0.497; 

p=0.003). Panel B: positive correlation between MHPG levels, the 

major noradrenergic metabolite, and affective disturbances 

(R=+0.562; p=0.0005). Panel C: positive correlation between the 

DOPAC/DA ratio and activity disturbances (R=+0.595; 

p=0.00026). Although the cerebellum has historically been consid-

ered to be a brain region principally involved in motor control and 

coordination, more recently, higher cognitive functions have been 

attributed to its physiological functions as well. A strong and sus-

tained reciprocal connection between the deep cerebellar nuclei to 

the thalamus and then on to the (prefrontal) cerebral cortex, called 

cerebello-thalamic-cortical pathway, neuroanatomically accounts 

for the role of the cerebellum numerous behavioral processes. 

Cerebellar pathology and subsequent neurochemical alterations 

may underlie certain NPS. Abbreviations: AD, Alzheimer’s disease; 

Behave-AD, Behavioral Pathology in Alzheimer’s Disease Rating 

Scale; CMAI, Cohen-Mansfield Agitation Inventory; DA, dopa-

mine; DOPAC, 3,4-dihydroxyphenylacetic acid; MHPG, 3-

methoxy-4-hydroxyphenylglycol. Reprinted with permission from 

[173]. 

 

Predictors of depression-related behavior (immobility in 
a forced swim test and tail suspension test) in mouse models 
of AD presumably also involve monoaminergic neurotrans-
mitter alterations. The 3×Tg-AD model displays lower basal 
extracellular output of monoamines in the frontal cortex and 
ventral hippocampus, accompanied by obvious local Aβ and 
tau pathology [193].  

4.2. Apathy 

With reported prevalence rates up to almost 80%, apathy 
is the most common and persistent NPS in AD [5, 194]. It is 
defined as diminished motivation for at least 4 weeks, ac-
companied by two of the following symptoms: reduced goal-
directed behavior, reduced goal-directed cognitive activity, 
and reduced emotions [9]. Several studies have indicated an 
overlap between apathy and executive dysfunction [195, 
196], both presumably related to dysfunction of thalamic-
prefrontal-subcortical circuitry. Since the basal ganglia and 
their connections with prefrontal cortex are essential to deci-
sion-making, fronto-striatal circuit dysfunction may be re-
sponsible for the emergence of apathetic behavior in a wide 
range of neurological disorders [197]. 

Apathy is rather difficult to isolate from depression given 
the frequent comorbidities and a considerable overlap in key 
symptoms [194]. Nevertheless, apathy can occur without 
depression in AD and when depression and apathy co-occur 
in AD patients, both NPS have been shown to be clinically 
and anatomically independent [198, 199]. Response to 
treatment is also different: antidepressants, in particular se-
lective serotonin reuptake inhibitors (SSRI), seem to have no 
therapeutic benefit in apathetic patients or can even increase 
the apathy severity [200], which may be indicative of differ-
ential underlying neurobiological and neurochemical sub-
strates.  

Evidence from MCI patients and pre-dementia depressive 
syndromes has led to the hypothesis that in early AD, apathy 
may be the result of dysfunctional affective-emotional proc-
essing [201], which takes place in ventromedial prefrontal 
cortex, and its connections with amygdala and nucleus ac-
cumbens. Correspondingly, neuropathological progression in 
AD targets ventromedial parts of frontal cortex in an early 
stage [202-204]. Apathetic patients have been shown to dis-
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play significantly greater NFT burden and cortical thinning 
in left caudal anterior cingulate cortex and left lateral orbi-
tofrontal cortex, as well as left superior and ventrolateral 
frontal regions, than AD patients lacking apathy symptoms 
[205-207].  

Involvement of the anterior cingulate and related fronto-
subcortical structures, indicative of default mode network 
dysfunction, in patients with apathy has also been confirmed 
in various imaging studies [188, 208-210]. 

Besides imaging studies, also several postmortem studies 
support the hypothesis that dopaminergic circuits linking the 
basal ganglia with the anterior cingulate and frontal cortices, 
default mode network structures, normally involved in moti-
vation and reward, may be dysfunctional in people with AD 
and apathy [211, 212]. For example, decreased dopamine 
levels have been reported in the mesolimbic and mesocorti-
cal pathway [213-215], as well as changes in dopamine re-
ceptor density and distribution in apathy-related brain re-
gions [216-218].  

Pharmacological interventions have also indicated that 
cholinergic mechanisms may underlie the development of 
apathy. Improvements in apathy have been noted following 
cholinesterase inhibitor treatment which has been associated 
with activation of the ventral striatum [219, 220].  

4.3. Agitation and Aggression 

The prevalence of agitation and aggression has been re-
ported to range from 48% to 80% in AD patients with per-
sisting symptoms over months and occurring across all AD 
stages [221, 222]. Especially physical aggression is a com-
mon cause for institutionalization and an important factor in 
overmedication and the use of physical restraint [223]. 

Agitation and aggression in AD have been associated 
with brain changes in frontal and limbic regions including 
amygdala, cingulate cortex, and insula. Increased burden of 
NFT in the orbitofrontal cortex has been linked to agitation 
and aberrant motor behavior, latter defined as fidgeting, 
wandering, pacing or rummaging [205], while aggressive 
behaviors have been associated with neuronal loss in the 
rostral noradrenergic locus coeruleus [224]. Also increased 
hippocampal NFT load was associated with increased sever-
ity of aggressive behaviors and presence of chronic aggres-
sion [225]. Aggressive AD subjects were also shown to dis-
play significant hypoperfusion in the left anterior [226] and 
right medial temporal cortex [227]. Greater AD pathology-
related amygdala atrophy was also associated with more 
prominent aberrant motor behavior [228]. Both agitation and 
aggression in MCI and AD have been associated with neu-
rodegeneration affecting the anterior salience network, in 
particular greater atrophy of frontolimbic regions, right pos-
terior cingulate, and left hippocampus, that may reduce ca-
pacity to process and regulate behaviors properly [229].  

Cholinergic deficits appear more severe in AD patients 
displaying agitation or aggression [230]. In particular, loss of 
choline acetyltransferase and acetylcholinesterase enzyme 
activity has been reported in association with this particular 
NPS item [219, 230, 231]. Additional evidence comes from 
the robust clinical improvement of aggression or agitation 
observed in AD patients receiving cholinesterase inhibitors 

[219, 232, 233]. Several neurochemical studies have also 
linked serotonergic alterations with aggression. Specifically, 
reduced levels of 5HT and its metabolites were measured in 
the frontal lobes of aggressive AD patients [234], in addition 
to preserved or up-regulated serotonin re-uptake (5-HTT) 
sites in hippocampus [192], and an inverse correlation be-
tween hippocampal 5-hydroxyindoleacetic acid (5-HIAA; 
main metabolite of 5-HT) levels and agitation scores [173]. 
In addition, the prolactin response to d,l-fenfluramine as an 
index of central serotonergic function positively correlated to 
agitation and aggression scores in probable AD patients with 
severe cognitive impairment and behavioral disturbance, 
moreover, having interactions with gender and cognitive 
impairment [234]. Serotonin transporter (5-HTT) gene-
related polymorphisms have been studied with regard to ag-
gression and agitation in AD [235-237]. One study reported 
significant associations between the presence of 5-HTT vari-
able number of tandem repeats sequence allele 10 and NPS 
or aggressiveness, but failed to show a link with the 5-HTT-
linked polymorphic region (5-HTTPR), whereas another 
study indicated the 5-HTTPR polymorphism to confer risk 
for a combined psychotic and aggressive AD phenotype.  

On the other hand, dopaminergic alterations may also lie 
at the basis of aggression/agitation in AD; an increased cere-
bellar dopaminergic turnover was linked to physically agi-
tated behavior [173] (Fig. 4). A preservation of cerebellar 
TH-positive fibers in physically agitated AD subjects, might 
correspond to preserved (or even upregulated) dopaminergic 
neuronal endings or fiber sprouting [238]. In addition, the 
fact that dopaminergic turnover correlated with frontal lobe 
symptoms [173], is potentially indicative of a disrupted 
cerebello-thalamic-cortical circuit since the cerebellum 
might modulate aggressive/agitated behavior in AD by influ-
encing prefrontal circuits [238]. 

4.4. Anxiety and Phobias 

Anxieties and phobias in AD have been classically di-
vided into four categories: (1) anxiety regarding upcoming 
events, for which the term ‘Godot syndrome’ was intro-
duced, (2) other anxieties, e.g. regarding money, (3) fear of 
being left alone, and (4) other phobias, such as fear of bath-
ing [3]. Furthermore, physical signs of anxiety are restless-
ness, pacing and stereotyped behavior. Alternative postulated 
signs of anxiety include sudden feelings of panic and worry-
ing thoughts [239]. Results from the Cache County study 
indicated that 7.9% of patients with AD suffered from anxi-
ety [240], whereas a Belgian study reported that 29.8% of 
AD patients were affected by anxieties and/or phobias. This 
difference might be due to distinct assessment scales and 
study populations [241]. 

There are few studies on structural or metabolic corre-
lates of anxiety in AD. A relatively preserved amygdala vol-
ume has been associated with the development of anxiety 
and irritability in AD, which is in agreement with the rela-
tionship between the amygdala and anxiety-related behaviors 
in non-AD subjects with primary anxiety disorders. In the 
setting of a reduced ability to interpret the environment and 
regulate emotional responses, AD patients with relatively 
preserved amygdala function may exhibit heightened and 
possibly less differentiated emotional responses that seem 
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inappropriate to caregivers, such as anxiety and irritability 
[228]. Anxiety scores correlated with lower metabolism in 
bilateral entorhinal cortex, anterior parahippocampal gyrus, 
and left superior temporal gyrus and insula [242]. 

Structural, morphological, and cellular alterations in the 
hippocampus, including among other, a reduced number of 
pyramidal and granular neurons, a decrease in presynaptic 
synaptophysin density, and decreased astrocyte complexity, 
in the absence of Aβ plaques, were associated with cognitive 
impairment, but also with elevated anxiety scores in the 
transgenic PDAPP-J20 mouse model of AD [243].  

4.5. Psychosis  

Psychosis is a common (prevalence 30-50%) and difficult 
to treat symptom in AD causing diminished quality of life 
and caregiver distress. Symptoms of AD psychosis are delu-
sions, hallucinations and misidentifications. Criteria for psy-
chosis of AD were proposed by Jeste et al. and include: 
characteristic delusions or hallucinations in the presence of 
possible or probable AD; onset of the psychotic signs after 
onset of other dementia symptoms; psychotic symptoms pre-
sent intermittently for at least 1 month; symptoms severe 
enough to cause disruption of patients’ or others’ function-
ing; symptoms not occurring only during a delirium; and 
symptoms not better accounted for by another psychotic dis-
order, medical condition or drug [244]. Although some level 
of pathology is necessary to give rise to psychoses, patients 
need to be moderately intellectually preserved in order to 
elaborate the context of their delusions [245].  

As for depression, psychosis, and particularly visual hal-
lucinations and delusions, seem to have different pathologi-
cal substrates in DLB versus AD. In AD patients a signifi-
cant positive association between the presence of neocortical 
NFT and the occurrence of psychotic symptoms, defined as 
either visual hallucinations or delusions, was described 
[246], while an inverse association between visual hallucina-
tions and NFT staging was observed in DLB [247]. Interest-
ingly, in patients with presumed Lewy body variant of AD 
(Braak staging V-VI; Montine B score=3), the frequency of 
persistent visual hallucinations was more similar to the AD 
compared to the DLB group (Braak staging 0-VI) [247], 
analogously to other studies linking the presence of cortical 
LB to visual hallucinations and delusions in AD [248]. 

Visual hallucinations in AD have been linked to lesions 
in and atrophy of occipital cortex (visual cortex and associa-
tion areas) compared to AD patients without visual halluci-
nations [249, 250], while delusions have been linked to atro-
phy in frontal, temporal and limbic regions, including also 
hippocampus [206, 251]. Delusional misidentification symp-
toms in particular have been linked to right frontal lobe atro-
phy, a reduced number of CA1 pyramidal cells [245, 252], as 
well as white matter changes in the bilateral frontal or pa-
rieto-occipital region and left basal ganglia [253], while de-
lusions and hallucinations were observed in AD patients with 
less cell loss in the parahippocampal gyrus and the dorsal 
raphe nucleus [252]. Zubenko et al. studied neuropathologi-
cal and neurochemical correlates of psychosis in AD [254]. 
Psychosis (defined as the presence of delusions or hallucina-
tions) was associated with significantly increased densities 
of SP and NFT in the prosubiculum and middle frontal cor-

tex, respectively, with trends toward increased densities of 
these lesions in the superior temporal and the entorhinal cor-
tex. Noradrenergic, dopaminergic and serotonergic com-
pounds were measured in the same four cortical regions, as 
well as in the substantia nigra, thalamus, amygdala, and cau-
date nucleus. Psychosis was also associated with the relative 
preservation of norepinephrine in the substantia nigra, with 
trends in this direction for the majority of the remaining 
brain regions examined, and a significant reduction of 5HT 
in the prosubiculum that was accompanied by trends toward 
reduced levels of serotonin and 5HIAA in the remaining 
regions [254]. Disruption of a cohesive noradrenergic locus 
coeruleus-thalamus linked system, due to advanced locus 
coeruleus neurodegeneration, has been proposed to poten-
tially lead to psychotic-like behavior in AD [173], which 
was, at least partially, substantiated by the observation that 
thalamic MHPG (i.e. 3-methoxy-4-hydroxyphenylglycol, a 
major noradrenergic metabolite) levels inversely correlated 
with hallucinations in AD [173].  

Also cholinergic alterations have been linked to psycho-
sis; An increase in M2 muscarinic cholinergic receptors was 
noted in frontal and temporal cortices of AD patients with 
psychotic symptoms [255]. Moreover, treatment with cholin-
esterase inhibitors also reduced psychotic symptoms in addi-
tion to their documented benefits on cognition and global 
function [232, 233, 256]. 

Recently, a decreased dopaminergic neurotransmission 
and increased dopaminergic catabolism, specifically in the 
amygdala, was suggested to function as a monoaminergic 
substrate of psychosis in AD, whereas a generally increased 
dopaminergic neurotransmitter activity in the prefrontal, 
temporal and mesolimbic cortices, as well as locus coeruleus 
and hippocampus, could closely relate to psychosis in DLB. 
The complexity of an altered coupling between serotonergic 
and dopaminergic pathways might, additionally, also account 
differently for the presence of psychosis in DLB compared 
to that in AD [257].  

Overall, patients with AD who manifest psychosis may 
have disproportionate dysfunction of frontal lobes and re-
lated subcortical and parietal structures [258]. Moreover, 
stronger right hemispheric dysfunction in frontal and limbic 
regions [259], as well as in the temporal horns [260] has 
been associated with the presence of psychosis in AD. Delu-
sional misidentification symptoms have been linked to hy-
pometabolism in paralimbic (orbitofrontal and cingulate ar-
eas bilaterally) and left medial temporal areas, and signifi-
cant bilateral normalized hypermetabolism in sensory asso-
ciation cortices (superior temporal and inferior parietal) 
without right left asymmetry [261]. Pronounced brain dys-
function associated with psychosis was also substantiated by 
electroencephalogram (EEG) abnormalities [262, 263], with 
spectral analysis indicating increased delta [262, 263], and 
theta [262] activity, in addition to decreased alpha power 
[263].  

4.6. Sleep and Circadian Rhythm Disturbances 

Age-related circadian alterations, with decreased ampli-
tude of the rhythm as well as alterations in circadian phase 
[264], are further exacerbated in AD, making sleep disorders 
common behavioral disturbances in AD, with 25% to 50% of 
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patients experiencing major sleep problems and almost 75% 
sleeping for extended periods during the day [265]. Increas-
ing evidence suggests that alterations in circadian rhythms 
can have profound consequences on emotional behavior and 
mental health. Disrupted circadian rhythms are also linked to 
the development of other NPS, such as agitation and rest-
lessness, verbal outbursts, wandering, physical threats, and 
aggression, often referred to under the umbrella term “sun-
downing” since they mainly occur during late afternoon and 
evening [266].  

The hypothalamic suprachiasmatic nucleus (SCN) is con-
sidered to be the endogenous clock of the brain. Circadian 
rhythms not only govern sleep-wake cycles but also rhythms 
in cognitive processes including subjective alertness, 
mathematical ability, and memory [267]. The SCN displays 
a senescence-related decrease in volume, which is especially 
pronounced in AD [268]. Degenerative changes in the SCN 
include neuronal loss and NFT, whereas amyloid plaques are 
only seldom noted in the SCN [269]. Nevertheless, indices 
for amyloid deposition (i.e., cerebrospinal fluid Aβ1-42 levels) 
in the preclinical stage of AD appeared to be associated with 
worse sleep quality [270]. Recently, cortical Aβ pathology 
was associated with impaired generation of non-rapid eye 
movement slow wave oscillations that, in turn, predicted 
disturbed long-term hippocampus-dependent memory con-
solidation [271]. 

Several lines of evidence implicate alterations in mela-
tonin levels in AD as a possible neurochemical mediator of 
circadian changes. Interestingly, in addition to melatonin’s 
ability to regulate circadian rhythms [272], melatonin has 
also been demonstrated to be a potent antioxidant and neuro-
protector against oxidative stress and Aβ-based toxicity 
[273]. CSF melatonin levels decrease with the progression of 
AD neuropathology, already in cognitively intact subjects 
with the earliest AD neuropathology (Braak stages I-II, i.e. 
preclinical AD) [274]. Decreased night-time melatonin in the 
pineal gland of AD brain is accompanied by neurotransmitter 
abnormalities relevant to melatonin regulation [275]. More 
specifically, Braak stage-dependent dysregulation of pineal 
β1-adrenergic receptor mRNA and the increased monoamine 
oxidase A activity, as reflected by the 5-HIAA:5-HT ratio, 
and mRNA levels were held responsible for the disappear-
ance of the melatonin diurnal rhythm and the decrease of 
nocturnal melatonin synthesis in preclinical AD subjects and 
AD patients [275].  

Another brain area that undergoes neurodegeneration in 
AD and might be important for circadian rhythm disturbance 
is the cholinergic basal forebrain. Cells of the nucleus basalis 
project to the SCN, and cholinergic agents act in the SCN to 
modulate circadian rhythms [265]. An AD mouse model 
study has reported alterations in non–rapid eye movement 
sleep that could be due to alterations in cholinergic transmis-
sion [276], but clinical studies concerning the role of cho-
linergic depletion in circadian disturbance in AD are still 
lacking.  

Sleep disturbance has been associated with vascular pa-
thology in studies examining the incidence and severity of 
NPS [277-279]. Accordingly, increased white matter hyper-
intensities, reflecting vascular pathology of the white matter, 

which may be of Aβ-related origin, have been association 
with sleep disturbances in AD [279].  

Of interest is the fact that rapid eye movement sleep be-
havior disorder, in which acting out of dream behavior is 
associated with preservation of body tone, is more common 
in synucleinopathies than in tauopathies, to the extent that 
some suggest that its presence may be a diagnostic feature 
[280]. 

CONCLUSION 

A large body of evidence, of which only a sample set of 
studies were discussed in this review, clearly indicates that 
NPS in AD are associated with neurodegeneration affecting 
specific neural pathways, networks and circuits and that they 
are based on the interplay of neuropathological and neuro-
chemical factors in the pathogenesis of AD. It is therefore 
well established that in the vast majority of cases, NPS are 
fundamental expressions of the underlying neurodegenera-
tive brain disease and not simply reflect the patients’ secon-
dary response to his illness. Nevertheless, further refinement 
of the nosology of NPS is required since we are only begin-
ning to understand the underlying pathophysiology. In addi-
tion, it is important to take into consideration that interpreta-
tion and comparison of biological NPS-related studies can be 
restricted by relatively small sample sizes (e.g. numbers of 
patients or brain regions included), variations in study design 
or measurement of included parameters. Neuropathological 
studies, moreover, include a majority of end-stage patient 
samples, which may not correctly represent the pathophysi-
ological environment responsible for particular NPS that 
may already be present in an early stage, or even prior to AD 
diagnosis. The burdensome nature and prevalent occurrence 
of NPS, in combination with the fact that effective and safe 
treatment options are still lacking, provide a strong incentive 
to continue neuropathological and neurochemical, as well as 
of course imaging and other relevant approaches to further 
improve our apprehension of the neurobiology of NPS.  
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